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Abstract

Background: Protein fold recognition is a key step in protein three-dimensional (3D) structure
discovery. There are multiple fold discriminatory data sources which use physicochemical and
structural properties as well as further data sources derived from local sequence alignments. This
raises the issue of finding the most efficient method for combining these different informative data
sources and exploring their relative significance for protein fold classification. Kernel methods have
been extensively used for biological data analysis. They can incorporate separate fold
discriminatory features into kernel matrices which encode the similarity between samples in their
respective data sources.

Results: In this paper we consider the problem of integrating multiple data sources using a kernel-
based approach. We propose a novel information-theoretic approach based on a Kullback-Leibler
(KL) divergence between the output kernel matrix and the input kernel matrix so as to integrate
heterogeneous data sources. One of the most appealing properties of this approach is that it can
easily cope with multi-class classification and multi-task learning by an appropriate choice of the
output kernel matrix. Based on the position of the output and input kernel matrices in the KL-
divergence objective, there are two formulations which we respectively refer to as MKLdiv-dc and
MKLdiv-conv. We propose to efficiently solve MKLdiv-dc by a difference of convex (DC)
programming method and MKLdiv-conv by a projected gradient descent algorithm. The
effectiveness of the proposed approaches is evaluated on a benchmark dataset for protein fold
recognition and a yeast protein function prediction problem.

Conclusion: Our proposed methods MKLdiv-dc and MKLdiv-conv are able to achieve state-of-
the-art performance on the SCOP PDB-40D benchmark dataset for protein fold prediction and
provide useful insights into the relative significance of informative data sources. In particular,
MKLdiv-dc further improves the fold discrimination accuracy to 75.19% which is a more than 5%
improvement over competitive Bayesian probabilistic and SVM margin-based kernel learning
methods. Furthermore, we report a competitive performance on the yeast protein function
prediction problem.
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Background

A huge number of protein coding sequences have been
generated by genome sequencing projects. In contrast,
there is a much slower increase in the number of known
three-dimensional (3D) protein structures. Determina-
tion of a protein's 3D structure is a formidable challenge
if there is no sequence similarity to proteins of known
structure and thus protein structure prediction remains a
core problem within computational biology.

Computational prediction of protein structure has
achieved significant successes [1,2]. Focusing on the fold
prediction problem of immediate interest to this paper,
one computational method known as the taxonomic
approach [3,4], presumes the number of folds is restricted
and focuses on structural predictions in the context of a
particular classification of 3D folds. Proteins are in a com-
mon fold if they share the same major secondary struc-
tures in the same arrangement and the same topological
connections [5,6]. In the taxonomic method for protein
fold classification, there are several fold discriminatory
data sources or groups of attributes available such as amino
acid composition, predicted secondary structure, and
selected structural and physicochemical properties of the
constituent amino acids. Previous methods for integrating
these heterogeneous data sources include simply merging
them together or combining trained classifiers over indi-
vidual data sources [3,4,7,8]. However, how to integrate
fold discriminatory data sources systematically and effi-
ciently, without resorting to ad hoc ensemble learning, still
remains a challenging problem.

Kernel methods [9,10] have been successfully used for
data fusion in biological applications. Kernel matrices
encode the similarity between data objects within a given
input space and these data objects can include graphs and
sequence strings in addition to real-valued or integer data.
Thus the problem of data integration is transformed into
the problem of learning the most appropriate combina-
tion of candidate kernel matrices, representing these het-
erogeneous data sources. The typical framework is to learn
a linear combination of candidate kernels. This is often
termed multiple kernel learning (MKL) in Machine Learn-
ing, and non-parametric group lasso in Statistics. Recent
trends in kernel learning are usually based on the margin
maximization criterion used by Support Vector Machines
(SVMs) or variants [11]. The popularity of SVM margin-
based kernel learning stems from its efficient optimiza-
tion formulations [11-14] and sound theoretical founda-
tion [11,15,16]. Other data integration methods include
the COSSO estimate for additive models [17], kernel dis-
criminant analysis [18], multi-label multiple kernel learn-
ing [19,20] and Bayesian probabilistic models [21,22].
These methods, in general, can combine multiple data
sources to enhance biological inference [21,23] and pro-
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vide insights into the significance of the different data
sources used.

Following a different approach, in this paper we propose
an alternative criterion for kernel matrix learning and data
integration, which we will call MKLdiv. Specifically, we
propose an information-theoretic approach to learn a lin-
ear combination of kernel matrices, encoding informa-
tion from different data sources, through the use of a
Kullback-Leibler divergence [24-28] between two zero-
mean Gaussian distributions defined by the input matrix
and output matrix. The potential advantage of this
approach is that, by choosing different output matrices,
the method can be easily extended to different learning
tasks, such as multi-class classification and multi-task
learning. These are common tasks in biological data anal-
ysis.

To illustrate the method, we will focus on learning a linear
combination of candidate kernel matrices (heterogeneous
data sources) using the KL-divergence criterion with a
main application to the protein fold prediction problem.
There are two different formulations based on the relative
position of the input kernel matrix and the output kernel
matrix in the KL-divergence objective. For the first formu-
lation, although this approach involves a matrix determi-
nant term which is not convex in general, we elegantly
reformulate the learning task as a difference of convex
problem, which can be efficiently solved by a sequence of
convex optimizations. Hence we refer to it as MKLdiv-dc.
The second KL-divergence formulation for kernel integra-
tion, called MKLdiv-conv, is convex and can be solved by a
projected gradient descent algorithm. Experimental
results show that these formulations lead to state-of-the-
art prediction performance. In particular, MKLdiv-dc out-
performs the best reported performance on the important
task of protein fold recognition, for the benchmark data-
set used.

Methods

In the following we first revisit kernel learning approaches
based on SVMs [11] and kernel discriminant analysis [18].
Then, we introduce our novel information-theoretic
approach for data integration based on a KL-divergence
criterion. Finally we discuss how to solve the optimization
task efficiently. For brevity, we use the conventional nota-
tion N, = {1, 2, ..., n} foranyn € N.

Background and Related Work
Kernel methods are extensively used for biological data anal-
ysis. A symmetric function K : X x X — R is called a kernel

function if it is positive semi-definite, by which we mean that,
forany n € N and {x; € X : i € N}, the Gram matrix
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(K(x;,x7));, jen, is positive semi-definite. According to [29],
its corresponding reproducing kernel Hilbert space (RKHS),
usually denoted by H,, can be defined to be the completion
of the linear span of the set of functions {K,(-) := K(x, -): x

€ X} with inner product satisfying, for any x € X and g € H,

the reproducing property (K,, g) = g(x). By Mercer's theorem,
there exists a high dimensional (possible infinite) Hilbert

feature space with inner product (-, - )and a feature map ¢@:

X — Fsuch that K(x, t) = (@x), 1)) ¥ x, t € X. Intuitively,
the kernel function K implicitly maps the data space X into a

high dimensional space F, see [9,10] for more details.

