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Abstract
Background: The classification of protein domains in the CATH resource is primarily based on
structural comparisons, sequence similarity and manual analysis. One of the main bottlenecks in the
processing of new entries is the evaluation of 'borderline' cases by human curators with reference
to the literature, and better tools for helping both expert and non-expert users quickly identify
relevant functional information from text are urgently needed. A text based method for protein
classification is presented, which complements the existing sequence and structure-based
approaches, especially in cases exhibiting low similarity to existing members and requiring manual
intervention. The method is based on the assumption that textual similarity between sets of
documents relating to proteins reflects biological function similarities and can be exploited to make
classification decisions.

Results: An optimal strategy for the text comparisons was identified by using an established gold
standard enzyme dataset. Filtering of the abstracts using a machine learning approach to
discriminate sentences containing functional, structural and classification information that are
relevant to the protein classification task improved performance. Testing this classification scheme
on a dataset of 'borderline' protein domains that lack significant sequence or structure similarity to
classified proteins showed that although, as expected, the structural similarity classifiers perform
better on average, there is a significant benefit in incorporating text similarity in logistic regression
models, indicating significant orthogonality in this additional information. Coverage was significantly
increased especially at low error rates, which is important for routine classification tasks: 15.3% for
the combined structure and text classifier compared to 10% for the structural classifier alone, at
10-3 error rate. Finally when only the highest scoring predictions were used to infer classification,
an extra 4.2% of correct decisions were made by the combined classifier.

Conclusion: We have described a simple text based method to classify protein domains that
demonstrates an improvement over existing methods. The method is unique in incorporating
structural and text based classifiers directly and is particularly useful in cases where inconclusive
evidence from sequence or structure similarity requires laborious manual classification.
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Background
Advances in structural biology have increased the rate at
which new protein structures are being determined, thus
creating a need for automated methods for protein
domain classification. The main computational tools for
classification in protein structure databases such as CATH
[1] and SCOP [2] remain sequence and structural compar-
isons. Indeed, in the processing of CATH, for example, a
high degree of structural similarity often warrants the
direct inheritance of the classification of the matched
known domains. Although it may be possible to classify
protein domains purely on the basis of clear sequence and
structural similarity, there are many cases that exhibit
'borderline' or low similarity to existing members which
require laborious manual classification. This manual clas-
sification usually requires study of the relevant literature,
and so classification of these 'borderline' domains may
benefit from automated literature analysis. To address this
need, text mining based methods may complement the
existing molecular computational approaches, especially
in cases where the evidence from such sequence and struc-
tural similarities is inconclusive.

Support Vector Machines (SVM) are one of the newer
machine learning approaches in wide usage today, and
they are based on statistical methods to minimise the risk
of error and offer solutions for optimal generalisation per-
formance [3]. SVMs exploit statistical learning theory and
are capable of overcoming the problems commonly asso-
ciated with high dimensionality, such as overfitting. SVMs
have been demonstrated to perform well in document
classification tasks [4]. In such applications, text docu-
ments are represented as vectors according to the bag-of-
words model, whereby each word represents a dimension
in a high-dimensionality space. These vectors not only
have high dimensionality, but they are also sparse at the
same time, as each document typically contains a small
subset of the very large set of words which are present in
the corpus vocabulary. SVMs are based on learning a sep-
arating hyperplane that divides two sets of vectors such
that the risk of misclassification is minimized, and are
particularly suitable for this kind of high dimensionality,
sparse data.

There are several applications of SVMs for document clas-
sification. PreBIND is an information extraction system
based on SVM technology for the detection of protein-
protein interactions in the literature [5]. Stapley et al. [6]
used SVMs to infer the sub-cellular location of proteins
from text sources. Rice et al. [7] developed a machine
learning approach to mine protein function predictions
from text. Another SVM based document classification
algorithm was implemented to assign documents into
nine main categories which correspond to chapters of the
WormBook. The system was optimised for the Caenorhab-

ditis elegans corpus using rules, but the same classification
engine can be applied to other domains [8].

Several approaches already exist that incorporate text min-
ing methods and other bioinformatics tools. Indeed, the
combination of sensitive sequence similarity searches
with functional annotations has been successfully imple-
mented for the functional prediction of proteins, based on
experimental knowledge of remote homologues [9].
Other attempts combine functional information with a
variety of similarity search methods. SAWTED (Structure
Assignment With Text Description) uses textual descrip-
tions from several fields of UniProt records to enhance the
detection of remote homologues from PSI-BLAST results
[10]. ProFAT combines PSI-BLAST sequence similarity
searches with fold recognition and text mining to refine
hits according to their function [11].

Various methods are available for automatic functional
annotation of proteins from text, and several of these have
been evaluated in the second task of BioCreAtIvE [12].
Couto et al., have developed an unsupervised method for
recognizing biological properties in free text (FiGO) [13].
The system splits text in sentences and considers the evi-
dence content based on the nomenclature of a genomic
ontology that structures the properties. GOAnnotator [14]
is able to link Gene Ontology (GO) terms in uncurated
annotations of UniProt entries with evidence text from
documents related to such entries. Other methods for
automatic identification of GO terms in free text include
the approach by Ruch [15] which is based on pattern
matching and text categorisation ranking, and by Gaudan
et al. [16] which considers not only the presence of words
of the GO terms occurring in text, but also proximity
between words and their specificity based on their infor-
mation content.

