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Abstract
Background: Academic social tagging systems, such as Connotea and CiteULike, provide
researchers with a means to organize personal collections of online references with keywords
(tags) and to share these collections with others. One of the side-effects of the operation of these
systems is the generation of large, publicly accessible metadata repositories describing the
resources in the collections. In light of the well-known expansion of information in the life sciences
and the need for metadata to enhance its value, these repositories present a potentially valuable
new resource for application developers. Here we characterize the current contents of two
scientifically relevant metadata repositories created through social tagging. This investigation helps
to establish how such socially constructed metadata might be used as it stands currently and to
suggest ways that new social tagging systems might be designed that would yield better aggregate
products.

Results: We assessed the metadata that users of CiteULike and Connotea associated with
citations in PubMed with the following metrics: coverage of the document space, density of
metadata (tags) per document, rates of inter-annotator agreement, and rates of agreement with
MeSH indexing. CiteULike and Connotea were very similar on all of the measurements. In
comparison to PubMed, document coverage and per-document metadata density were much lower
for the social tagging systems. Inter-annotator agreement within the social tagging systems and the
agreement between the aggregated social tagging metadata and MeSH indexing was low though the
latter could be increased through voting.

Conclusion: The most promising uses of metadata from current academic social tagging
repositories will be those that find ways to utilize the novel relationships between users, tags, and
documents exposed through these systems. For more traditional kinds of indexing-based
applications (such as keyword-based search) to benefit substantially from socially generated
metadata in the life sciences, more documents need to be tagged and more tags are needed for
each document. These issues may be addressed both by finding ways to attract more users to
current systems and by creating new user interfaces that encourage more collectively useful
individual tagging behaviour.
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Background
As the volume of data in various forms continues to
expand in the life sciences and elsewhere, it is increasingly
important to find mechanisms to generate high quality
metadata rapidly and inexpensively. This indexing infor-
mation - the subjects linked to documents, the functions
annotated for proteins, the characteristics identified in
images, etc. - is what makes it possible to build the soft-
ware required to provide researchers with the ability to
find, integrate, and interact effectively with distributed sci-
entific information.

Current practices for generating metadata within the life
sciences, though varying across initiatives and often aug-
mented by automated techniques, generally follow a proc-
ess closely resembling that long employed by
practitioners in the library and information sciences [1,2].
First, semantic structures, such as thesauri and ontologies,
are created by teams of life scientists working in coopera-
tion with experts in knowledge representation or by indi-
viduals with expertise in both areas. Next, annotation
pipelines are created whereby professional annotators uti-
lize the relevant semantic structures to describe the enti-
ties in their domain. Those annotations are then stored in
a database that is made available to the public via websites
and sometimes Web services. As time goes on, the seman-
tic structures and the annotations are updated based on
feedback from the community and from the annotators
themselves.

This process yields useful results, but it is intensive in its
utilization of an inherently limited supply of professional
annotators. As the technology to produce new informa-
tion and the capacity to derive new knowledge from that
information increases, so too must the capacity for meta-
data provision. Technologies that support this process by
partially automating it, such as workflows for genome
annotation [3] and natural language indexing systems [4-
6], provide important help in this regard, but manual
review of automated predictions remains critical in most
domains [7,8]. There is clearly a need for an increase in
the number of human annotators to go along with the
increase in the amount of data.

Serendipitously, social Web applications such as Con-
notea [9] and CiteULike [10] are now enabling the emer-
gence of an expanding pool of human annotators - albeit
annotators acting to fulfil widely varying purposes and in
possession of a broad range of expertise. Connotea and
CiteULike are examples of what are known as 'social tag-
ging systems'. Such systems let their users organize per-
sonal resource collections with tags (keywords). The kinds
of resources contained within them are essentially unlim-
ited, with popular examples including Web bookmarks
[11], images [12], and even personal goals [13]. These

resource collections are made available to the social net-
work of their creators and often to the general public. The
tags used to organize the collections are created by the
owner of the collection (the tagger) and can serve a variety
of purposes [14]. The act of adding a resource to a social
tagging collection is referred to as a 'tagging event' or sim-
ply as a 'post' (as in "to post a bookmark"). Figure 1 illus-
trates the information captured in a record of a typical
tagging event in which JaneTagger tags an image retrieved
from Wikipedia with the tags 'hippocampus', 'image',
'mri', and 'wikipedia'. Academic social tagging systems,
such as Connotea, Bibsonomy and CiteULike, extend this
basic functionality with the ability to identify and store
bibliographic information associated with scientific arti-
cles [9,10,15,16].