Within the context of protein fold recognition, we have m
different fold discriminatory data sources where samples
across each data source can be represented by

x' ={x/ :ie N,} for ¢ e N, and the outputs are denoted
byy = {y;:i € N,}. For kernel methods, for any 7 € N,,,
each /-th data source can be encoded into a candidate ker-
nel matrix denoted by K, = (K ,(x/, xf))ij . Depending on

the different data sources used, the candidate kernel func-
tion K, should be specified a priori by the practitioner. The

composite kernel matrix is given by K, = 2 2K,

leN,,
where {1, ¢ € N} are real-valued kernel weights and typ-

ically they are restricted to be non-negative. In this con-
text, the problem of data integration is consequently
reduced to the problem of learning a convex combination
of candidate kernel matrices: more precisely learning the

kernel weights A. Different optimization criteria over the
candidate kernels arise from the particular kernel learning
algorithm used. Cristianini et al. [30] proposed a kernel
learning approach which uses the cosine of the angle
between the two bi-dimensional vectors K; and K| repre-

senting the Gram matrices. This is achieved by maximiz-
ing the kernel alignment:

(KaKy) .
\/<K,1,K,1><Ky,1<y>

The above kernel learning formulation can be solved by a
semi-definite programming (SDP) approach (see Section
4.7 of [11]). However, an SDP formulation is computa-
tionally intensive.
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Another widely used criterion for kernel learning is based
on the margin concept in SVMs and variants. Denoting the

simplex setas A = {A=(X;Xy,... 0,,): szm Ay=1,1,20},

Lanckriet et al [11] proposed the following formulation for
kernel learning:

min Q(K;) = minmax{o 1, — lotTdiag (K diag(t)e : 0<ax < C, and o 't = 0},
AeA AeA 2

(1)

where 1, is a column vector of all ones, C is a trade-off
parameter, and t = (¢, t,, ..., t,) denotes the binary outputs
with t; € {1, -1} being the class label for i-th instance. This
task was reformulated as a quadratically constrained
quadratic programming (QCQP) problem and later
improved by Sonnenburg et al. [14] who reformulated it
as a semi-infinite linear programming (SILP) task. Moreo-
ver, it was pointed out in [12,13,17,31] that this is equiv-
alent to the following sparse L!-regularization
formulation:

2
. ‘ 1
f,e?—?::,r}Echig‘(l_tizfé(xi))++2 Z"fﬁ"zq :

leN, (eN,
(2)

L o
The L!-regularization term Z N, || fy encourages the

Ik,

sparsity [32] of RKHS-norm terms, and thus indicates the
relative importance of data sources. It was shown in [13]

that the standard L2-regularization 2 eN [l ||f</ is

equivalent to the use of uniformly weighted kernel

weights 4, i.e. 1, = % for any ¢ € N,,. Recently, Ye et al.

[18] proposed an appealing kernel learning approach
based on regularized kernel discriminant analysis. This
can similarly be shown to be equivalent to a sparse L!-reg-
ularization formulation with a least square loss, see
Appendix 1 for more details.

Information-theoretic Data Integration

In this paper we adopt a novel information-theoretic
approach to learn the kernel combinatorial weights. The
main idea is to quantify the similarity between K; and K,

through a Kullback-Leibler (KL) divergence or relative
entropy term [24-28]. This approach is based on noting
that these kernel matrices encode the similarity of data
objects within their respective input and label data spaces.
Furthermore, there is a simple bijection between the set of
distance measures in these data spaces and the set of zero-
mean multivariate Gaussian distributions [25]. Using this
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bijection, the difference between two distance measures,
parameterized by K, and Kj, can be quantified by the rel-

ative entropy or Kullback-Leibler (KL) divergence between
the corresponding multivariate Gaussians. Matching ker-
nel matrices K; and K can therefore be realized by mini-

mizing a KL divergence between these distributions and
we will exploit this approach below in the context of mul-
tiple kernel learning.

Kernel matrices are generally positive semi-definite and
thus can be regarded as the covariance matrices of Gaus-
sian distributions. As described in [24], the Kullback-Lei-
bler (KL) divergence (relative entropy) between a
Gaussian distribution N (0, K;) with the output covari-

ance matrix Ky and a Gaussian distribution N (0, K,) with

the input kernel covariance matrix K, is:

1 oy 1 1 n
KL(N(0,Ky) [IN(0,K,)) .—ETr(Kny )+510g|Kx \—510g|Ky |_E

3)
where, for any square matrix B, the notation Tr(B) denotes
its trace. The a priori choice of the output matrix K, will be
discussed later. Though KL ( NV (0, Ky)|| NV (0, K,)) is non-
convex w.r.t. K, it has a unique minimum at K, = K, if K,
is positive definite, suggesting that minimizing the above
KL-divergence encourages K, to approach K;. If the input

kernel matrix K, is represented by a linear combination of

m candidate kernel matrices, i.e. K, =K, = Z@N 2Ky,

the above KL-divergence based kernel learning is reduced
to the following formulation:

arg min ;¢ KL(N(0,K ) [IN(0,K}))

7

=argmin , Tr(Ky(ZysN 1K, +0ol,) ) +1og

z e, 2K, +ol,
(4)

where I, denotes the n x n identity matrix ando> 0 is a
supplemented small parameter to avoid the singularity of
KA.

Since the KL-divergence is not symmetric with respect to
K, and K, another alternative approach to matching ker-
nel matrices is given by

argmin ., KL(N(0,K ;) [IN(0.K,))

1

=argmin , E/EN A Tr((Ky + ol,)'K,) - log

Zwm K, +ol,
(5)
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where parameter o> 0 is added to avoid the singularity of
K,. If there is no positive semi-definiteness restriction over
K¢, this formulation is a well-known convex maximum-
determinant problem [33] which is a more general formula-
tion than semi-definite programming (SDP), its imple-
mentation is computationally intensive, and thus cannot
be extended to large-scale problems according to [33].

However, formulation (5) has a special structure here: 4,

is non-negative and all candidate kernel matrices are pos-
itive semi-definite. Hence, we can solve this problem by a
simple projected gradient descent method, see below for
more details.

The KL-divergence criterion for kernel integration was also
successfully used in [27,28] which formulated the prob-
lem of supervised network inference as a kernel matrix
completion problem. In terms of information geometry
[34], formulation (4) corresponds to finding the m-pro-
jection of Kj over an e-flat submanifold. The convex prob-
lem (5) can be regarded as finding the e-projection of K
over a m-flat submanifold. In [26], formulation (4) was
developed for learning an optimal linear combination of
diffusion kernels for biological networks. A gradient-
based method was employed in [26] to learn a proper lin-
ear combination of diffusion kernels. This optimization
method largely relies on the special property of all candi-
date diffusion kernel matrices enjoying the same eigenvec-
tors and the gradient-based learning method could be a
problem if we deal with general kernel matrices. In the
next section, we propose to solve the general kernel learn-
ing formulation (4) using a difference of convex optimi-
zation method.