We have developed a novel text based approach for pro-
tein classification, which is based in text similarity of doc-
uments related to proteins, with a view to support the
curation of protein structure databases. It is assumed that
textual similarity between sets of documents relating to
proteins mirrors structural and functional relationships
and therefore can be used to make protein classification
assignments. Such documents usually contain a descrip-
tion of the protein function and protein structure. In addi-
tion, they may mention specific characteristics, related or
homologous proteins and their classification. In general,
they represent concepts that report on functional and
structural details. Several of the words used in these
descriptions are specific to each protein or protein class.
The method exploits the presence of such protein specific
words (features) in document classification. It is expected
that documents related to proteins that belong to the
same class, and therefore have similar function and struc-
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ture, are more similar than documents related to proteins
in different classes. A classification assignment for a query
protein can be inferred by assessing text similarity
between a set of documents relating to the unclassified
protein and sets of documents relating to classified pro-
teins. For instance, if documents related to an unclassified
protein are similar to documents related to a classified
protein, then it could be that they belong to the same
class, or in this case, the same protein superfamily.

The documents can be abstracts or full text articles,
although only abstracts have been used here due to the
large variety of access control methods employed on jour-
nal full texts. An SVM model was developed to discrimi-
nate sentences in the abstracts containing functional,
structural and classification information that are relevant
to the protein classification task. The SVM model was used
to remove text that is irrelevant to the classification task,
thus reducing noise and increasing the prevalence of
informative terms, allowing for more accurate classifica-
tion predictions. The SVM model presented is novel and
optimised for the discrimination of sentences in text that
contain useful information for protein classification.

The text similarity algorithm was firstly optimised using a
previously described gold standard dataset [17]. Several
conditions were tested, such as the inclusion of additional
text from related articles and UniProt [18] and Protein
Data Bank [19] annotations, as well as the filtering of the
abstracts using the SVM model. The optimal conditions
were then applied in text comparisons within a much
larger collection of documents that relate to proteins
already classified in the superfamily (H) level of the CATH
database. Although the structural similarity classifier per-
formed best, text similarity was useful in a logistic regres-
sion model that combined the two classifiers.

The method is unique in incorporating structural similar-
ity searches with text mining directly. In a dataset of 'bor-
derline' proteins, which lack clear structural and sequence
similarity to classified proteins, the combination of the
structural and text similarity classifiers resulted in an
improvement in coverage by up to 50% at low error rates
(10-3), compared to the structural classifier alone. Addi-
tionally, it makes an extra 4.2% of correct classification
decisions when only the highest scoring predictions were
used to infer classification. This method is useful for the
challenging task of classification of such 'borderline' cases
that usually require manual curation involving time-con-
suming study of the relevant literature.

Application to CATH database
The CATH database is a hierarchical classification of pro-
tein domain structures in PDB. There are four major levels
in this hierarchy: Class, Architecture, Topology (Fold fam-

ily) and Homologous superfamily. The latter level groups
together domains where evidence from sequence, struc-
ture and function similarity suggest they have evolved
from a common ancestor. Classification is currently
guided by structure and sequence similarity measures
such as CATHEDRAL [20], SSAP [21], profile HMMs [22]
and manual procedures such as literature analysis. The
SSAP structure comparison method uses a double
dynamic programming algorithm to align two protein
structures.

In CATH, an existing classification is inherited if a protein
domain displays "clear" structural and sequence similarity
(over 35% sequence identity and/or SSAP score over 80)
with a classified domain. However, if there is no domain
in the database that fulfils these requirements, the classifi-
cation is performed manually by considering the results of
structural and sequence similarity and analysis of relevant
literature. The literature often contains references to the
function of the protein and even which evolutionary fam-
ily it is thought to belong to. It is this information that can
be highly useful for classification and lends itself to a text
mining approach.

Results
Combined structure and text classifier outperforms 
structural similarity in protein classification of 'borderline' 
cases in CATH
An all-versus-all text comparison was performed using
DC1.1993 as the query set and textCATH as the reference
set according to the optimal conditions identified in the
gold standard enzyme dataset. Performance was assessed
using the AUC and MCC measures (Table 1). The struc-
tural similarity classifier SSAP performed best, while the
classification power of text similarity was lower as judged
from the AUC metric (0.908 and 0.789, respectively) and
the MCC (0.23 and 0.12, respectively). Performance
among the SVM-filtered and intact reference sets was
almost identical, however the SVM filtered set (textCATH)
had fewer terms (lower dimensionality). Although the
text classifier performance was average, its usefulness was
investigated for adding value to the better performing
structural classifier in cases with low structural and
sequence similarity.

To check if it is possible to develop an optimal combina-
tion of the classifiers (SSAP and text similarity) by exploit-
ing any orthogonality in our data, we generated a series of
logistic regression models. The inclusion of the text simi-
larity (TEXT) variable was significant (p <= 0.001) as
judged from the increase in the likelihood ratio which
reflects the difference between error not knowing the
independent variables and error when the independents
are included in the model (Table 1). The importance of
the explanatory variables was also confirmed by carrying
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out Wald chi-square tests for statistical significance (Table
2). In the model that included the structure and text sim-
ilarity, both explanatory variables contributed signifi-
cantly to the model effect, but the structural similarity
classifier SSAP accounted for the largest effect among the
independents. The equation coefficients of the model
(SSAP+TEXT) are shown in Table 2.

