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Abstract
Background: Some diseases, like tumors, can be related to chromosomal aberrations, leading to
changes of DNA copy number. The copy number of an aberrant genome can be represented as a
piecewise constant function, since it can exhibit regions of deletions or gains. Instead, in a healthy
cell the copy number is two because we inherit one copy of each chromosome from each our
parents.

Bayesian Piecewise Constant Regression (BPCR) is a Bayesian regression method for data that are
noisy observations of a piecewise constant function. The method estimates the unknown segment
number, the endpoints of the segments and the value of the segment levels of the underlying
piecewise constant function. The Bayesian Regression Curve (BRC) estimates the same data with
a smoothing curve. However, in the original formulation, some estimators failed to properly
determine the corresponding parameters. For example, the boundary estimator did not take into
account the dependency among the boundaries and succeeded in estimating more than one
breakpoint at the same position, losing segments.

Results: We derived an improved version of the BPCR (called mBPCR) and BRC, changing the
segment number estimator and the boundary estimator to enhance the fitting procedure. We also
proposed an alternative estimator of the variance of the segment levels, which is useful in case of
data with high noise. Using artificial data, we compared the original and the modified version of
BPCR and BRC with other regression methods, showing that our improved version of BPCR
generally outperformed all the others. Similar results were also observed on real data.

Conclusion: We propose an improved method for DNA copy number estimation, mBPCR, which
performed very well compared to previously published algorithms. In particular, mBPCR was more
powerful in the detection of the true position of the breakpoints and of small aberrations in very
noisy data. Hence, from a biological point of view, our method can be very useful, for example, to
find targets of genomic aberrations in clinical cancer samples.
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Background
Lesions at DNA level represent the cause of cancer and of
many congenital or hereditary disorders. The change of
the number of copies of DNA in a genomic region is one
of the most common aberrations. In normal cells each
genomic segment is present in two copies, but, for exam-
ple, in tumor cells the genome can present regions of dele-
tions (copy number one or zero), gains (copy number
three or four) or amplifications (copy number greater
than four). Thus, in general, the DNA copy number along
the genome can be represented as a piecewise constant
function.

With microarray technology it is possible to simultane-
ously measure the copy number along the genome at hun-
dred thousands of positions (see for example [1]).
However, raw copy number data are generally very noisy.
Hence, it is important to define a method which allows
one to estimate the number of regions with different copy
number, the endpoints of these regions (called break-
points) and their copy number. Several methods have been
developed to solve this issue. Many methods consider the
log2 ratio of the data (the ratio is computed with respect
to a normal reference sample) and model it as a normal
random variable, since they assume that the errors are
normally distributed. We can roughly subdivide all of
these methods into two classes: those ones that estimate
the copy numbers as a piecewise constant function and
the others that estimate the copy numbers as a continuous
curve. The methods belonging to the latter group are
called smoothing methods.

Among the methods belonging to the first class, we can
find the following. The Circular Binary Segmentation
(CBS) approach is a recursive method in which the break-
points are determined on the basis of a test of hypothesis,
with null hypothesis that in the interval considered there
is no change in copy number [2]. Picard et al. [3] used a
piecewise constant regression model, where the parame-
ters are estimated maximizing a penalized likelihood (i.e.
the likelihood with the addition of a penalty function).
This method is usually denoted with the abbreviation
CGHseg. The GLAD method is another piecewise constant
regression method, but in this case the parameters are esti-
mated maximizing a weighted likelihood [4]. Fridlyand et
al. [5] applied Hidden Markov Models (HMM), while
Marioni et al. [6] defined an HMM method which takes
into account the distance among the data points (Bio-
HMM). Recently, Nilsson et al [7] derived a segmentation
method based on total variation minimization, called
Rendersome. It is optimized for gene expression data, but
the authors affirm that it can be used also on copy number
data.

Among the smoothing methods, Hsu et al. [8] used a
wavelet regression method with Haar wavelet. Eilers and
de Menez [9] applied a quantile smoothing regression
(quantreg), with the solution found by minimizing a loss
function based on the L1 norm, to obtain a flatter curve.
Huang et al. [10] proposed smoothseg, i.e. a smooth seg-
mentation method based on a doubly heavy-tailed ran-
dom-effect model.

We propose a piecewise constant regression method,
using Bayesian statistics, which appears appropriate when
regions contain only few data points. The original version
of the method (called Bayesian Piecewise Constant
Regression, BPCR) was presented by Hutter [11,12]. In
this paper we propose improved Bayesian estimators of
the parameters involved and we apply the model to DNA
copy number estimation. Finally, we compare our algo-
rithm with some among the most cited or more recent
methods, on artificial and real data.

Our method was implemented in R and is freely available
at http://www.idsia.ch/~paola/mBPCR/ or in Additional
file 1. Furthermore, an R package will be soon available.

Methods
In the first two subsections, we briefly describe the origi-
nal Bayesian Piecewise Constant Regression method,
explaining the hypothesis of the model and the estima-
tion of its parameters with Bayesian regression. We
emphasize the definitions of the original parameter esti-
mators in order to show how we changed some of these
estimators in the other subsections.

A brief explanation of the dynamic program for the com-
putation of the estimators can be found in the Additional
file 2 (more details can be found in [11,12]).

Regarding notations, we do not indicate explicitly the ran-
dom variable to which a distribution is referred, if it is
clear from the context. For example, pK(k)  p(k) or fY, M(y,
)  f(y, ).

Hypotheses of the model
Let Y � �n be a random vector, such that each component
(called data point or, if Y represents a quantity measured
on part of the genome, probe) is conditionally normally
distributed:

Suppose also that Y represents a noisy observation of a
piecewise constant function, which consists of k0 horizon-

tal segments. Then, the segment level at a generic position

i ( ) does not assume different values for each i, but the
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data are divided into k0 intervals (with boundaries

) where

 for each q = 1,...,k0. Hence, 

represents the level of the qth segment. Our goal is to esti-

mate the levels  of all the segments. In

order to do that, we first need to estimate the number of
the segments k0 and the partition of the data t0. From a

Bayesian point of view, 0, t0 and k0 are treated as random

variables, hence we denote them with the corresponding
upper case letters (M, T and K). Moreover, because of their
randomness, we need to define a prior distribution for
each of them to complete the model.

For the number of segments and the boundaries, we
assume noninformative prior distributions:

where  = {1,...,kmax} and  is the subspace of 

such that t0 = 0, tk = n and tq � {1,...,n - 1} for all q = 1,...,k

- 1, in an ordered way and without repetitions.