The formulation (4) also has a close relation with Gaus-
sian Process regression [35]. A Gaussian process f can be
fully specified by giving the covariance matrix for any
finite set of zero-mean random variables f = {f(x,): i €
N,,}. The relation between the inputs x = {x;:i € N} and
outputsy = {y;: i € N, } is realized by the latent variable f
as follows:

y | f.x~N(y|f ol,)

where I, denotes the n x n identity matrix and the latent

random variable f = (f (x;, ..., f (x,))) is distributed as a
Gaussian process prior. The Gaussian process prior can be
fully specified by a kernel K with a random covariance
matrix K = (K(x;, x j))i, jeN, associated with random sam-
ples x = {x;: i € N,}. Specifically, it can be written as f|x

~ N (f] 0, K;). We assume a uniform distribution over /4, i.e.
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.. . .. . m 0! .
a Dirichlet prior distribution A4 ~ H o1 A7° with gp= 1.
If we let K, = yy" in the objective function of formulation

(4), then one can easily check that, up to a constant term,
the objective function in formulation (4) is the negative of
the log likelihood of Gaussian process regression, and max-
imizing the log likelihood is equivalent to the minimiza-
tion problem (4).

Optimization Formulation

We now turn our attention to optimization approaches
for the KL-divergence based kernel learning formulations
(4) and (5). In particular, we show that formulation (5)
can be approached by a projected gradient descent
method and (4) can be solved by a difference of convex
algorithm (DCA) [36] which, for linear constraint condi-
tions, reduces to the special case of a concave convex pro-
cedure (CCCP) [37]. To this end, let

g(A) =-log Z 1K, +0ol, (6)
leN,,
and
F(A) = Tr(K o Z AK, +o1,)™). )
leN,,

Theorem 1 Let functions g and f be defined by (6) and (7).
Then, both f and g are convex with respect to A € A. Moreover,
problem (5) is convex and problem (4) is a difference of convex
problem, i.e.

min£(2) = f(2) - 8(4). (8)

Proof It suffices to prove the convexity of f and g. To this
end, from [38] we observe that functions - log |C| and
Tr(KyC-!) are convex with respect to positive semi-defi-
nite matrices C. Hence, f and g are convex with respect to
A e A. This completes the proof of the theorem.

For simplicity we refer to the KL-divergence kernel learn-
ing formulation (4) as MKLdiv-dc since it is a difference of
convex problem and refer to formulation (5) as MKLdiv-
conv since it is a convex problem.

Projected Gradient Descent Method for MKLdiv-conv

We propose a projected gradient descent (PGD) method
to solve problem (5). The idea of this method is to alter-
nately implement a gradient descent and then a projec-
tion to the feasible domain, see e.g. [39]. Recall the
derivative of the log determinant, (see e.g. the matrix cook-
book http://matrixcookbook.com/

http://www.biomedcentral.com/1471-2105/10/267

9g(2)

. - Ty (Z AK, +01,)7'K; | )

leN,,

With a little abuse of notation, we also denote by £
the objective function of problem (5). Consequently, its
gradient is given by

dL(A)

%, = Tr((K,+o1,)'K,)-Tr (2 AK, +0l1,)7 'K,

leN,,

(10)
Then, at iteration step t the gradient descent step is real-
ized by

ﬁ(t) =0 —T]V£(7L(t)),

where 7 > 0 is a prescribed step size. The projection of S
to the feasible domain A can be written as the following
quadratic programming problem

20 = arg min|| g~ 4" (11)

A€A
The theoretical convergence rate of the projected gradient

descent method is generally of complexity O ( L) where

Je
t is the iteration number and L is the Lipschitz constant of
the gradient function defined by (10), see e.g. [39]. Here,
the Lipschitz constant L is bounded by the largest eigen-
value of the Hessian #(£) = ((H(£))jeen, ) of the objec-

tive function defined, for any i, j € N,,, by

L) . B}
(H(L)); = T, Tr((lg‘ 1K, +ol,) 11@(%{ 4K, +0l,)'K)).

Since # is convex, the Hessian (£) is positive semi-definite
and thus

L 3supmzjeN '1‘[((2”6N /l/K4+GI,,)71K,(Z/EN AK, +o1,)7K))
=supen 3 QY 2K +o1,) K
Ssupsea Dy QY A+ ol) el K oS mY, 11Kl o,
(12)
where || - ||, denotes the Frobenious norm of a matrix.
Hence, the projected gradient descent algorithm could

take longer time to become convergent if the value of ois
very small.
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Difference of Convex Algorithm for MKLdiv-dc

By Theorem 1, problem (4) is a difference of convex prob-
lem. We propose to solve this problem by a concave con-
vex procedure (CCCP) [36,37]. This procedure iteratively
solves the following convex problem:

20 = arg min f(1) - g(A1) - Vg2 (2 - 1),
€A

(13)

where, for any j € N,,, the derivative of the log determi-
nant is given by equation (9). Before we continue the
main discussion, let us first note an interesting property of
CCCP. By the definition of A(*+1), we know that

L2 = G- 51 = (A1) - 22") - Vg2 D) (A1 - 41
> min e, f(2) - g(A") = Vg(2 ) (2 - 1)
= f21) = 821 = Vg2 )Y =21,

Since g is convex, we have that

~3(21) - Vg (21 = 21) 2 —g(21Y).

Consequently,

LWy = f(A0) - g(21) > FAU) - gAY =£(A 1),
(14)

which means that the objective value (A()) monotonically
decreases with each iteration. Consequently, we can use
the relative change of the objective function as a stopping
criterion. Local convergence of the DCA algorithm is
proven in [36] (Lemma 3.6, Theorem 3.7). Tao and An
[36] state that the DCA often converges to the global solu-
tion. Overall, the DC programming approach to MKLdiv-
dc can be summarized as follows.

¢ Given a stopping threshold ¢
e Initialize A1), e.g. A,@ = % forany € e N,

e Given the solution A9 at step t, for step t + 1, first
compute 4¢(A(0) by equation (9). Then, compute solu-
tion A(+1) of convex subproblem (13).