The discriminative power of the models (how well
matches are distinguished from non-matches) was evalu-
ated using the AUC statistic. Its value is the total fraction
of cases where a classification match is ranked higher than
a non-match. Values of AUC for models that contain
structural classifier SSAP are already over 0.90 indicating
significant extant predictive capacity from structure alone.
In contrast, the AUC for the text similarity classifier alone
was only 0.79, thus indicating lower classification power
when textual information is considered in isolation. Nev-
ertheless, this indicates that the text classification pipeline
is extracting almost 88% of the structural information
when assessed against the opinion of an expert curator.
Clearly highly relevant texts are being extracted, which
would be useful to a human curator in the intended prac-

tical application. Interestingly, inclusion of the TEXT vari-
able to the structural classifier improves the AUC value to
0.91 for the combined SSAP and TEXT model (Figure 1,
Table 1). This clearly indicates that the text classifier not
only provides consistent support for the structure-based
classification, but also increases coverage. Classifier accu-
racy was further analysed using the Matthews Correlation
Coefficient (MCC). The results indicated that the com-
bined model SSAP+TEXT outperformed the SSAP struc-
tural classifier (Table 1). The significance of the

Table 1: Performance of structure, text classifiers and logistic regression models in 'borderline' proteins from CATH

DC1.1993a Training setb Test Setc

CLASSIFIER AUC MCC AUC R2 Model LR AUC MCC

SSAP + TEXT 0.920 0.29 0.924 0.34 70021 0.917 0.28

SSAP 0.908 0.23 0.913 0.30 62182 0.905 0.22

TEXT 0.789 0.12 0.791 0.06 11814 0.788 0.12

The performance of the structural similarity measured by the SSAP algorithm and text similarity (TEXT) as classifiers for protein classification in the 
homologous superfamily level in the DC1.1993 dataset of 'borderline' cases in CATH using the textCATH as reference set. Classification 
performance was assessed using the AUC and MCC measures on the whole set (a), training (b), and test (c) sets. Nagelkerke's R2 is a measure of 
the variance accounted by the variables of the logistic regression models. Model L.R. stands for model likelihood chi-square which is the difference 
between Null and Residual deviance. Logistic regression models were trained on a random subset of comparisons from 1000 abstracts and tested 
on the remaining 993 abstracts from the 'borderline' cases dataset DC1.1993.

Table 2: Coefficients and Wald tests for logistic regression 
model

Coeff S.E. Wald Z P

Intercept -23.4406 0.093 -251.91 < 0.001

SSAP 0.2891 0.001 211.59 < 0.001

TEXT 0.1254 0.001 96.58 < 0.001

Coefficients and Wald Z statistics of the logistic regression model 
SSAP+TEXT that includes SSAP (structural similarity) and TEXT (text 
similarity) independent variables. Coeff = coefficient for the logistic 
regression; S.E. = standard error; Wald Z, p = Wald statistic with 
corresponding probability.

Test ROC curves of the text similarity algorithm in the 'bor-derline' cases datasetFigure 1
Test ROC curves of the text similarity algorithm in 
the 'borderline' cases dataset. ROC curves of the test 
set from the 'borderline' cases DC1.1993 dataset for the 
TEXT (green), SSAP (black) classifiers and the logistic regres-
sion model that includes SSAP and TEXT independent varia-
bles (blue). The reference set was textCATH. The inset 
shows the same curves for low error rates (FPR < 0.10).
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improvements in the MCC was evaluated using Fisher's Z
test, which considers the magnitude of the difference and
the strength of the correlation. The improvements in MCC
values were statistically significant (p < 0.001). Further,
the combined SSAP and TEXT model R2 was improved
(0.34) compared to SSAP (0.30), indicating that the
model is useful in classification predictions (Table 1).
These results demonstrated the real improvement in per-
formance by the inclusion of TEXT variable in the com-
bined logistic regression models.

Comparative classifier performance in protein 
classification
In order to compare the performance of the SSAP, TEXT
and SSAP+TEXT classifiers "coverage versus error" plots
were used [23]. The plots were constructed by collecting
all comparison scores for each classifier and ranking them
in reverse order. Moving down the list, the numbers of
matches (true positives) accumulated thus far were
counted and plotted versus the number of non-matches
(false positives) for each score cutoff (Figure 2A). For each
classifier, the fraction of the total number of matches or
coverage, was also calculated at certain error rates. The
fraction of the total number of matches is the number of

true positives divided by the total number of true matches
(16765) in the test set.

The false positive rate is the fraction of non-matches for a
score cutoff. For instance, FPR of 10-6 indicates that the
classifier makes 3 erroneous predictions out of the possi-
ble 3059841. Likewise, FPR of 10-5, 10-4 and 10-3 corre-
spond to 31, 306, 3060 and 30598 errors, respectively.
Table 3 shows the matches detected as an actual number
and as a percentage of the total matches, for a range of FPR
values. The results are shown graphically in Figure 2B.