About M, we assume that all its components are mutually
independent and identically normally distributed,

where  � �k, such that q =  for each q = 1,...,k, and  �

�k × k, such that p, q = p,q for each p, q = 1,...,k.

Instead of these assumptions, we could assume a Cauchy
distribution for each Yi or Mq in order to model an obser-
vation whose noise has heavier tails, as previously done
by Hutter [11,12].

Original estimation: the BPCR method
The statistical procedure consists in a sequence of estima-
tions due to the relationship among the parameters.

BPCR estimates the number of segments with the MAP
(Maximum A Posteriori) estimate given the sample point
y,

and, given , also each boundary is estimated separately
with its corresponding MAP estimate,

for all p = 1,...,  - 1. Finally, the rth moment of the level of
the mth segment is estimated with its posterior mean. Since
its computation needs the knowledge of the number of
segments and the partition of the data, we replace them
with the estimated ones,

for all m = 1,..., . When r = 1 and we assume that Y and
M are normally distributed, the estimate turns out to be

for all m = 1,..., . When the sample contains only one
segment, the Bayesian estimation of the posterior distri-
bution of the levels should theoretically lead to a normal
distribution, similar to a Dirac delta function centered at

, since the levels can assume only one value from the

data. In fact, in this case, if we estimate 2 only using the
data (without using any prior or other information), then
this value will be close to zero (the variance of a constant
random variable) and so the level will be estimated with

, the mean of the data (see Equation (9)).

We can estimate the segment level  at a generic posi-

tion s, using the fact that it belongs to some segment m
and in this segment it is equal to the corresponding Mm.

Then, summing over all the possible segments, we can
compute its posterior distribution in the following way:

and the corresponding estimate of  given  is
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for all s = 1,...,n. The vector  is called Bayesian Regression

Curve (BRC).

The probability distributions defined previously depend
on the hyper-parameters , 2 and 2 (respectively, the
mean and the variance of the segment levels and the vari-
ance of the noise). Hutter [11,12] suggested the following
estimators:

Improved estimators of the number of segments

To understand the real meaning of the MAP estimator ,
we need to introduce the theory of the construction of a
generic Bayesian estimator.

In general, a Bayesian estimator is defined in the follow-
ing way. Let us suppose that Z is a random variable whose
distribution depends on an unknown parameter , which
we want to estimate. Since we cannot exactly know the
true value of the parameter, we consider it as a random
variable  with a given prior probability distribution. In
order to measure the goodness of the estimation, we
define an error (or loss function) and we choose the estima-
tor that minimizes the expected error given the sample Z,

The 0–1 error (defined as 1 -, ') is commonly used for a
parameter which can assume only a discrete number of
values. The estimator corresponding to this error is the
MAP estimator,

Obviously, if we use different types of errors, we can
obtain different estimators. In the following, we will use

 to denote any estimator of K, while 01 to denote the

parameter estimator  based on the 0–1 error.

Using the 0–1 error, we give the same penalty to each
value different from the true value, whether it is close to
or far away from the true one. To take into account the dis-
tance of the estimated value from the true one, we need to
use other types of errors, which are based on different def-
initions of distance, such as,

absolute error := | - '|

squared error := ( - ')2.

If the parameter  � �, then the estimators corresponding
to these errors are the median and the mean of its poste-
rior distribution, respectively. In our case, we denote these

estimators of k0 with  and .

Improved estimators of the boundaries

Similarly to the previous subsection, we derive alternative
boundary estimators, by considering different types of
errors. We denote the MAP boundary estimator defined in

Equation (4) with .

Meaning of the estimator 

The estimator  is defined in such a way that each com-

ponent minimizes the 0–1 error of the corresponding
boundary, separately. Explicitly, given the sample point y
and the segment number k0, its estimate is

where  = {1,...,n - 1}.  may be regarded as an

approximation of the Bayesian estimator that minimizes
the error which counts the number of wrongly estimated
boundaries:

that is

Definition of the estimator 

A problem of the latter estimator (Equation (17)) is its
computational complexity, because it needs the computa-
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tion of all the ordered combinations of the boundaries.

On the other hand, there are two reasons for which  is

not a suitable estimator of the boundaries. First, it does
not take into account that the boundaries are dependent,
because they have to be ordered, and second, in principle,
it can have more than one component with the same
value. As a consequence, a theoretically more correct way
to estimate the boundaries is minimizing the 0–1 error
with respect to the joint boundary probability distribu-
tion (this error is called joint 0–1 error). Then, given k0 and

Y, the boundary estimator becomes

Definition of the estimators BinErr and BinErrAk

We must notice that the estimators considered until now
have the same length of the true vector of the boundaries.
In practice, the number of segments k0 is unknown, so that

we should use . As a consequence, if  is different from
k0, then, strictly speaking, we cannot minimize the previ-

ous types of error because the vectors have different
length.

A way to solve this issue is to map each boundary vector

into a vector  in the following way:

We denote with  the set of all the possible  with 0

= 1, n = 1 and k - 1 of the other components equal to 1.

Now, for the two new vectors 0 and , we define the fol-
lowing binary error,

Since the two-norm of the vectors involved is fixed, mini-
mizing (20) is the same as minimizing the Euclidean dis-
tance between the two vectors or the sum 0–1 error.
Furthermore, error (20) is consistent with the Russell-Rao
dissimilarity measure defined on the space of the binary
vectors. Its corresponding estimator is

Since we do not know the real value of k0, we should

replace it with  to compute Equation (21). Doing this,
we could amplify the error of the boundary estimation
because of the addition of the error of the segment
number estimation. A way to attenuate this issue is to inte-
grate out the number of segments in the conditional
expected value. Then the estimator becomes

Improved regression curve

As we saw in the previous subsections, there are cases in
which the estimation of a parameter of our interest can be
made independently of other parameters by integration.
The computation of the BRC (see Equations (7) and (8))
suggests to average also over the number of segments by

considering the posterior probability of , given only

the sample point y,

Unfortunately, the computation of this quantity requires

time  (see section "The dynamic program" in

Additional file 2), hence it could be a problem with sam-

ples of big size. This new type of  estimation is referred

to as Bayesian Regression Curve Averaging over k (BRCAk).

The same procedure cannot be applied for the level esti-
mation, because in that case we need to know the parti-
tion of the whole interval.

Properties of the hyper-parameter estimators and 
definition of new estimators

In order to study the properties of the hyper-parameter
estimators defined in Equations (9), (11) and (10), first

we need to compute the moments of the data .

In the following, we will denote with nq the number of

data points in the qth segment.