[(l(t))_L(/l(t+1)) <.

e Stop until the relative change G

where ¢ is a stopping threshold

SILP Formulation for the Convex Subproblem (13)

We now turn to the solution of the convex subproblem
(13). To see this, first decompose the output matrix K,
into the form K = AA*, e.g. by eigen-decomposition. Here,

http://www.biomedcentral.com/1471-2105/10/267

A is an n X r matrix with r = rank(A) which always exists
since Kj is positive semi-definite. Hence, by introducing
an auxiliary matrix & € R * 7, we observe, for any positive
definite matrix C, that

max 2Tr(or"A) — Tr(ot "Car) = Tr(ATC'A) = Tr(AATC ™).
o

Applying the above equality with C = z ey MK +ol,

up to a constant, equation (13) is equivalent to the aug-
mented problem:

min max 2Tr(a"A) — Tr(a ' ( Z AK, +0ol)o) - Vg(A)A.
A «a P

Equivalently, by the min-max theorem (see e.g. [38])

max min—2Tr(a"A) + Tr(a ' ( z AK, +0l,)a) + Vg(A)A.
A o =

(15)

To solve the subproblem (15), we can formulate it as a
quadratically  constrained quadratic programming
(QCQP) problem as in [11]. Here we formulate the prob-
lem in (15) as a semi-infinite linear programming (SILP)
problem [14,40] since SILP usually has better scalability

compared to QCQP. To see this, let
(1)
S,(@) = Tr(aa'K,) + Bg(ai ), and
) 4
So(0) =2Tr(ax"A) +oTr(a ") . Then, letting

y =min,—2Tr(a"A)+ Tr(a (Y, AK, +0l,))+Vg(A)2

, we can rewrite (15) as a SILP problem:

max, ;

y
"4, =1,4,20
S.t. 2[=1 =LA =

m
7= 4S,(@)<Sy(@), Va

(16)

In (16), there are an infinite number of constraints
(indexed by a), indicative of a semi-infinite linear program-
ming (SILP) problem. The SILP task can be solved by an
iterative column generation algorithm (or exchange
method) which is guaranteed to converge to a global opti-
mum. A brief description of the column generation
method is illustrated in Appedix 2.

Alternatively we could apply the projected gradient
descent (PGD) method in the above subsection directly to
the convex subproblem (13). However, the gradient func-
tion of its objective function involves the matrix
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(zleNm 2K, +o1,)7" . In analogy to the argument of ine-

quality (12), the Lipschitz constant of the gradient of the
objective function in (13) is very large when the value of
o is very small, and thus the projected gradient descent
algorithm could take longer to become convergent.
Hence, this could make the overall DC programming
unacceptable slow. In contrast, in the SILP formulation
(16) we introduce the auxiliary variables « to avoid the

matrix (ZﬂeN 2K, +ol,)™" . In addition, the gradient

descent algorithm generally needs to determine the step
size 17 according to the value of o; see also discussion in
the experimental section.

Prior Choice of the Output Kernel Matrix

The choice of the output kernel matrix K, will depend on
the problem considered. We first consider a multi-class
classification for the specific task of protein fold recogni-
tion. In this case, we preprocess the output labels using a
one-against-all strategy. In particular, for a C-class classifi-
cation we recast the outputs y = {y;:i € N,.} as (y;1, .- Vic)
such that y;, = 1 if x;is in class p and otherwise —1. Hence
the outputs are represented by an n x C indicator matrix Y
= (Vip)i, p Wwhose p-th column vector is denoted by y,. Then,
taking K; = YY", formulation (4) can be extended to the
joint optimization problem

2 2K, +0ol,

leN,,
(17)

min £(3):= D ;3 4K+ oh) "y, +log

peNe teN,,

and formulation (5) can be written as

z AK, +0l,

(eN,,
(18)

For the protein fold recognition and yeast protein func-
tion prediction projects discussed below, we choose K =
YY< as stated.

min L= D ;0 Y AT,y +01) 'Ky )y, ~log

peNc eNy,

In general, though, K; might encode a known structural

relationship between labels. For example, in supervised
gene or protein network inference (see e.g. [41,42]) the out-
put information corresponds to an adjacency (square)
matrix A where A; = 1 means there is an interaction

between gene or protein pair (e; ¢;) of an organism, other-
wise A;; = 0. In this case, the output kernel matrix K; can
potentially be chosen as the graph Laplacian defined as L =

http://www.biomedcentral.com/1471-2105/10/267

diag(A1) — A, where 1 is the vector of all ones. It can also be

formulated as a diffusion kernel [43] defined by

2 3
ePl =1+ BL+ %Lz + %ﬁ +..., where hyper-parame-

ter B> 0. Other potential choices of K can be found in
[19,20] for multi-labeled datasets.

Results and Discussion

We mainly evaluate MKLdiv methods (MKLdiv-dc and
MKLdiv-conv) on protein fold recognition, and then con-
sider an extension to the problem of yeast protein func-
tion prediction. In these tasks we first compute the kernel
weights by MKLdiv and then feed these into a one-against-
all multi-class SVM to make predictions. The trade-off
parameter in the multi-class SVM is adjusted by 3-fold
cross validation over the training dataset. For all experi-
ments with MKLdiv-dc, we choose o= 10->and for MKL-
{10-5,
validation. In both methods, we use a stopping criterion

div-conv, we tune o = ..., 10-1} using cross

of ¢ = 105 and initialize the kernel weight A by setting
Ay =-L forany € e N,, where m is the number of candi-

date kernel matrices.

Synthetic Data

We first validated the proposed MKLdiv algorithms on a
simple three-class dataset illustrated in subfigure (a) of
Figure 1. As in [11], we use a Gaussian kernel with unit
variance, a polynomial kernel of order two and a linear
kernel. In this case we demonstrate the effect of our
approaches on combining kernel matrices derived from a
single data source. Subfigures (e) and (f) of Figure 1 illus-
trate the kernel weights learned by MKLdiv-dc and MKL-
div-conv. In particular, MKLdiv-dc successfully picked up
the Gaussian kernel as the most dominant kernel, which
is more reasonable than MKLdiv-conv. Subfigures (b) and
(c) of Figure 1 show the relative change of objective func-
tion values versus iteration, i.e. ((A(-1)) — (1(9))/(10), of

MKLdiv-dc and MKLdiv-conv. We can see that the DC
algorithm of MKLdiv-dc converges quickly to a local min-
imum while the projected gradient descent algorithm con-
verges a little slower to a global minimum. However,
MKLdiv-dc needs more time per iteration than MKLdiv-
conv since MKLdiv-dc needs to solve the subproblem (13)
at each iteration. As mentioned before, the subproblem
(13) can be solved by either semi-infinite linear program-
ming (SILP) or a projected gradient descent (PGD)
method. To see their convergence, in subfigure (d) of Fig-
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Figure |

Synthetic data verification. Synthetic data verification of MKLdiv: (a) depiction of the three-circle dataset; (b) relative
change of objective values of MKLdiv-dc versus iteration number of CCCP; (c) relative change of objective values of MKLdiv-
conv versus iteration number of projected gradient descent (PGD) method; (d) relative change of objective values of subprob-
lem (13) by SILP (dish-line) and PGD methods; (e) kernel weights learned by MKLdiv-dc; (f) kernel weights learned by MKLdiv-

conv.

ure 1 we plot the relative changes of the objective function
in subproblem (13) when /l}t) =1/m for€ e N,,. We can

see from subfigure (d) that the PGD approach converges
faster in the beginning but stalls at a higher precision and
the SILP method converges faster at higher precision.