The data in Figures 2A and 2B and Table 3 demonstrate
that at low false positive rates, 10-6 and 10-5, all classifiers
display low coverage. At a higher rate of false positives
(10-3), the SSAP, TEXT and SSAP+TEXT classifiers detect
10%, 4.21% and 15.33% of the true matches. The
SSAP+TEXT classifier consistently outperforms the struc-
tural classifier when used on its own, especially in the
range of low error, with more than double the number of
matches found for error rates below 10-4. The TP-FP
breakeven point is the number of true positives that
equals the number of false positives. In the test set for the
SSAP+TEXT, the breakeven point is reached after 2098

Coverage versus error graphsFigure 2
Coverage versus error graphs. (i) Coverage (sensitivity) versus error graph. For each classifier, the scores of the compari-
sons between the query DC1.1993 'borderline' set and the reference textCATH set were sorted in decreasing order. The 
comparisons include both CATH superfamily classification matches (true positives TP) and non-matches (false positives FP). 
Descending from the top classifier score, the numbers of true and false positives are counted for each possible cutoff. Green: 
TEXT; black: SSAP; blue: SSAP + TEXT logistic regression model. (ii) Log of the fraction of true positives versus the log of the 
false positive rate (FPR) graph. The FPR is defined as the fraction of the total false positives for each score cutoff. The fraction 
of TP is the proportion of the total number of TPs (see text).
Page 5 of 14
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:129 http://www.biomedcentral.com/1471-2105/10/129
matches are detected (12.51%). Both SSAP and TEXT pre-
dict more false than true positives for all cutoffs in the
'borderline' dataset.

Aside from the ability of each classifier to separate true
from false positives across the range of scores, we were
also interested in the power of each method to assign cor-
rect structural classifications to proteins of the 'borderline'
set in CATH using the top scoring hit. Only the best scor-
ing domain comparison was considered for each of the
2436 domains of the DC1.1993 set (tophit), in order to
simulate classification tasks. The combined SSAP+TEXT
classifier increased coverage by 4.2%, capturing 1694
(69.5%) correct classifications relative to 1591 (65.3%)
by SSAP alone.

Discussion
Our results demonstrate that although much work is
required to address fully-automated classification of pro-
teins that lack clear structural or sequence similarity, the
combination of text and structure similarity can improve
classification performance for 'borderline' cases. When
text and structural similarity scores were compared for
their classification power in a set of simulated 'borderline'
cases of the CATH protein structure database, structural
similarity scores performed best in the H (superfamily)
level of CATH. This may be expected for structural data-
bases, where structural relationships primarily define class
membership. Although the SSAP scores perform better
than text similarity in classification as single predictors,
the performance improved considerably when structure
and text similarity classifiers were combined in a logistic
regression model.

On a dataset of 'borderline' cases, a significant improve-
ment in coverage by up to 50% at low error rates was
observed. For equivalent coverage, the combined classifier

benefits from a significant reduction in the number of
false positives compared to SSAP. For instance, when
SSAP captures 1000 true matches, it also includes 1612
false positives, while the SSAP+TEXT classifier includes
559, which is a 65% reduction. Moreover, the combined
classifier was able to make an additional 4.3% of correct
classification predictions based only on the top scoring
hits, compared to SSAP alone. The combined classifier is
therefore a better starting point than SSAP on its own,
when classifying a 'borderline' protein. Although the error
rate is not sufficiently low to enable fully automatic pro-
tein classification of 'borderline' cases, the combined clas-
sifier can have practical application in the support and
evaluation of manual protein domain classification
assignments. More development of the text similarity
algorithm using a more elaborate weighting scheme com-
bined with more efficient text retrieval and information
extraction is required to improve performance further.

The text similarity algorithm was benchmarked and opti-
mised using a manually curated dataset of enzyme super-
families, before it was applied on a large dataset of
'borderline' cases in CATH. Removal of sentences which
were semantically irrelevant to protein classification using
an SVM model resulted in better performance of the text
classifier, while the dimensionality of the feature space of
the document reference set of CATH was reduced by
32.7% making calculations speedier. Although all terms
were used in this implementation, performance may
improve further with feature selection based on thresh-
olding metrics, such as document frequency, information
gain, mutual information or chi-square and more
involved weighting schemes. For example, the weights of
a specific set of highly informative terms can be boosted.
For the CATH database reference set, these terms would
include selected names and synonyms of the superfamily
and their protein members and function annotations

Table 3: Number of classification matches at various rates of false positives in the 'borderline' DC1.1993 dataset

Errors CATH superfamily classification matches (TP)

TEXT SSAP SSAP + TEXT

False Positive Rate Number of errors Coverage Cutoff Coverage Cutoff Coverage Cutoff

10-5 31 8; 0.04 77.70 16; 0.09 79.94 98; 0.58 0.9808

10-4 306 96; 0.57 48.86 229; 1.36 79.40 585; 3.48 0.6792

10-3 3060 707; 4.21 20.75 1677; 10.00 76.66 2571; 15.33 0.2982

10-2 30598 3036; 18.10 7.83 5808; 34.64 71.24 6901; 41.16 0.0706

Coverage is the fraction of true classification matches and is shown as actual numbers and as a percentage of total TP (%). Scores range between 1 
and 100, 30 and 80, and 0 and 1 for the TEXT, SSAP and SSAP + TEXT classifiers, respectively. Total comparisons: 3076606, positive matches: 
16765.
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from UniProt. Performance should also benefit by using a
more sophisticated term generation scheme that accounts
for synonymy.

All words of the abstracts, including title and authors,
were used in our method. Typically abstracts contain a
brief description of the protein structure. A more detailed
and extensive description of important features may only
be mentioned in the main article, so full text is expected
to yield better results. Irrelevant sentences can be removed
by classifying each sentence of the full text article using the
SVM filter. The inclusion of additional abstracts from
related articles in the text related to each protein of the ref-
erence set improved performance. Abstracts which are
related to the main reference usually contain additional
terms that are likely to be characteristic of each class. As
full text articles are not always available in public data-
bases, this is an alternative way to muster additional rele-
vant text for each protein and leverage the lack of full text.