At first, let us consider only the data which belong to the
qth segment. From the hypothesis of the model, we know
that

T̂01

ˆ arg max ( | , ).
,

T t Y
t

joint = =
∈k n

p K k
0

0

̂ ̂

k̂ k̂

 ∈ +0
1n

t    such that 
if  such that 

otherwise
 i

pp t i
=

∃ =⎧
⎨
⎩

1

0 .

 k n,

binary error = − − 〈 〉 = − −
=

−

∑k k i i

i

n

0
0

0
0

1

1

1 1 , . 

ˆ : arg min , ar
,




BinErr E= − − ′
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
′∈ =

−

∑k n

k ki i

i

n

0

0

1

1

01   Y gg max , .
,′∈ =

−

′
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∑




k n

i i

i

n

k
0 1

1

0E  Y

k̂

ˆ : arg max .
ˆ ,




BinErrAk E= ′
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥′∈ =

−

∑
k n

i i

i

n

 
1

1

Y

M s

 ˆ : [ | ]. s sE= M y

O n k( )max
2 2

M s

Y |
, ,  2 2

Y j t t

M

j M q q q

q

q
| ~ ( , ) ,...,

| ~ ( , ),

,

,



 



 

2

2

2
1

2

1



M = +−
Page 5 of 19
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:10 http://www.biomedcentral.com/1471-2105/10/10
hence the marginal distribution of any two data points Yi

and Yj belonging to the qth segment is (, ), where

It follows that the covariance between two data points,
which belong to the same segment, is

Cov(Yi, Yj|, 2, 2) = 2 i  j,

and

E[Yj|, 2, 2] = 

Var(Yj|, 2, 2) = 2 + 2,

for each j = 1,...,n, independently of the segment to which
it belongs.

Furthermore, from the hypotheses of the model, given the
segmentation t0, data points belonging to different seg-
ments are independent.

Expected value and variance of the estimator 

The estimator of  is defined as  (see Equation (9)).
From Equation (26), we can see that this estimator is
unbiased and its variance turns out to be

Hence, the variance is always greater than , even

if we use a denser sampling, i.e. we augment the number
of data points in the interval in which we are estimating
the piecewise constant function.

New definition of the estimator  and its expected value
A circular version of the 2 estimator defined in Equation
(11) is

where Yn+1 := Y1. Using the values of the moments of the
data points, its expected value is

where we considered two cases in the computation: (a)
when k0 = 1, Y1 and Yn belong to the same segment (thus

they are dependent), (b) when k0  2, we supposed that

the first and the last segments have different levels and so
Y1 and Yn are independent. If the first and the last seg-

ments had the same level, then the two segments would
be joined together and thus Y1 and Yn would be depend-

ent. In this case, the expected value would be the same but
with k0 - 1 instead of k0, since the number of segments

would be k0 - 1. In any case, for k0 = 1, the estimator 

is unbiased, while for k0 << n but k0  1,  is almost

unbiased.

Expected value of the estimator 

The expected value of the estimator  (defined in Equa-

tion (10)) is

Note that when k0 = 1 (i.e. having only one segment),

. In this degenerate case, the variance

of the segment levels 2 should be estimated with zero but

 estimates it with the variance of the data points.

Moreover, since  (the equality holds only

when k0 = n), we obtain that

Hence, if n is large the expected value is between 2 and 2

+ 2, so that, if 2 << 2, the estimator is almost unbiased
for 2 (instead of 2).

Definition of alternative estimator of 2: 

Since the covariance between data points belonging to the
same segment is 2, we could try to use a circular version
of the estimator of the autocovariance of a stationary time
series
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where Yn+1 := Y1. The expected value of the estimator turns
out to be

In the computation we considered two cases: k0 = 1 and k0
 2. When k0 = 1, Y1 and Yn belong to the same segment
and so they are dependent; when k0  2, we suppose that
the first and the last segment have not the same level value
and so Y1 and Yn are independent. If k0  2 and the first and
the last segment had the same level value (event with a
very low probability), then the first and the last segments
would be joined together and so Y1 and Yn would be
dependent. In this case, the expected value of the estima-
tor would have the same formula, but with k0 - 1 instead
of k0.

We can observe that, when k0 = 1, the expected value is

negative, while, when k0  2, it can be negative or positive.

Moreover, the coefficient of 2 is  and so this adden-

dum does not contribute so much to the unbiasedness of
the estimator.

The negativity of the expected value happens because the
estimator is a generic estimator of the covariance and, in
general, this quantity can be negative. To prevent the neg-
ativity of the estimator, we can use its absolute value. In
this way, when the quantity in (33) is negative, we use the
same estimator but with the sign changed in one of the

factors of each product, .

Hence, the meaning of the estimator is the same. We are
interested only in the absolute value of the estimate and
not in its sign. In fact, we already know that the correla-
tion is positive and the negativity of the estimate is due
only to the property of the estimator. Our final definition
of the estimator is then

Results and discussion
In this section we show and discuss results obtained on
both the simulated and the real data. We used the simu-
lated data with a twofold aim. The first was to choose
empirically the best estimators among those proposed in
the previous section. The second was to compare the orig-
inal version of BPCR/BRC and their modified versions
with each other and with other existing methods estimat-
ing DNA copy number value [2-10]. On the basis of the
results, we selected the best modified version of BPCR,
called mBPCR, and of BRC.

Finally, we compared the performance of mBPCR, CBS,
CGHseg, GLAD, HMM, BioHMM and Rendersome on the
real data.

Simulation description
In the comparisons, we used several types of artificial data.
We call sample a sequence of data which represents the
copy number data of a genomic region, we call dataset a
set of samples, while collection a set of datasets.

In order to experimentally evaluate the behavior of all the
estimators proposed, we used the artificial datasets sam-
pled from the priors, defined in the hypotheses of the
model. We always chose  = 0.2, while we changed the
values of 2 and 2 for each dataset, in order to study dif-
ferent situations of noise (some examples of data are in
Figure 1 and the corresponding estimated profiles
obtained applying several methods are in Figure S.1 in
Additional file 2). The most problematic cases were the
ones with 2 <2 (i.e. when the variance of the noise was
higher than the variance of the segment levels), because in
these cases it was hard to identify the true profile of the
levels. We always used n = 200, similar to the mean
number of probes of a small chromosome in the Affyme-
trix GeneChip Mapping 10K Array (hence it represented a
difficult case due to the small sample size), and kmax = 40,
in order to have at least 5 probes per segment on average.