Protein Fold Recognition

Next we evaluated MKLdiv on a well-known protein fold
prediction dataset [3]. This benchmark dataset (based on
SCOP PDB-40D) has 27 SCOP fold classes with 311 pro-
teins for training and 383 for testing. This dataset was
originally proposed by Ding and Dubchak [3] and it has
313 samples for training and 385 for testing. There is less
than 35% sequence identity between any two proteins in
the training and test set. We follow Shen and Chou [4]
who proposed to exclude two proteins from the training
and test datasets due to a lack of sequence information.

We compare our MKLdiv methods with kernel learning
based on one-against-all multiclass SVM using the Sim-
pleMKL software package [44], kernel learning for regular-
ized discriminant analysis (MKL-RKDA) [18]http://
www.public.asu.edu/~jye02/Software/DKI/ and a proba-
bilistic Bayesian model for kernel learning (VBKC) [21].
The trade-off parameters in SimpleMKL and MKL-RKDA
were also adjusted by 3-fold cross validation on the train-
ing set.

Description of the Fold Discriminatory Data Sources

As listed in Table 1, there are a total of 12 different fold
discriminatory data sources available: Amino Acid Com-
position (C), Predicted Secondary Structure (S), Hydro-
phobicity (H), Polarity (P), van der Waals volume (V),
Polarizability (Z), PseAA 4 = 1 (L1), PseAA A = 4 (L4),
PseAA A = 14 (L14), PseAA A = 30 (L30), SW with
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Table I: Performance with individual and all data sources
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Data sources MKLdiv-dc MKLdiv-conv SimpleMKL VBKC MKL-RKDA
Amino acid composition (C) 51.69 51.69 51.83 51.2£05 45.43
Predicted secondary structure (S) 40.99 40.99 40.73 38.1£0.3 38.64
Hypdrophobicity (H) 36.55 36.55 36.55 325+04 34.20
Polarity (P) 35.50 35.50 35.50 322+£03 30.54
van der Walls volume (V) 37.07 37.07 37.85 328+0.3 30.54
Polarizability (Z) 3733 3733 36.81 332+04 30.28
PseAA 2 =1 (LI) 44.64 44.64 45.16 415+0.5 36.55
PseAA 1 =4 (L4) 44.90 44.90 44.90 415+04 38.12
PseAA 1= 14 (L14) 43.34 43.34 43.34 38+0.2 40.99
PseAA 4 =30 (L30) 31.59 31.59 31.59 32+02 36.03
SW with BLOSUM62 (SW1) 62.92 62.92 62.40 598+ 1.9 61.87
SW with PAM50 (SW2) 63.96 63.96 63.44 49 0.7 64.49
All data sources 73.36 71.01 66.57 68.1 £ 1.2 68.40
Uniform weighted 68.40 68.40 68.14 - 66.06

The results of VBKC are cited from [21]. The results not employed there are denoted by '-'. The best result for each kernel learning method is

marked in bold.

BLOSUMG62 (SW1) and SW with PAM50 (SW2). The first
six data sources were originally from [3]. Four data sources
using different dimensions of pseudo-amino acid compo-
sition (PseAA) were introduced in [4] to replace the
amino-acid composition. The last two data sources used
in [21] are derived from a pairwise kernel [45] for local
sequence alignment based on Smith-Waterman scores.

As in [21], we employ linear kernels (Smith-Waterman
scores) for SW1 and SW2 and second order polynomial
kernels for the other data sources. Ding and Dubchak [3]
conducted an extensive study on the use of various multi-
class variants of standard SVMs and neural network classi-
fiers. For these authors the best test set accuracy (TSA) was
56%, and the most informative among their six data
sources (CSHPVZ) were amino-acid composition (C), the
predicted secondary structure (S) and hydrophobicity
(H). Shen and Chou [4] introduced four additional PSeAA
data sources to replace the amino acid composition (C)
and raised test performance to 62.1%. The latter authors
used an ad hoc ensemble learning approach involving a
combination of multi-class k nearest neighbor classifiers
individually trained on each data source. Recently, test
performance was greatly improved by Damoulas and
Girolami [21] using a Bayesian multi-class multi-kernel
algorithm. They reported a best test accuracy of 70% on a
single run.

Performance with Individual and All Data Sources

We ran MKLdiv-dc, MKLdiv-conv, SimpleMKL and MKL-
RKDA on the overall set of 12 data sources, also evaluating
performance on a uniformly weighted (averaged) com-
posite kernel in addition to individual performance on
each separate data source. In Table 1 we report the test set

accuracy on each individual data source. The performance
of MKLdiv-dc and MKLdiv-conv inclusive of all data
sources achieves a test set accuracy of 73.36% and 71.01%
respectively, consistently outperforming all individual
performances and the uniformly weighted composite ker-
nel (68.40%). Moreover, individual performance for
MKLdiv-dc, SimpleMKL and MKL-RKDA indicates that the
most informative data sources are local sequence align-
ments (SW1 and SW2) and the amino acid composition
(C). The performance with individual data sources for
MKLdiv-dc, MKLdiv-conv, and SimpleMKL are almost the
same since, for a fixed kernel, they use the same one-
against-all multi-class SVM.

From Table 1, performances of MKLdiv-dc and MKLdiv-
conv with all the available data sources achieve test set
accuracies of 73.36% and 71.01%, both of which outper-
form the state-of-art performance 70% on a single run
reported in [21] and other kernel learning methods
including SimpleMKL (66.57%) and MKL-RKDA
(68.40%). The performance of the uniformly weighted
kernel is 68.14% which is better than the performance
66.57% of SimpleMKL. This indicates that sparse L!-regu-
larization does not necessarily yield better performance.
The kernel weights 4 of MKLdiv-dc, SimpleMKL, and
MKL-RKDA are shown in subfigures (b), (e) and (g) of
Figure 2 which indicates that Amino Acid Composition
(C), predicted secondary structure (S), Hypdrophobicity
(H), and the last two data sources SW1 and SW2 are the
most informative data sources, and the remaining data
sources of H, P, V, and PseAA are less informative. As
depicted in the subfigure (b) of Figure 2, MKLdiv-dc and
MKLdiv-conv include some less informative data sources
such as P, Z, L1, L4, L14, L30 etc., with small (but not
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Figure 2

Performance with all data sources on protein fold recognition. Test set accuracy of individual (bars) and all data
sources (horizontal lines) on the protein fold recognition dataset: (a) MKLdiv-dc and MKLdiv-conv, where the solid line is the
performance of MKLdiv-dc and the star-dashed line is the performance of MKLdiv-conv; (d) SimpleMKL; (f) MKL-RKDA. Ker-
nel weights: (b) MKLdiv-dc, (c) MKLdiv-conv, (e) SimpleMKL and (g) MKL-RKDA.
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zero) kernel weights. In contrast, as shown in (e) and (g)
of Figure 2, SimpleMKL and MKL-RKDA completely dis-
card these less informative data sources. However, as
shown in (d) and (f) of Figure 2, SimpleMKL and MKL-
RKDA achieve poorer performance, less than 70%, while
MKLdiv-dc achieves 73.36% and MKLdiv-conv achieves
71.01%. This suggests that MKLdiv-dc provides a more
reasonable balance over the entire set of data sources. This
observation also suggests that achieving a sparsity among
kernel weights does not necessarily guarantee good gener-
alization performance since some available data sources
may be weakly informative but may still carry some useful
additional information.