A more comprehensive selection of texts by inclusion of
abstracts of relevant articles sourced from UniProt and
GenBank records may provide more comprehensive text
sources for the query proteins. Annotations from PDB and
UniProt may also be used alternatively or additionally to
abstracts in the query proteins. In this implementation,
abstracts were used as text relating to the query protein of
the test set because they are more readily available. More-
over, it is common for annotations to contain technical
terms (for instance '3D structure'), which may introduce
bias to the text similarity classifier. They also lack consist-
ency and reliability because not all proteins are fully
annotated yet, while several annotations are propagated
based on high homology rather than experimental obser-
vations.

Structural database entries are protein domains, however
domains lack a one-to-one relationship to PubMed
abstracts. In fact, it is assumed that each abstract possesses
information in all domains of its related protein. In reality
it is quite frequent for certain domains within a protein to
attract greater interest, and text, than others. Inclusion of
additional abstracts or full text articles related to the query
protein will increase the likelihood that information rele-
vant to all domains of the protein is present in the text.

Combination of the text similarity algorithm with other
structural similarity algorithms, such as CE [24], DALI
[25] and MSDFold [26] via logistic regression or machine
learning based methods, may provide a useful perform-
ance benefit. The same methodology, with little altera-
tion, can also be used to improve fold recognition and
structure prediction results. Moreover, the text similarity

algorithm can be proven valuable in protein classification
tasks where a more accurate function classifier is not avail-
able. For example, it may be useful in enzyme classifica-
tion. In the Enzyme Commission classification system,
enzymes are classified according to the chemical reaction
they catalyse. It is likely that text similarity may be a more
appropriate classifier than structure or sequence similarity
for this database.

Finally, we demonstrated the practical application of a
text based classifier in protein structure database curation.
The model resulting from its combination with the struc-
tural classifier is superior to the structural classifier alone,
thus providing an improved way to classify 'borderline'
proteins in the CATH protein structure database.
Although in the context of full automation the improve-
ments might at first sight look relatively moderate, it is
important to bear in mind that in the principal applica-
tion domain, the textual results are intended to be used by
manual curators or users of a structure classification server
as a guide to manual classification. Putting it another way,
we need the textual results to be confirmatory of the struc-
tural similarity results rather than being entirely novel.
The fact that our text classification scheme reproduces
around 88% of the purely structure-based AUC, and in
combination increases the AUC by a small but significant
amount, shows that we are indeed extracting the most rel-
evant texts and that some of these texts are key to making
better informed decisions on superfamily membership. A
user of a hybrid system would therefore be provided with
a highly relevant shortlist of texts from which he or she
can make an informed decision as to the correct super-
family classification of the protein being analysed. In
other words, the fact that we can improve automatic clas-
sification is actually far less important that the fact that we
are able to select the relevant texts which can be further
analysed by the user in semi-automatic classification.
Consequently, we are planning to build this text classifica-
tion functionality into the user interfaces of our existing
fold recognition web servers: both the sequence-based
GenTHREADER [27], and the structure-based CATHE-
DRAL server [28].

Overall, our findings show a useful combination of a
structural similarity with a text mining approach and
demonstrate the value of the text based approaches in pro-
tein classification.

Conclusion
In summary, a text based classifier was developed and
implemented for the classification of proteins in the
CATH database. Although the structural similarity scores
perform better than text in classification of proteins in
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structure databases, it was proven that the combination of
the structure and text classifiers in a logistic regression
model provides a more powerful classifier, significantly
increasing coverage especially at low error levels com-
pared to using structural similarity alone. The benefit is
particularly useful in cases where structural similarity is
not high enough to be conclusive.

We found that, for 'borderline' matches with SSAP scores
below 80, which are notoriously difficult to classify, it is
preferable to use the combined structure and text similar-
ity classifier than SSAP alone. This result should be useful
in the development of servers which aim to classify pro-
teins automatically and reliably.

Methods
Text similarity algorithm
Text was represented according to the bag-of-words model
[29] as an unordered collection of words or terms. Each
document is represented as a vector of weights of the
terms contained in it, as is typically for information
retrieval. As for most text retrieval applications, the entries
in the vector are weighted to reflect the frequency of terms
in the documents and the distribution of terms across the
collection as a whole. Each vector element corresponds to
the frequency of each term (TF) in the document,
weighted by the inverse document frequency of the term
(IDF) in the document collection. IDF is defined as fol-
lows:

where N denotes the number of documents (abstracts) in
the collection and DF is the document frequency of the
term. The vectors were of unit length (L2 normalised) to
compensate for variable document length which may
favour long documents in the text similarity calculations.
The base of the logarithm used in calculations is 10. Sim-
ilarity c between two documents is defined as the cosine
of the angle between two vectors v A and v B representing
each text:

The value of c is high when the compared documents
share several rare words. For ease of calculations, the range
of c was transformed to range 0–100.

Resources
Lucene [30]: Lucene is a high performance, scalable search
engine library written entirely in Java. It is available as
open source software under the Apache License and offers
powerful features including text indexing, searching and
term vector generation. It features a selection of analysers,

including the Simple, Standard and Stop analysers which
were used in this project. Analysers vary in the way they
generate terms from text, removal of stop words, lowercas-
ing, etc.

R [31]: Plotting of ROC curves, calculations of AUC, F-
measure and Matthews correlation coefficient were per-
formed using R's ROCR library [32]. Logistic regression
models were generated using the Design package for R
[33].