Sometimes we needed datasets where all samples had the
same true profile of the segment levels (i.e. K, T and M
were sampled one time and only the noise varied in all
samples). This type of dataset is called dataset with repli-
cates. Otherwise, the dataset is called without replicates (i.e.
each time we sampled K, T, M and added the noise to the
profile). The number of samples per dataset was 100, for
datasets with replicates, and 300 otherwise. We consid-
ered datasets with replicates in order to be able to com-
pare the goodness of different types of estimations for a
given profile.

We also compared the behavior of our boundary estima-
tors using the artificial dataset already employed in [13],
where three methods for copy number estimation were
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examined. This dataset contained 500 samples consisting
of 20 chromosomes, each of 100 probes, which emulated
the real copy number data. This dataset is referred to as
Simulated Chromosomes.

To assess the performance of the several methods, we used
three types of artificial datasets. The first type consisted of
four datasets with replicates used in the comparison
among the estimators. This collection of datasets is called
Cases.

The second type consisted of datasets adapted from the
datasets used in [14] to compare several methods for copy
number estimation. In these datasets, each sample was an
artificial chromosome of 100 probes, where the copy
number value was zero apart from the central part where
there was an aberration. The Authors considered several
widths of aberration: 40, 20, 10 and 5 probes. The noise
was always distributed as (0, 0.252), while the signal to
noise ratio (SNR) was 4, 3, 2 or 1. The SNR was defined as
the ratio between the height of the aberration and the
standard deviation of the noise. The data of the paper con-
sisted of datasets of 100 samples for each combination of
width and SNR.

We defined our datasets in the following way. For a fixed
SNR value, we constructed a chromosome with four aber-
rations of width of 40, 20, 10 and 5 probes, respectively,
by joining the corresponding four types of chromosome
of the previous datasets. This collection of datasets is
called Four aberrations. In the following, we will consider
only the datasets with SNR = 3 (medium noise) and SNR
= 1 (high noise).

The third type of dataset used was the Simulated Chromo-
somes dataset.

Comparison among the estimators on simulated data
In this subsection, we present how we selected the best
estimators among those proposed in the Section Methods,
on the basis of their results obtained on the artificial data-
sets. The comparisons were accomplished using both the
true and the estimated values of the other parameters
involved in the estimation.

Comparison among the hyper-parameter estimators
We applied the hyper-parameter estimators on 8 datasets
without replicates, considering different values for 2 and
2. To evaluate the behavior of the hyper-parameter esti-
mators in all these cases, for each dataset we computed the
(estimated) Mean Square Error, MSE, with respect to the
true value of the parameter (Table 1). To measure the
accuracy of the estimators, we used the estimated mean
relative error over all datasets (Table S.1 in Additional file
2).

From the results, we can deduce that  is a good estima-

tor because it was quite precise in all situations, while 
was sometimes poor but in general acceptable. About the

2 estimation, it is better to use  than , when the

variance of the noise is higher than the variance of the lev-

els. Otherwise, it seems better to use  because it does

not underestimate 2 (see Section Methods).

Comparison among the segment number estimators
We evaluated the quality of the estimators of the number
of segments, using datasets with and without replicates for
different values of the hyper-parameters 2 and 2. The
estimations were made using either the true values of the
hyper-parameters or the estimated ones. In this way, we
could also observe the behavior of the boundary estima-
tors without the influence of the hyper-parameter estima-
tion.

Example of simulated dataFigure 1
Example of simulated data. The simulated data in the figure represent an easy, medium and difficult case, respectively.
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Comparing the absolute, squared and 0–1 errors, we

found that  generally had the lowest upper bound (or

its upper bound is very close to the lowest one) of the con-
fidence interval at level 95%, for any type of error and any

type of value of the parameter 2 (see, for example, Figures
S.2 and S.3 in Additional file 2). Moreover, all estimators
always had a similar confidence interval of the 0–1 error,

while using , in most cases the upper bound of the

confidence interval of the absolute and the squared error

was lower than using . All these results support the

suggestion to use  with .

We should also observe that in general 01 underesti-

mates k0, while  and  overestimate it. In addition,

the percentage of the underestimations increases using

.

Comparison among the boundary estimators

We compared the boundary estimators on the same data-
sets, previously used for the estimators of the number of
segments, with both the estimated and the true value of
the parameters involved. The following errors were taken
into account: the sum 0–1 error, the joint 0–1 error and
the binary error, defined in Section Methods, and the aver-
age square error,

which corresponds to the mean square error over the
whole vector of estimated boundaries. As observed in Sec-
tion Methods, when the estimated segment number is
used in the estimation of the boundaries, we are only able

to compute the binary error, because it does not require
that the vector of estimated boundaries has the same
length as the vector of the true boundaries.

We found (see, for example, Table 2 and Table S.2 in

Additional file 2) that the best estimators were ,

 and , but it seemed that , 

were slightly better than , when we estimated the

parameters. Moreover, between these ones, we preferred
the latter, because its computation depended less on the
estimation of k0 and thus it was more stable. In addition,

in case of 2 > 2, we observed that there was a great dif-

ference between the errors obtained using  and :

using the latter, the errors were significantly lower (Table
2).

To choose between the estimators  and , we

performed the segment level estimation, considering both

2 estimators. Then, we computed the MSE of the esti-
mated segment level per probe and its upper bound of the
confidence interval at level 95% (the corresponding
graphs regarding some datasets can be found in Figure S.5
in Additional file 2). The results showed that, for a given

estimator of 2, in general  was better than 

and the upper bound of the confidence interval of the
MSE of the former estimator was lower than that one of

the latter. Moreover, using  the error was generally

lower. 

In addition, we compared the behavior of our boundary
estimators on dataset Simulated Chromosomes. To assess
the goodness of their estimation, we measured the sensi-
tivity (proportion of true breakpoints detected) and the

Table 1: Comparison among the hyper-parameter estimators

2 = 0.1 2 = 0.3 2 = 0.5 2 = 0.5 2 = 0.5 2 = 0.7 2 = 1 2 = 1.2
2 = 0.5 2 = 0.05 2 = 0.02 2 = 0.05 2 = 0.1 2 = 0.5 2 = 0.05 2 = 0.5

0.0904 0.0091 0.0059 0.0094 0.021 0.067 0.0169 0.0729
0.0042 0.0014 0.0041 0.0036 0.0037 0.0114 0.0123 0.0272
0.0633 0.0871 0.2508 0.2404 0.2426 0.4271 0.9921 1.3254
0.068 0.0009 0.0008 0.0014 0.0047 0.0593 0.0024 0.0623

The table shows the estimated mean square error of the estimators , ,  and  applied to datasets without replicates, for different 

values of 2 and 2. The table shows that  increased with 2 and  increased with 2. The estimator  was generally more 

accurate than  with respect to the MSE error measure.
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false discovery rate (FDR, i.e. proportion of false esti-
mated breakpoints among the estimated ones), while to
assess the influence of the boundary estimation on the
profile estimation, we calculated the sum of squared dis-
tance (SSQ), the median absolute deviation (MAD) and
the accuracy (proportion of probes correctly assigned to
an altered or unaltered state). The sensitivity and the FDR
were computed not only looking at the exact position of
the breakpoints (w = 0), but also accounting for a neigh-
borhood of 1 or 2 probes around the true positions (w =
1, 2). We also computed the accuracy inside and outside
the aberrations separately, since the samples of dataset
Simulated Chromosomes contained only few small copy
number changes and thus the accuracy depended more on
the correct estimation/classification of the probes in the
"normal" regions. A more detailed explanation of these
measures can be found in [13].