Table 2: Effects of sequentially adding data sources

http://www.biomedcentral.com/1471-2105/10/267

Performance with Sequential Addition of Data Sources

As mentioned above, the kernel weights learned by MKL-
div on all the data sources can provide useful insights into
the significance of informative data sources. Hence, we
further investigated the effect of sequentially adding data
sources based on information from learned kernel
weights in Tables 2 and 3. Without loss of generality, we
take the kernel weights learned by MKLdiv-dc as an exam-
ple.

We first report in Table 2 the effect of sequentially adding
the sources in the order which was used in [3] and [21]
and MKLdiv-dc and MKLdiv-conv consistently outper-
form the competitive kernel learning methods VBKC,

Data sources MKLdiv-dc MKLdiv-conv VBKC SimpleMKL MKL-RKDA
C 51.69 51.69 51.2+05 51.69 47.25
cs 56.39 55.35 55.7+05 55.61 48.30
(20.23 5) (0.3255) -) (14.67 s) (0.155)
CSH 57.70 58.22 57706 56.91 55.61
(50.355) (244 5) (-) (10.40 s) (0.125)
CSHP 58.48 53.52 57909 57.96 56.65
(39.025) (72.14 s) -) (17.845s) (0.185)
CSHPV 60.05 53.26 58.1 £ 0.8 57.96 55.87
(75.05 5) (86.39 5) -) (15.05 s) (0.17 5)
CSHPVZ 59.26 53.52 586 % I.1 59.00 57.70
(135.08 s) (99.64 s) -) (20.02 s) (0.20 5)
CSHPVZLI 60.05 52.74 60.0 £ 0.8 61.35 57.70
(221.755) (122.74 5) (-) (27.38 ) 0.21's)
CSHPVZLIL4 62.14 52.74 60.8  I.1 61.61 58.22
(315.70 s) (129.08 s) -) (151.385) (0.255)
CSHPVZLIL4L14 62.14 61.09 61512 60.05 59.53
(450.57 s) (57.09 5) -) (42.81 s) (0.255)
CSHPVZLIL4L14L30 62.14 62.14 622+ 1.3 62.40 55.61
(612.72s) (67.29 5) -) (64.74 5) (0.255)
CSHPVZLIL4L14L30SWI 71.80 71.54 66.4+0.8 65.79 66.84
(620.16 ) (17.97 s) (-) (78.94 5) (0.319)
CSHPVZLILAL14L30SW ISW2 73.36 71.01 68.1 £ 1.2 66.57 68.40
(805.11 s) (84.21 s) -) (196.42 s) (0.315)
SHPVZLIL4L14L30 60.57 61.09 6l.1 14 59.00 54.56
(438.89 ) (67.925) -) (44.79 ) (0.255)

The result of Bayesian kernel learning model (VBKC) is cited from [21]. The results not employed there are denoted by '-'. The term inside the
parenthesis is the CPU running time (seconds). The best test set accuracy of each kernel learning method is marked in bold.
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Table 3: Effects of sequentially adding data sources (continued)

http://www.biomedcentral.com/1471-2105/10/267

Data sources MKLdiv-dc MKLdiv-conv SimpleMKL MKL-RKDA
SWI 62.92 62.92 62.40 61.87
SWIS 65.27 66.31 64.22 64.75
(24.725) (1049 s) (40.60 s) 0.125)
SWISW2S 67.10 66.05 64.75 64.49
(48.79 ) (4.655) 61.71s) 0.15s)
SWISW2CS 73.36 72.32 65.01 67.62
(40.65 s) (2343 5) (62.81 s) (0.17 5)
SWISW2CSH 74.67 72.32 66.31 67.88
(72.19°s) (8.69 s) 75.11's) 0.15s)
SWISW2CSHP 74.93 74.41 66.31 69.71
(123.98 5) (11.63s) (74.85 5) 0.185s)
SWISW2CSHPZ 75.19 73.36 68.92 66.05
(18991 s) (15.00 s) (109.09 s) (0.20 5)
SWISW2CSHPZV 7441 74.41 66.31 69.19
(278.47 s) (17.47 s) (117.145) (0.255)
SWISW2CSHPZVLI 73.10 73.32 66.84 68.66
(404.82 s) (4941 s) (1o1.0l's) 0.255s)
SWISW2CSHPZVLIL4 72.84 72.06 67.10 67.62
(576.29 s) (57.83 ) (107.88 s) (0.255s)
SWISW2CSHPZVLIL4L14 72.58 72.36 66.84 69.19
(748.72 s) (1943 5) (163.85s) (0.28 )
SWISW2CSHPZVLIL4L14L30 73.36 71.01 66.57 68.40
(811.545) (83.935) (197.57 s) 0.31's)

Test set accuracy of sequentially adding fold discriminatory data sources (continued) according to the ranking of kernel weights obtained by
MKLdiv-dc over all data sources. The results of the Bayesian kernel learning method were not employed in [21], hence we do not list in the table.
The term inside the parenthesis is the CPU running time (seconds). The best test set accuracy of each kernel learning method is marked in bold.

SimpleMKL, MKL-RKDA and the best performing SVM
combination methodology stated in [3]. As suggested by
the kernel weights of MKLdiv-dc in the subfigure (b) of
Figure 2, the sequence alignment based data source SW1
is most informative, then S, then SW2 and so on. Hence,
in Table 3 we further report the effect of sequentially add-
ing data sources in this rank order. As shown in Table 3,
there is a significant improvement over SW1SW2 in MKL-
div-dc when we sequentially add the data sources of
amino acid composition (C) and predicted secondary
structure (S). The performance of MKLdiv-dc keeps
increasing until we include CSHPZ, giving the best per-
formance of 75.19%. Although according to [4], the
PseAA data sources are believed to contain more informa-
tion than the conventional amino acid composition. The
same behaviour appears for MKLdiv-conv. However, the
MKLdiv-dc performance degenerates if we continue to add
PseAA composition data sources and the same behaviour

appears for MKLdiv-conv. Similar observations were
made by [21] which suggests that PseAA measurements
may carry non-complementary information with the con-
ventional amino acid compositions.