Performance measures
The performance of the method was assessed using the
AUC (area under ROC curve) metric, the Matthews corre-
lation coefficient (MCC), F-measure and coverage versus
error plots. The ROC plots were generated by sorting the
scores and plotting the number of correct assignments
(true positive rate) versus the fraction of erroneous assign-
ments (false positive rate). For TP = true positives, TN =
true negatives, FP = false positives, FN = false negatives,
the recall (rec), precision (prec), MCC and F measure are
defined as follows:

MCC is a measure of overall classifier accuracy. A value of
0 indicates random performance, whilst a value of 1
implies perfect classification. The F-measure is the
weighted harmonic mean of precision (prec) and recall
(rec). For α = 0.5, which is the value of α used in the
assessment of this method, the mean is balanced.

Datasets: REGS352 and PDB145
Brown et al. [17] describe a gold standard set of enzyme
superfamilies, clustered according to sequence, structure
and function, supported by references for each sequence,
for use in validation of family and superfamily clustering
methods. The dataset of MEDLINE abstracts REGS352 was
assembled by retrieving the corresponding abstracts of the
original gold set of enzyme sequences after filtering out
sequences with references to personal communications or
to non-sequence specific references (for example to the
reference of the SWISSPROT database) [34] and
sequences with irretrievable abstracts (for example papers
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without a PMID or a published abstract). The abstracts
were classified in 5 superfamilies (classes) and in 87 fam-
ilies, according to their protein superfamily and family
classifications (Table 4).

Another set of abstracts (PDB145) was derived from the
primary references (JRNL field) of the PDB structures that
correspond to the REGS352 sequences. The primary refer-
ences of the 282 PDB files described in the gold dataset of
enzyme superfamilies were checked in order to remove
PDB files without references published in MEDLINE, and
files with identical references to avoid duplicate references
appearing in the set. The filtered set consists of 145 PDB
files, each with a unique reference, and their distribution
across the enzyme families and superfamilies of the gold
set is shown in Table 4.

Document retrieval and analysis
Abstracts relating to a protein were downloaded from
PubMed using a set of Perl scripts. The title and authors
with their affiliations were also collected with the body of
the abstract. The primary reference for each protein was
either specified by a PMID contained in the correspond-
ing Genbank or UniProt annotation, or, if a structure for
the protein was available, in the JRNL field of the relevant
PDB file. Additional abstracts were collected from the
'Related Articles' hyperlink of PubMed.

To perform text comparisons, the documents were con-
verted into IDF weighted term vectors using one of
Lucene's analysers. The cosine similarity of the angle
between the normalised text vectors was used to assess the
similarity between text documents and was calculated
according to equation (2).

Using machine learning to screen for informative sentences
To improve performance by reducing noise and increasing
the prevalence of informative terms, a machine learning

approach was developed to discriminate informative sen-
tences from any text irrelevant to the classification task
within the abstracts of the reference set. Sentences from
the abstracts of the REGS352 dataset were used to train an
inductive linear SVM model using SVM-Light [35] for the
identification of sentences with structural, functional and
classification information, useful for the protein classifi-
cation task. Perl scripts and regular expressions were
applied to split the abstracts of the REGS352 dataset into
sentences. The model was trained upon 2541 examples
(1734 positive and 807 negative sentences) which have
been manually classified by an expert biologist for their
relevance to the protein classification task. Examples of
typical informative sentences from the training set and
test sentences with their SVM scores are shown in Tables 5
and 6. Typically, sentences that contained information on
protein structure and function including description of
specific features, on classification or in related or homol-
ogous proteins were classified as informative. Sentences
containing methodological, experimental, or physico-
chemical data were classified as not-informative. Inform-
ative sentences are expected to contain a much higher
content in words that are likely to be class specific and
important in document categorisation.

Protein, family and superfamily names were removed
from the positive and negative examples to avoid unfa-
vourable training of the model on these terms. SVMs were
used to learn the features of the training set and classify
new unseen sentences. Binary and frequency feature rep-
resentations as well as a range of values of the c parameter
of SVMlight from 0.1 to 2 were tested to identify the opti-
mal SVM model. The frequency representation gave better
results and was selected over binary. The optimal c value
in our dataset was 0.25. Leave-one-out cross validation of
the optimal SVM model estimated the recall 83.45% and
precision 82.88%. The SVM model was used to classify
each sentence in the abstracts as relevant or not-relevant.

Table 4: REGS352 and PDB145 datasets

Superfamily Sequences REGS352 Families REGS352 References PDB145 Families PDB145 References

Amidohydrolase 87 26 73 11 41

Crotonase 50 16 36 7 14

Enolase 85 9 66 8 39

Haloacid Dehalogenase 104 19 93 10 30

VOC 95 17 84 7 21

TOTAL 421 87 352 43 145

Distribution of the gold dataset sequences and the derived datasets REGS352 and PDB145 among the five superfamilies of the gold dataset. (Brown 
et al ., 2006)
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Only relevant sentences were used in the text compari-
sons.

Text similarity algorithm optimisation
To benchmark the method, the text similarity scores of the
abstracts of the REGS352 (test set) and PDB145 (reference
set) were calculated (all-versus-all) and assessed for the

prediction of classification matches in the superfamily
level of CATH. Scores were labelled as matches if the
CATH superfamilies of the proteins corresponding to the
two abstracts were matching, or non-matches otherwise.
In order to optimize the performance of the classification
method several conditions of the reference set were con-
sidered and tested (Table 7).