Since we estimated  = 0.026 and  = 0.031 (using the

whole dataset), we expected that using  we should

obtain better results because 2 was lower than 2 and

indeed the results obtained with  were slightly better

than the others (see Table 3 and Figure S.6 in Additional

file 2). Moreover, we found in general that  had

the highest sensitivity but also a higher FDR than 

(Figure S.6 in Additional file 2). This was due to the fact

that, although the estimated number of segments was the

same,  could estimate some breakpoints with the

same position, reducing the total number of breakpoints
and so reducing the FDR. We can see in Table 3 that the
false estimated breakpoints did not negatively influence
the profile estimation. In fact, the false breakpoints are
often used by the algorithm in two ways: either to divide
a long segment into two or more segments with close lev-
els or, if it is difficult to determine the position of a break-
point, to add, before or after the aberration, a segment of
one point with the value of the level between zero and the

aberration level. Overall,  with  performed

best on this dataset.

In conclusion, we suggest to use , even if  is

also a quite good estimator in some cases. Regarding the

estimation of 2, it seems that it is better to use  in pres-

ence of high noise.

Comparison among the regression curves

We compared the estimation of the levels of BRC with the
one of BRCAk, also taking into account the influence of
the different estimators of the parameters on the final
results. To valuate the performance of the methods, we
used the root mean square error (RMSE) per probe and

Table 2: Comparison among the several boundary estimators

2 = 0.1 2 = 0.3 2 = 0.5 2 = 1.2
method 2 = 0.5 2 = 0.05 2 = 0.1 2 = 0.5

, 
11.5967 ± 0.4562 18.0933 ± 0.6388 18.2 ± 0.6177 17.6833 ± 0.5781

, 
8.8667 ± 0.3329 17.6333± 0.6224 17.4833± 0.5898 16.6167 ± 0.5367

, 
8.6833 ± 0.3437 17.3833 ± 0.6219 17.2467 ± 0.5983 15.8967 ± 0.5278

, 
8.7267 ± 0.3449 17.3933 ± 0.6226 17.2567 ± 0.5978 15.9133 ± 0.5303

, 
11.4767 ± 0.4532 15.2867 ± 0.5325 15.6867 ± 0.536 16.1933 ± 0.5301

, 
8.7933 ± 0.3294 13.73 ± 0.4731 13.81 ± 0.4691 14.1667 ± 0.451

, 
8.47 ± 0.3372 13.0567 ± 0.4635 13.18 ± 0.4725 13.2367 ± 0.4344

, 
8.4567 ± 0.3361 13.0467 ± 0.4676 13.08 ± 0.4695 13.2233 ± 0.4361

The table shows the estimated mean binary errors ± standard deviation of the estimators of t0 applied to datasets with replicates for different 

values of 2 and 2. We always used , ,  and both 2 estimators as estimators of the other parameters involved. The estimators  

and  always had the lowest errors. When 2 > 2 the error was lower by using , otherwise the two 2 estimators gave similar errors.
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per sample, computed with respect to the true profile of
the levels. For this purpose, we necessarily needed datasets
with replicates. Using BRCAk we generally obtained a bet-
ter or equal result with respect to the BRC (see, for exam-
ple, Figures S.7 and S.8 in Additional file 2). Moreover, we
observed that, using BRC, it was better to estimate the seg-

ment number with  or .

Note that we still have to solve the problem to determine

which is the best estimator of 2. In most cases, the profile

obtained by using  was better than using  (for

example, see the plots at the bottom of Figure S.9 in Addi-

tional file 2). This is due to the fact that sometimes 

slightly underestimated 2, leading to overfitting. Still we

recommend to use , even if it could lead to a slight

overfitting especially in the case of few segments.

Comparison with other methods on simulated data
In this subsection we compare the original and modified
versions of BPCR and BRC, with other existing methods
for genomic copy number estimation [2-10].

Error measures used in the comparison
We used two different measures to examine the behavior
of the different methods on the collections Cases and Four
aberrations: the root mean square error (for both) and the
ROC curve (only for the latter). Each point of the ROC
curve has as coordinates the false positive rate (FPR) and
the true positive rate (TPR) for a certain threshold. The

TPR is defined as the fraction of probes in the true aberra-
tions whose estimated value is above the threshold con-
sidered, while the FPR consists in the fraction of probes
outside the true aberrations whose estimated value is
above the threshold. Hence, the ROC curve measures the
accuracy of the method in the detection of the true aberra-
tions.

Instead, the evaluation of the several methods on dataset
Simulated Chromosomes was accomplished using the error
measures described in [13], already used in the study of
the boundary estimators.

Before showing the results, we need to remember that
some methods estimate the copy numbers as a piecewise
constant function, while other algorithms estimate them
as a continuous curve. Hence, BPCR was compared to the
former group of methods, while the Bayesian regression
curves to the latter. Since some error measures of [13] sup-
pose that the estimated profile is piecewise constant, we
applied only the former group of methods on dataset Sim-
ulated Chromosomes.

The piecewise constant estimation

We compared the original and the modified versions of
BPCR with CBS [2], CGHseg [3], GLAD [4], HMM [5],
BioHMM [6] and Rendersome [7]. For thoroughness, in

the modified versions of BPCR, we used both  and 

as estimators of 2,  as estimator of k0 and both 

and  as estimators of the boundaries. We used 

Table 3: Comparison among the boundary estimators on Simulated Chromosomes

method SSQ MAD accuracy accuracy inside aberrations accuracy outside aberrations

, 
14.23 0.00877 0.889 0.961 0.883

, 
2.22 0.00840 0.904 0.992 0.892

, 
1.70 0.00733 0.936 0.992 0.932

, 
9.74 0.00952 0.881 0.960 0.877

, 
2.67 0.00970 0.882 0.993 0.867

, 
1.85 0.00781 0.929 0.993 0.920

This table shows the comparison among the error measures for profile estimation, obtained on dataset Simulated Chromosomes, for all estimators of 

t0 (apart ). We always used , ,  and both 2 estimators as estimators of the other parameters involved. The estimator 

 always had the lowest SSQ and MAD errors and the highest accuracy both inside and outside the regions of aberration. Using  the 

performance was slightly better, because 2 <2.
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when the noise was low (2 <2) and otherwise .