With regard to the best performance of MKLdiv-dc with
the feature set SW1SW2CSHPZ, we display the corre-
sponding kernel weights in Figure 3. We can see in Figure
3 that SimpleMKL and MKL-RKDA almost eliminate the
informative feature set HPZ while MKLdiv-dc and MKL-
div-conv include them into the composite kernel. The
sparse L!-regularization of SimpleMKL and MKL-RKDA
accounts for the sparse weights of SimpleMKL and MKL-
RKDA.

Comparison of Running Time
To investigate the run-time efficiency of MKLdiv on pro-
tein fold recognition dataset, we list their CPU time in
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Kernel weights on dominant data sources for protein fold recognition. Kernel weights on the dominant data sources
SWISW2CSHPZ which yields the best prediction on the protein fold recognition dataset: (a) MKLdiv-dc, (b) MKLdiv-conv, (c)

SimpleMKL and (d) MKL-RKDA.

Tables 2 and 3. The running time (in seconds) is the term
inside the parenthesis. The SILP approach for MKL-RKDA
is very efficient while SimpleMKL takes a bit longer. The
reason could be that MKL-RKDA essentially used the least-
square loss for multi-class classification in contrast to the
one-against-all SVM used in SimpleMKL. Generally, more
time is required to run the interior method for one-

against-all SVM than directly computing the solution of
the least-square regression. The projected gradient descent
method for MKLdiv-conv is also slower than MKL-RKDA.
It is to be expected that MKLdiv-conv converges faster than
MKLdiv-dc since the DC algorithm for MKLdiv-dc is non-
convex and it needs to solve the subproblem (13) in each
iteration of CCCP. Nevertheless, the price we paid in run-
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ning time for MKLdiv-dc is worthwhile given its signifi-
cantly better performance on the protein fold prediction
problem.

Sensitivity against Parameter

The initial purpose of introducing ois to avoid the singu-
larity of the input kernel matrix or the output kernel
matrix. However, in practice we found that, in the convex
formulation MKLdiv-conv, values of o have a great influ-
ence on performance for protein fold recognition. Hence,
when we ran MKLdiv-conv, we always did cross validation
over the training set to select the parameter ¢. To see how
sensitive the test set accuracy is with respect to o, in Figure
4 we depicted the test set accuracy versus values of ¢. In
Figure 4 we can observe that the test set accuracy of MKL-
div-dc is relatively stable for small values of ¢’s. However,
this is not the case for MKLdiv-conv and generally suggests
that the parameter o has a great impact on performance of
MKLdiv-conv. This could be because the output kernel
matrix Ky = YYT is of low rank (rank one in binary classifi-
cation) and thus adding a small matrix ol, in the formu-
lation MKLdiv-conv could dramatically change the
information of the output kernel matrix. In contrast, we
can reasonably assume the input kernel matrices are non-
singular or not of low rank and the effect of adding a small
matrix ol, in the formulation MKLdiv-dc can be ignored.
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Extension of Investigation to Yeast Protein Classification
We next extend our investigation of MKLdiv-dc and MKL-
div-conv on a yeast membrane protein classification prob-
lem [23]. This binary classification task has 2316
examples derived from the MIPS comprehensive Yeast
Genome Database (CYGD) (see [46]). There are eight ker-
nel matrices noble.gs.washington.edu/proj/sdp-
svim/. The first three kernels (K, Kz and Kpg,,,) are
respectively designed to measure the similarity of protein
sequences using BLAST, Smith-Waterman pairwise
sequence comparison algorithms and a generalization of
pairwise comparison method derived from hidden
Markov models. The fourth sequence-based kernel matrix
(Kper) incorporates information about hydrophobicity
which is known to be useful in identifying membrane
proteins, computed by Fast Fourier Transform. The fifth
and sixth kernel matrices (Kj;, Kp) are respectively derived
from linear and diffusion kernels based on protein-pro-
tein interaction information. The seventh kernel matrix
(Kg) is a Gaussian kernel encoding gene expression data.
Finally, we added a noise kernel matrix Ky,, generated by
first generating random numbers and then using a linear
kernel.

The performance of MKLdiv-dc and MKLdiv-conv is eval-
uated by 10 random partitions of the data into a training
and test set in a proportion of 4: 1. We report the receiver

MKLdiv-conv
75 ‘ ‘
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Sensitivity against parameter o for protein fold recognition. Test set accuracy versus different values of o on the pro-
tein fold recognition dataset: (a) MKLdiv-dc and (b) MKLdiv-conv.
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Performance of MKLdiv on yeast membrane protein. Performance on the yeast membrane protein function dataset: (a)
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div-dc, the second bar to last (All-conv) is MKLdiv-conv and the last bar (Averg) is the performance using uniformly weighted

kernels. Kernel weights: (b) MKLdiv-dc and (c) MKLdiv-conv.

operating characteristic (ROC) score, which measures the
overall quality of the ranking induced by the classifier,
rather than the quality of a single point in that ranking.
The first subfigure of Figure 5 shows the performance with
individual kernels and the performance of MKLdiv-dc
(the third to last bar), MKLdiv-conv (the next to last bar),
and the uniformly weighted kernel (last bar). Specifically,
MKLdiv-dc yields a ROC score of 0.9189 + 0.0171 which
is competitive with the result in [23]. MKLdiv-conv, how-
ever, achieved a ROC score of 0.9016 + 0.0161 which is
worse than MKLdiv-dc. The performance of MKLdiv-dc is
also slightly better than the performance of the uniformly
weighted kernel 0.9084 + 0.0177 excluding the noise ker-
nel and 0.8979 + 0.0120 including the noise kernel. We
also plot the kernel weights on (b) and (c) of Figure 5. As
expected, in MKLdiv-dc the BLAST kernel (Kj) derived
from the protein sequence similarity comparison is very
informative which is consistent with [23]. The derived
kernel weights also show that the interaction-based diffu-
sion kernel is more informative than the expression ker-
nel, which is consistent with [23]. Also, it is interesting to
note that MKLdiv-dc shows that the noise kernel (Kp,,) is
least informative. This is indicated by its individual ROC
score: a ROC score around 0.5 corresponds to random
ranking. The kernel weights of MKLdiv-conv indicate that
the diffusion kernel (D) is the most important data
source, and also suggest that Pfam and FFT are almost
non-informative regardless of their good individual per-
formances. For the kernel weights, MKLdiv-dc is more rea-
sonable than MKLdiv-conv since MKLdiv-dc is more
consistent with the individual data source's performance
and MKLdiv-dc outperforms MKLdiv-conv using all data
sources.