Table 5: Example sentences used in training of the SVM model

Training example Label (+/-)

Sequence analysis showed that pENO2 shares 75.6% nucleotide and 89.5% deduced amino acid sequence identity with pENO1 and is 
encoded by a distinct gene.

+

The packing of the octameric enzyme in this crystal form is unusual, because the asymmetric unit contains three subunits. +

Cys-592, which is essential for enzymatic activity, is located in the above-mentioned histidine-rich region. +

From the significant sequence similarity between intradiol enzymes, it has been shown that intradiol enzymes evolved from a common 
ancestor.

+

Two 2,3-dihydroxybiphenyl (23DHBP) dioxygenase genes, bphC1 and etbC involved in the degradation of polychlorinated biphenyl(s) 
(PCBs) have been isolated and characterized from a strong PCB degrader, Rhodococcus sp.

+

A thermostable hydantoinase of Bacillus stearothermophilus NS1122A: cloning, sequencing, and high expression of the enzyme gene, 
and some properties of the expressed enzyme.

-

A catechol 2,3-dioxygenase gene in chromosomal DNA of P. putida KF715 was cloned and its nucleotide sequence analyzed. -

The K+ ion activates the enzyme 100-fold with an activation constant of 6 mM, well below the physiologic concentration of K+ in E. 
coli.

-

A putative regulator and its possible recognition site was suggested on the basis of homology data. -

The enzyme has a subunit Mr of 33,500 +/- 2000 by SDS/polyacrylamide-gel electrophoresis. -

Sample positive and negative sentences manually classified by an expert biologist for their content on functional, structural and classification 
information and used as training examples to learn an SVM model. Terms in italics were removed prior to training.

Table 6: Example sentences used in testing of the SVM model

Test sentence SVM score

These homologous proteins, designated the "enolase superfamily", include enolase as well as more metabolically specialized 
enzymes: mandelate racemase, galactonate dehydratase, glucarate dehydratase, muconate-lactonizing enzymes, N-acylamino acid 
racemase, beta-methylaspartate ammonia-lyase, and o-succinylbenzoate synthase.

3.99

GlucD is a member of the mandelate racemase (MR) subgroup of the enolase superfamily, the members of which catalyze reactions 
that are initiated by abstraction of the alpha-proton of a carboxylate anion substrate.

3.42

The structure of Neurospora crassa 3-carboxy-cis, cis-muconate lactonizing enzyme, a beta propeller cycloisomerase. 1.41

The corresponding cDNA was amplified from a library of lobster muscle cDNA, and a sequence corresponding to residues 27–398 
was determined.

-1.10

The values for kcat were reduced 4.5 × 10(3)-fold for (R)-®delate and 2.9 × 10(4)-fold for (S)-mandelate; the values for kcat/Km 
were reduced 3 × 10(4)-fold.

-3.31

Sample positive and negative test examples classified and scored by the SVM model.
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(1) SVM filtering
The SVM model was used to filter the abstracts of the
PDB145 reference set for informative sentences. The SVM
filtered reference set performed better (F measure: 0.56)
than the set of intact abstracts (0.53).

(2) Retrieval of related abstracts
Perl scripts were implemented to download 19 additional
abstracts for each primary reference from the 'Related Arti-
cles' hyperlink of PubMed. This function of PubMed iden-
tifies other publications in MEDLINE which resemble to
the primary reference. Retrieval is based on the evaluation
of similarity between two documents over all vocabulary
terms using a probabilistic model [36]. The inclusion of
19 related articles from PubMed to the text related to each
protein of the reference set improved the performance,
presumably as a result of the inclusion of additional class-
specific words which are present in the related abstracts.
(AUC 0.74 for 20 abstracts versus 0.64 for 1 abstract).

(3) Text analysis
Three types of text analysis were tested using Lucene's
Standard, Stop and Simple analysers. All analysers lower-
case text, however only the first two remove stop words,
and differ in the way they split the text into terms. The
Standard has rules for acronyms, hostnames, etc. which
are retained intact as a single term, while the Stop and
Simple analysers split the words in special characters. The
Standard analysis produces a large number of uniquely

found, non-informative terms compared to the shorter,
fewer and more abundant terms generated by the Stop
analyser. Performance was improved when words were
split in special characters as well as white space (AUC
0.74) instead of splitting in white space only (0.70). It
also benefits from removal of 'stop' words, common
words that occur in similar frequency across the reference
set. There was no improvement when the Porter stem-
ming algorithm was applied (results not shown) [37].
However, other stemmers such as the Krovetz stemmer
[38] may be more suitable.

(4) Inclusion of annotations
A set of Perl scripts was used to retrieve annotations from
the PDB (Title, Classification fields) and UniProt (Protein
names, Synonyms, Function, Keywords fields) databases
and concatenate them to the abstracts of the reference set.
The inclusion of annotations from the UniProt and PDB
databases produces a negligible improvement over the
performance of the plain 20 abstracts (MCC 0.51 with
annotations versus 0.50 without). The method was also
tested using UniProt database annotations instead of
abstracts in the test set. When relevant annotations from
UniProt (Protein names, Synonyms, Function, Keywords
fields) were used instead of abstracts as text relating to the
query proteins, performance was improved (F measure
0.58, versus 0.56 for abstracts). However, abstracts were
used in this implementation because annotations are not
immediately available in the databases, in contrast to