Examples of estimated profiles can be found in Figure 2.

In general, in presence of medium noise, the GLAD
method performed worst, since it had a high error in the
level estimation of the small peaks, while, for high noise,
often both GLAD and Rendersome failed to detect the
aberrations (Figures S.12 and S.13 in Additional file 2).
The CGHseg method did not usually exhibit an appropri-
ate level estimation except sometimes for segments of
large width (for example in Figure S.11 in Additional file
2). This is due to the fact that CGHseg estimates the level
of a segment with the arithmetic mean of the data points
in the segment and this estimator performs poorly if the
segment contains few data points and the breakpoint esti-
mation is not accurate. The CBS method, in general, per-
formed quite well, but it was unable to detect aberrations
of small width, especially when the noise was high (Figure
S.13 in Additional file 2).

On the collection Cases and the dataset of Four aberrations
with SNR = 3, the RMSE plots and the ROC curves of the
HMM method showed that it generally estimated the pro-
file well, but sometimes it exhibited high errors near
breakpoint positions (see, for example, Figure S.11 in
Additional file 2), likely because it was unable to deter-
mine the true position of the breakpoints precisely. More-
over, on the dataset with SNR = 1, we recognized the true
issues of the estimation with HMM. The RMSE plot
showed that it had a high error outside the regions of the
aberrations, while inside these regions the error was
always more or less the same. Hence, it often failed also in
the estimation of the largest aberration, the easiest one to
detect (see the corresponding errors in Figure S.13 in
Additional file 2). The reason of this behavior of the RMSE
is the following. The method estimated the true profile
either with only one segment, or more often with a profile
consisting of a lot of small segments, but all with the same
level. Since in the latter case the estimated levels were
close to that one of the true aberrations, the RMSE was low
in the regions of the aberrations but high outside them.
However, the estimated profiles were not similar to the
true one. In presence of medium noise (SNR = 3), the
method BioHMM was more precise than HMM in the
determination of the breakpoint positions and in the level
estimation (Figure S.11 in Additional file 2), while for
high noise it behaved similarly to HMM (Figure S.13 in
Additional file 2).

In general we found that, when 2 <2 (when 2 > 2), the

version of BPCR with  and  ( ) generally

gave the best estimation compared to the other versions of
BPCR and to the other methods (Figures S.10, S.11, S.12

and S.13 in Additional file 2). In the following, we will
call this modified version of BPCR, mBPCR.

Only on the dataset with SNR = 1, we could not choose
the "best" method, because this case showed the limits of
all the methods considered. The problem regarding the
modified versions of BPCR was essentially the estimation
of the number of segments. The ROC curves (Figure S.12
in Additional file 2) of the modified versions of BPCR

with  were the closest to the left and the top sides of

the box, while the RMSE plot (Figure S.13 in Additional
file 2) showed that these methods were the best methods
in the estimation of the levels inside the aberrations, but
not outside them. In general, in case of very high noise, all
the modified versions of BPCR well detected the aberra-
tions, but had problems in the estimation of the profile
outside them because of the poor estimation of the

number of segments. In fact,  tends to overestimate the

number of segments and this problem worsens using .

In conclusion, in a situation with very high noise, using

 the BPCR methods detect better the small segments,

but, at the same time, the large ones are divided in small

segments. On the other hand, using , smaller segments

are not detected and are joined to the closest large seg-
ment.

Finally, the comparison performed on dataset Simulated
Chromosomes showed that CBS and mBPCR better esti-
mated the profiles (see Table 4). Regarding the breakpoint
error measures (see Figure S.14 in Additional file 2), we
found that mBPCR had the highest sensitivity (hence, it
was the best method in determining the exact position of
the breakpoints), but also a higher FDR than CBS. We
have already explained in the previous subsection the pos-
sible reason of the high FDR of mBPCR and we can
observe again that this fact did not influence negatively
the profile estimation (see the SSQ error in Table 4). The
GLAD method showed a low sensitivity and low FDR,
apart from the case regarding the exact position of the
breakpoints (w = 0), which means that it underestimated
the segment number and the estimated breakpoints were
not located exactly at their true positions. Also CGHseg
underestimated the number of segments because of low
sensitivity and FDR, while HMM had low sensitivity and
high FDR when w = 0 and vice versa in the other cases,
which means that it often detected the true segment
number, but it was unable to put the breakpoints at their
exact position. Instead, BioHMM solved the issue of HMM
with w = 0, but overall had a lower sensitivity than HMM.
Rendersome missed several true aberrations (lowest sensi-
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tivity) and detected some false aberrations (medium
FDR).

Estimation with a continuous curve

We compared the several versions of the Bayesian regres-
sion curves with methods which estimate the copy
number as a continuous curve (lowess, wavelet, quantreg
and smoothseg). Lowess is the acronym of "Locally
Weighted Smoothing" (implemented in the stats library
of R) and it is one of the methods considered in the com-
parison performed in [14]. As we saw previously, both the

BRC, which uses , and the BRCAk perform well, so we

tested both versions with both estimators of 2. Figure 3

shows examples of estimated profiles with these smooth-
ing methods.

In general, we found that all methods detected the regions
of aberration quite well (see, for example, Figures S.16
and S.18 in Additional file 2). The wavelet method
showed a higher error in the level estimation of the aber-
rations in the datasets SNR = 3 and SNR = 1 (Figures S.16
and S.18 in Additional file 2). The methods lowess and
quantreg had the highest RMSE in the collection Cases,
while their error was not significantly different outside
and inside the aberrations on datasets with SNR = 1, 3.
Therefore, in the last cases the error was low inside the
aberrations and high outside them in comparison with
the other methods. The method smoothseg showed a sim-
ilar behavior, but with a lower error.

Example of estimated piecewise constant profilesFigure 2
Example of estimated piecewise constant profiles. The plots show the differences in the level estimation among the 
piecewise constant methods on samples with SNR = 3 and SNR = 1: some are unable to identify the small aberrations in pres-
ence of high noise. In each graph, the grey segments represent the true profile.
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Moreover, we found that the ROC measure was affected
by oscillations in the estimated curve, which lead to ROC
curves intersected and difficult to be interpreted (Figure
S.15 in Additional file 2). This complex behavior is a con-
sequence of the way in which lowess, wavelet, quantreg
and smoothseg yielded oscillating curves with positive
and negative values outside the aberrations; while BRCs
estimated the true profile with a line almost flat and close
to zero (see the examples in Figure 3).