Conclusion

In this paper we developed a novel information-theoretic
approach to learning a linear combination of kernel
matrices based on the KL-divergence [24-28], especially
focused on the protein fold recognition problem. Based
on the different position of the input kernel matrix and
the output kernel matrix in the KL-divergence objective,
there are two formulations. The first one is a difference of
convex (DC) problem termed MKLdiv-dc and the second
formulation is a convex formulation called MKLdiv-conv.
The sparse formulation for kernel learning based on dis-
criminant analysis [18] was also established. Our pro-
posed methods are able to achieve state-of-the-art
performance on the SCOP PDB-40D benchmark dataset
for protein fold recognition problem. In particular, MKL-
div-dc further improves the fold discrimination accuracy
to 75.19% which is a more than 5% improvement over a
competitive Bayesian probabilistic approach [21], SVM
margin-based kernel learning methods [11], and the ker-
nel learning based on discriminant analysis [18]. We fur-
ther extended the investigation to the problem of yeast
protein function prediction.

Generally, it is difficult to determine which criterion is
better for multiple kernel combination since this problem
is highly data-dependent. For the information-theoretic
approaches MKLdiv-dc and MKLdiv-conv, although MKL-
div-dc is not convex and its DC algorithm tends to find a
local minima, in practice we would recommend MKLdiv-
dc for the following reasons. Firstly, as mentioned above
MKLdiv-dc has a close relation with the kernel matrix
completion problem using information geometry [27,28]
and the maximization of the log likelihood of Gaussian
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Process regression [35], which partly explains the success
of MKLdiv-dc. Secondly, we empirically observed that
MKLdiv-dc outperforms MKLdiv-conv in protein fold rec-
ognition and yeast protein function prediction. Finally, as
we showed in Figure 4, the performance of MKLdiv-conv
is quite sensitive to the parameter o and the choice of o
remains a challenging problem. MKLdiv-dc is relatively
stable with respect to small values of -and we can fix oto
be a very small number e.g. o = 10-°. In future, we are
planning to empirically compare performance with other
existing kernel integration formulations on various data-
sets, and discuss convergence properties of the DC algo-
rithm for MKLdiv-dc based on the theoretical results of
[36].
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Appendix

Appendix | — Column generation method for SILP

Here we briefly describe the column generation method
(see e.g. [40]) for SILP (16) to solve the subproblem (15),
ie.

maxyll Y
A =14,
S.t. - =LA 2 0 (19)

m
7= MuSi(a) < Sol@), Vo

ag(2 (1))

where S, (&) = Tr(aa 'K,) + on

,and Sy(a) = -2Tr(a™

A) + oTr(a™ @). The basic idea is to compute the optimum
(4, ») by linear programming for a restricted subset of con-
straints, and update the constraint subset based on the
obtained suboptimal (4, ). More precisely, given
restricted constraints {a,: p = 1, ..., P}, first we find the
intermediate solution (A4, 7) by the following linear pro-
gramming optimization with P linear constraints

maxy,

i
sit. }516=1,03131
14

y - z,usg(ap) <So(a,), Yp=1,...,P.
14

(20)
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This problem is often called the restricted master problem.
Then, we find the next constraint with the maximum vio-
lation for the given intermediate solution (4, y), i.e.

d
min Z 2,8,(a) + So(a).

leN,

(21)

If the optimizer a * of the above equation satisfies

Ze/lésg(a*) +Sy(a) 2y then the current intermediate

solution (4, y) is optimal for the optimization (19). Oth-
erwise a* should be added to the restriction set. We repeat
the above iteration until convergence which is guaranteed
to be globally optimal, see e.g. [14,40]. In a similar fash-
ion to the convergence criterion in [14], the algorithm
stops when

520V (aWyrso(a)
)4

1- <e.

(1) -

For instance, the threshold ¢is usually chosen to be 5 x 10-4.

Appendix 2 — Sparse formulation of kernel learning based
on discriminant analysis

In this appendix we show that kernel learning for regular-
ized discriminant analysis [18] is closely related to sparse
regularization. To see this, consider the following algo-
rithm

min Y (= > 6D =0+ (XN 1)’

ieN, leN,, leN,,
st.  freH, leN,
Using the fact [31] that min

2
Den Hf?”iﬁ/lé:AG‘A}z(EEHszK,]'theabove
" 7

equation is identical to

min
£,A,b

ieN, leN,, leN,,
st. AeA f,eH, VIieN,,.
(22)
The equivalence between the above algorithm and RKDA

kernel learning becomes clear if we formulate its dual
problem as follows:
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Theorem 2 Let K, = (ZﬁeN /IZKf(xf,x]/r))ijeNn, I, be the
identity matrix and 1, be an n-dimensional column vector of all

ones.

.
Define p=1, - nln
n

n
Vi =i~ Qe

algorithm (22) can be written as

. _ 1 , 1 .
min ., Max,, Ziai}/i_zziai —Ezuai“ﬂ(&(xir’fi)/

where y = i

K, =PK,P, and

yjforanyi e N,. Then, the dual problem of

Proof: Taking the minimization of b first, algorithm (22)
yields b=1%"_ (y;=3,_ fi(x)). Then, algorithm

(22) can be further rewritten as

f
min 4y (i 3, Fia) + 2 ZHKLW

ieN, teN,, (GN
st. AeA f,eH, VIieN,
(23)

Here, for any € and i, f,(x}) :fﬂ(xf)—%szNn f((x]”)

which can be further represented by

j_f((xf):<K,(xf,-)—%2jeNnK(/(xf,-),f/ >1< . Then, let-

ting &, =Y; _ZKGN f,(x;) for any i and solving the

standard Lagrangian formulation of (23) with Lagrangian
variables « yields

minmax ) «;y; —
AeA  «a T

2 ZaaKa(xl,x)

Now, replacing ¢;by po;and letting p = - completes the

argument. [

Let n_and n, denote the number of samples in class +1 and

—1. If we redefine the class indicator outputy, for any i €

N, byy,= then

- ifx;is in class +1 otherwise - -t
2n_ngy 2n_n

the class indicator output y reduces to the vector a

defined in [18] for binary classification, i.e.

http://www.biomedcentral.com/1471-2105/10/267

1 . -
—, ifx; isin class +1
— ny

1 .
——, otherwise.
n_

Now we turn our attention to multiclass classification. To
this end, consider

Hfl,.Ln #2 2 (Vi — Z feelx)=b.)? +% Z (2 IWCH%Z)%

ieN, ceN¢ leN,, teN, ceNg
st. f,eH, Vce N, le N,

Using the above argument for binary classification it is
easy to check its dual problem is as follows

. | , 1 -
min e, Mmax,, zicaic)}ic _Zzicaic —ryzi ’.CaicajcK/l(xi'xj)
(24)

where y;. =y, — ZjeN Yjc - Let n.denote the number of

samples in class c. If we redefine the class indicator matrix

Y, forany i € N, and ¢ € N-by y;. =% [ ify; = ¢, oth-
c

erwise —% /ni, then the class indicator matrix Y
c

reduces to the matrix H defined in [18] for multi-class
classification, i.e.

f C, ify,=c
Vie =hi(j) =

-+, otherwise.
n

Now we can see that the dual problem of algorithm (24)
is exactly the same as the formulation (see equation (36)
in [18]) of RKDA kernel learning.
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