Table 7: Classifier performance in the enzyme dataset

CONDITIONS PERFORMANCE

Superfamily Classification
N = 352, 5 classes

Test Set Reference Set Lucene Analyser AUC MCC F

1 Abstract Dp20 – DX33 -Ann Stop 0.75 0.51 0.56

2 Annotations Dp20 – DX33 -Ann Stop 0.77 0.53 0.58

3 Abstract Dp20 – Ann Stop 0.74 0.50 0.53

4 Abstract Dp20 – Ann Standard 0.70 0.33 0.44

5 Abstract Dp20 Stop 0.74 0.49 0.52

6 Abstract Dp1 Stop 0.64 0.31 0.40

Classifier performance was assessed using AUC, MCC and F-measure under six conditions of the reference set PDB145: Inclusion of additional 
abstracts from related articles (Dp20); inclusion of annotations (Ann); filtering using the SVM model (DX33). Conditions 1 and 2 : 20 SVM filtered 
abstracts per enzyme, Stop analyser, inclusion of PDB/UniProt annotations.Condition 3 : 20 abstracts per enzyme, Stop analyser, inclusion of PDB/
UniProt annotations. Condition 4 : 20 abstracts per enzyme, Standard analyser, inclusion of PDB/UniProt annotations. Condition 5 : 20 abstracts per 
enzyme, Stop analyser. Condition 6 : 1 abstract per enzyme, Stop analyser. For the Superfamily classification task all 352 enzymes of REGS352 were 
classified in 5 superfamilies. Abstracts were used in the test set, except of condition 2 were annotations from UniProt and PDB fields were used for 
comparison.
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abstracts that usually accompany structural biology
papers describing protein structures upon their release.

The classification performance of each of the conditions is
shown in Table 7. Condition 1 (20 SVM-filtered abstracts
per protein, Lucene Stop analyser, inclusion of PDB/Uni-
Prot annotations) was identified as the best performer
(Figure 3) and was used in text similarity calculations in
CATH.

CATH abstracts retrieval
A reference set of abstracts was assembled to assess the
ability of the method to classify domains at the homolo-
gous superfamily level of CATH. CATH v3.1 contains
structural classifications for domains from 30028 PDB
files. Using PubMed IDs (PMIDs) indicated in the JRNL
field of these PDB files of protein domains already classi-
fied at the superfamily level of CATH, a total of 15154
unique abstracts with their related articles from PubMed
and annotations from UniProt and PDB were down-
loaded, analysed, indexed and filtered for informative
sentences using the SVM model. There are 27069 PDB
files (90.1%) with primary abstracts within this document
set (textCATH set), because several PDB files share the
same primary reference. The textCATH set included
139171 terms and covered 1806 of the 2090 super-

families in CATH. The textCATH reference corpus is avail-
able for download from our website http://
bioinf.cs.ucl.ac.uk/downloads/textCATH.

An additional reference set was compiled from the intact
abstracts, without any filtering, in order to compare the
effect of using the SVM model in the performance of the
system. The latter set was also analysed using the Stop
analyser and contained 204904 terms.

'Borderline' cases dataset
In order to compare the performance of the structure and
text similarity measures in protein classification in the
superfamily level of CATH, an all-versus-all structural
comparison using SSAP was performed on the protein
domains corresponding to the 15154 abstracts of the text-
CATH set. The majority of the protein domains have
"clear" homologues in the database displaying clear struc-
tural similarity (SSAP > 80). In the benchmark, the 'easy'
pairs are ignored in order to focus on protein domains
without clear homologues. Only domains whose matches
in the database displayed SSAP scores below 80 and
sequence identity below 30% were retained in order to
simulate 'borderline' classification assignments. As a
result, there were 2436 'borderline' protein domains with
a total of 6207493 comparisons, of which 33577 were

ROC curves and precision-recall graphs of the text similarity algorithm in the enzyme datasetFigure 3
ROC curves and precision-recall graphs of the text similarity algorithm in the enzyme dataset. (A) ROC curves 
and (B) Precision-Recall graphs of conditions 1–6 (Table 7) in the enzyme dataset. Condition 1, black solid line; Condition 2, 
black dashed line; Condition 3, red solid line; Condition 4, red dashed line; Condition 5, blue solid line; Condition 6, blue 
dashed line.
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true matches (0.54%). The set of 1993 unique primary ref-
erences contained in the PDB files of such domains com-
prise the DC1.1993 set.

Logistic Regression
Logistic Regression is used for prediction of the probabil-
ity of occurrence of an event by fitting data to a logistic
curve. The logistic model can be written as follows:

where p is the probability of a classification match, and x1,
x2,..., xi are the explanatory, independent variables, which
in this case are the SSAP structural similarity and the text
similarity (TEXT) scores. The resulting score is thus
defined as the natural logarithm of the odds.

For validation purposes, the set of comparisons was split
into a training set using the comparisons of 1000 ran-
domly selected abstracts and a test set comprising the
comparisons of the remaining 993 abstracts. The training
and test sets included 1224 and 1212 domains from the
DC1.1993 'borderline' cases dataset, respectively. There
were 3130887 (3076606) domain pair comparisons in
the training (test) set, of which 16812 (16765) were
domain pairs in the same CATH superfamily or true
matches and the remaining 3114075 (3059841) were
non-homologous pairs or non-matches.

The predictive ability of the models was addressed using
the Nagelkerke R2 measure. The R2 statistic is a measure of
the effect size and indicates how useful the explanatory
variables are in predicting the response variable.

Availability and requirements
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License: GNU General Public License
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