In conclusion, the version of BRC with  and BRCAk

gave in general a better estimation than the other BRCs
and the other smoothing methods considered. Regarding

the 2 estimation, we found that it is better to use , if

2 <2, and , if 2 > 2.

Application to real data
In this subsection, we show how mBPCR performed com-
pared to other piecewise constant estimation methods on
the real data. We used samples from three mantle cell lym-
phoma cell lines (JEKO-1, GRANTA-519, REC-1) previ-
ously analyzed by us with the Affymetrix GeneChip
Mapping 10K Array (Affymetrix, Santa Clara, CA), an oli-
gonucleotides-based microarray [15]. We also used the
data obtained on JEKO-1, by using the higher density
Affymetrix GeneChip Mapping 250K Nsp Array. We con-
sidered eight recurrent gene regions of aberration in lym-
phoma plus other two gene regions (BIRC3 and LAMP1)
and we compared the corresponding copy numbers
obtained by the several piecewise constant methods with
those obtained by the FISH technique in [15]. In the end,
we also show a comparison among the estimated profiles
of chromosome 11 of JEKO-1.

The 10K Array data used are freely available at the public
repository Gene Expression Omnibus [16] with GEO
accession: GSM95567, GSM95568 and GSM95570. The
250K Array data of cell line JEKO-1 will be soon available
in the same repository.

With the current implementation, on a computer with
dual CPU (AMD Opteron 250, 2.4 GHz) and 4 GB RAM,
the algorithm needed about 4 minutes to analyze a 10K
Array sample, while about 1 day to estimate the profile of
a 250K Array sample. The computations were performed
by chromosome (and by arm for the longest chromo-
somes in the 250K Array data) and using kmax = 100.

Gene copy number estimation
To properly evaluate the methods, the knowledge of the
true underling profile is required. In general, large aberra-
tions on chromosomes can be detected with conventional
karyotype analysis or with SKY-FISH and one could use
this information for the evaluation procedure, but the
width of these aberrations is so large that all the methods
can detect them well, leading to a useless comparison. For
this reason, we decided to take into account only genes to
compare the piecewise constant methods.

In the comparison, as previously published [15], when
two FISH copy numbers had been assigned to one gene,
the first number should correspond to the copy number
detected in the majority of the cells. We assigned two esti-
mated copy numbers to one gene, when the position of
the gene is between two SNPs and the method assigned
two different values to these SNPs.

The results on REC-1 (Table S.3 in Additional file 2) did
not show any significant difference among the methods,
instead those on GRANTA-519 (Table S.4 in Additional

Table 4: Comparison among the piecewise constant methods on Simulated Chromosomes

method SSQ MAD accuracy accuracy inside aberrations accuracy outside aberrations

mBPCR 
1.70 0.00733 0.936 0.992 0.932

mBPCR 
1.85 0.00781 0.929 0.993 0.920

CBS 1.56 0.00705 0.953 0.985 0.950
CGHseg 5.42 0.00795 0.925 0.885 0.956
HMM 4.47 0.00350 0.993 0.968 0.997
GLAD 4.15 0.00846 0.939 0.930 0.952
BioHMM 5.69 0.003647 0.990 0.949 0.999
Rendersome 19.13 0 0.920 0.289 1

The table shows the comparison of the level estimations obtained using several piecewise constant methods on dataset Simulated Chromosomes. In 
this comparison, the methods CBS and mBPCR exhibited the lowest SSQ error in the profile estimation and the highest accuracy inside the 
aberrated regions. On the other hand, HMM, BioHMM and Rendersome had the highest accuracy outside the aberrations, but a high SSQ error. 
Therefore, the former group of algorithms globally estimated a better profile than the latter. Because of its definition, the MAD error is less 
informative: it does not take into account if a small number of probes are wrongly estimated, but these probes could correspond to breakpoints or 
small aberrations.
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file 2) showed that GLAD was unable to detect the true
copy number in five cases, while HMM, BioHMM and
Rendersome detected an amplification on MALT1 greater
than what detected by FISH analysis. All methods did not
detect the true copy number of ATM, probably because the
SNPs around ATM are far away from the corresponding
FISH region (about 1 Mb) and the deletion affects only

this region. Only mBPCR with  and HMM detected a

breakpoint between the two SNPs around ATM region,
indicating a copy number change.

Regarding the JEKO-1 data, since the cell line is triploid,
to obtain more realistic copy number value, we centered
the estimated log2ratio around log2 3. With the denser

250K Array data, all methods behaved equally good. Only
HMM had a problem in the detection of the breakpoint
corresponding to the C-MYC amplification (see Table S.5
in Additional file 2). On both arrays, all methods identi-
fied a gain (copy number 3 or 4) at the CCND1 position,
while the copy number detected by FISH is 2. This fact
cannot be explained as previously for ATM, because this
region is well covered by SNPs. Instead, on the JEKO-1
10K Array data (Table 5), the noisiest among all samples,
we can see several cases in which CBS, HMM and GLAD
did not detect correctly the gene copy number (for exam-
ple, BCL2 and MALT1). This occurred more frequently to
BioHMM and Rendersome, while only once to CGHseg

Example of estimated regression curvesFigure 3
Example of estimated regression curves. The plots show the differences in the level estimation among the smoothing 
methods on samples with SNR = 3 and SNR = 1: some oscillate more in the regions outside the aberrations. In cases of high 
noise, the more oscillating the profiles are, the harder it is to identify which regions correspond to the aberrations. In each 
graph, the grey segments represent the true profile.
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(LAMP1). The method mBPCR with  always estimated

gene copy numbers correctly, apart from CCND1.

Profile estimation
To compare the profile estimations, we chose the sample
JEKO-1 because, using the results obtained on both types
of array, we could at least understand which regions were
more realistically estimated. For now, whole validated
chromosomic profiles are not available. Among all chro-
mosomes, we chose chromosome 11 since three of the
previous genes belong to that: CCND1 (around 69.17
Mb), BIRC3 (around 101.7 Mb) and ATM (around 107.6
Mb).

From the graphs in Figure 4 we can observe that, among

all the piecewise constant methods, only mBPCR with 

was able to detect the high amplification after position
110 Mb on the 10K Array data, while it was recognized by
all methods (apart from BioHMM) on the 250K Array
data. Moreover, on the 10K Array data, almost all meth-
ods detected a false deletion around position 3 Mb, due to
the presence of a sequence of outliers, and BioHMM did
not find any copy number change in the chromosome.
On the 250K Array data, HMM and Rendersome had
problems in recognizing the last part of the chromosome
as a flat region. Moreover, on the 10K Array data, Render-
some estimated several outliers as true aberrations and,
on the 250K Array data, it was unable (contrary to all
other algorithms) to identify the whole region from about
78 Mb to 111 Mb as gained.

Conclusion
We introduced new estimators for the parameters
involved in BPCR and we selected the best ones on the
basis of theoretic and empirical results. In particular, we
found that the best way is to estimate the segment number

with  and the boundaries with  (or possibly

). We call mBPCR the BPCR version which uses 

and .

Concerning the estimation of the variance of the segment

levels, we found that the original estimator  overesti-

mates 2 (variance of the segment levels) by an addendum

proportional to 2 (variance of the noise), see Equation

(31). Hence, the estimation fails when 2 > 2. The new

estimator  is more precise but slightly underestimates

2, leading to an overestimation of the segment number.
Applying both estimators on artificial datasets, we found

that, in general, the best way is to use  when 2 <2

(low noise), but to use  when 2 > 2 (high noise),

even if it could lead to a slight overfitting. On real DNA

copy number data, commonly 2 > 2.

We also compared mBPCR with other methods which
also estimate the copy number as a piecewise constant
function: CBS, HMM, CGHseg, GLAD, BioHMM and
Rendersome. As a whole, the results showed that mBPCR
gave the best estimation on the dataset used. However,

Table 5: Copy number estimation results obtained on 10K Array data of sample JEKO-1

mBPCR

gene region FISH CN CBS CGHseg HMM GLAD BioHMM Rendersome

BCL6 3/2 2.97 2.99 2.97 2.90 2.92 2.92 3.14 2.92
C-MYC ampl 12.11 9.35 10.27 10.27 13.95 9.82 8.26 13.10/3.11
CCND1 2 4.08 3.77 4.08 4.08 3.84 3.79 3.14 3.50
BIRC3 4/5 4.08 4.29 4.08 4.08 3.84 3.79 3.14 3.50
ATM 4 4.08 4.29 4.08 4.08 3.84 3.79 3.14 3.50/2.39
D13S319 4 3.72 3.59 3.57 3.72 3.62 3.58 3.14 3.43
LAMP1 4 3.41 3.82 3.41 3.41 3.62 2.49 3.14 3.43
TP53 2/3 2.81 3.00 2.83 2.50 3.52 2.93 3.14 2.93
MALT1 4 3.63 3.62 3.48 3.64 3.42 3.42 3.14 3.42
BCL2 4 3.63 3.62 3.48 3.64 3.42 3.42 3.14 3.42

On this noisy data, BioHMM and Rendersome often estimated the gene copy number wrongly, while this occurred only sometimes to CBS, HMM 

and GLAD. The method mBPCR with  correctly estimated the gene copy numbers, apart from CCND1 whose copy number was estimated by 

all methods differently from the FISH technique.
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when 2 ¯ 2 it is hard to understand which method is the
most appropriate. Most of the other methods were not
able to detect aberrations with a small width (5 and 10

probes) and the same was true for mBPCR using . On

the other hand, the use of  led to the detection of the

smaller segments, but the larger ones were often divided
in small segments and sometimes the segments consisted

of only one point. The optimal choice of the 2 estimator
is still not fully determined.

The new estimators improved also BRC, which is a Baye-
sian regression with a smooth curve. Moreover, we
derived a formula to estimate BRC without employing the
estimated number of segments. We referred to it as
BRCAk. Applying these methods to artificial data, the best

estimators were found to be the BRC version with  and

BRCAk. About the choice of the two estimators of 2, we
found a similar conclusion as before, with the advantage

of being less problematic when 2 ¯ 2. We compared
these two regression methods with other methods which
estimate the copy number data as a continuous curve:
wavelet, lowess, quantreg and smoothseg. The results
showed that our modified regression methods were the
most appropriate for the estimation of the segment levels
on the datasets considered.

Even though these smoothing methods seem to have less
problems in the estimation and the error measures (for
example, the ROC curve) suggest that their estimation is
even better than the piecewise constant estimation, these
methods do not detect the position of the breakpoints
explicitly and hence the changes in the value of the seg-
ment level. Thus, they seem to be less adequate in practice.

For this reason, we feel that the ROC curve cannot be used
as the only measure to compare methods, as previously
done in [14]. The RMSE is generally an acceptable meas-
ure, but we observed that in some cases even this is not
sufficient, due to the overfitting. Willenbrock and Fridly-
and [13] proposed other measures to compare methods
for copy number estimation, regarding both breakpoint
and level estimation. In particular, the sensitivity measure
of breakpoint estimation is useful to select which meth-
ods should be used, because it quantifies the precision of
the methods in determining the position of the break-
points.

Finally, we have applied mBPCR and all other piecewise
constant regression methods to real data. The compari-
sons showed that mBPCR estimated well the copy number
of the genes. On these data, in most cases the choice of the
2 estimator did not affect the analysis.

In comparison with the other methods, the current imple-
mentation of our algorithm is computationally intensive.
The real computational time can be reduced linearly
diminishing kmax and quadratically diminishing the

Comparison among the estimated profiles of chromosome 11 of JEKO-1Figure 4
Comparison among the estimated profiles of chromosome 11 of JEKO-1. The figure shows the comparison among 
the piecewise constant estimated profiles of chromosome 11 of JEKO-1 using both 10K Array and 250K Array data. Only 

mBPCR with  was able to detect the high amplification after position 110 Mb on the 10K Array data. On the other hand, all 

methods (apart from BioHMM) recognized it on the 250K Array data.
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number of probes. Moreover, the computation can be eas-
ily parallelized by arm and by chromosome, reducing fur-
ther the calculation time.

In cancer research, the accuracy in the DNA copy number
estimation is crucial for the correct determination of the
mutations that characterize the disease. In particular, the
estimation of the breakpoints must be precise to detect
correctly which genes are affected by these genomic aber-
rations. As recently shown [17], SNP microarrays can also
potentially detect the breakpoints involved in unbalanced
translocations, allowing the identification of fusion genes
(i.e. hybrid genes created by joining portions of two dif-
ferent genes). In this context, the use of our method can
highly improve the disease investigation, because it accu-
rately determines breakpoints, is less sensitive to high
noise and generally outperforms all the methods consid-
ered in our comparisons. Moreover, smoothing algo-
rithms are clearly not suitable for such analysis.
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