The tagline of Connotea - "Organize, Share, Discover" -
illustrates the purposes that social tagging systems are
intended to enable for their users. Tags can be used to
organize personal collections in a flexible, location inde-
pendent manner. The online nature of these services
allows users to easily share these collections with others -
either within their circle of associates or with the general
public. Through the public sharing of these annotated ref-
erences, it is possible for users to discover other users with
similar interests and references they may not otherwise
have come across.

This basic functionality has already attracted tens of thou-
sands of users to these systems.

Data captured in tagging events (posts)Figure 1
Data captured in tagging events (posts). Tagging events 
capture information about: the resource tagged, the tagger, 
the time the event took place, and the tags associated with 
the resource by the tagger.
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The expanding numbers of users and the concomitant
increase in the volume of the metadata they produce sug-
gests the possibility of new applications that build on the
socially generated metadata to achieve purposes different
from the personal ones listed above. For example, [17]
showed that the relevance of Web search results achieved
with both search engines and hand-curated directories
could be improved by integrating results produced by
social tagging services. In fact, the "social search engines"
suggested by this result are already starting to appear (for
an example, see worio.com [18]).

As we consider the creation of new applications like these
within the life sciences, it is important to begin with an
understanding of the nature of the metadata that they will
be built upon. This study is thus intended to provide a
thorough characterization of the current products of
social tagging services in biomedical, academic contexts.
This is achieved through an empirical assessment of the
tags used to describe citations in PubMed by users of Con-
notea and CiteULike. Selecting PubMed citations as the
resource-focus for this investigation makes it possible to
compare socially generated metadata, produced initially
to support disparate personal needs, directly with profes-
sionally generated metadata produced for the express pur-
pose of enabling applications that serve the whole
community. Where commonalities are noted, similar
kinds of community-level uses can be imagined for the
socially generated metadata; where differences occur,
opportunities are raised to envision new applications.

Results
Resource Coverage
In the life sciences, the total number of items described by
social tagging systems is currently tiny in comparison to
the number of resources described by institutions. To
illustrate, the MEDLINE bibliographic database contains
over 16 million citations [19] while, as of November 9,
2008, CiteULike, the largest of the academic social tagging
services, contained references to only about 203,314 of
these documents. Figure 2 plots estimates of the numbers
of new citations (with distinct PubMed identifiers) added
to both PubMed and CiteULike per month over the past
several years. The chart provides a visualization of both
the current difference in scale and an indication of the
rates of growth of both systems. It shows that both sys-
tems are indexing more items every month, that CiteU-
Like appears to be growing slightly faster then PubMed,
and that CiteULike is approaching 10,000 unique
PubMed citations added per month with MEDLINE
approaching 60,000.

This data suggests that, despite the very large numbers of
registered users of academically-focused social tagging
services - on November 10, 2008, Connotea reported

more than 60,000 (Ian Mulvaney, personal communica-
tion) - the actual volume of metadata generated by these
systems remains quite low. While the sheer numbers of
users of these systems renders it possible that this volume
could increase dramatically, that possibility remains to be
shown.

Density
Density refers simply to the number of metadata terms
associated with each resource described. Though provid-
ing no direct evidence of the quality of the metadata, it
helps to form a descriptive picture of the contents of meta-
data repositories that can serve as a starting point for
exploratory comparative analyses. To gain insight into the
relative density of tags used to describe citations in aca-
demic social tagging services, we conducted a comparison
of the number of distinct tags per PubMed citation for a
set of 19,118 unique citations described by both Con-
notea and CiteULike. This set represents the complete
intersection of 203,314 PubMed citations identified in the
CiteULike data and 106,828 PubMed citations found in
Connotea.

Table 1 provides an assessment of the density of distinct
tags used to describe these citations by individual users
and by the aggregate of all users of the system. These num-
bers are contrasted with the average numbers of MeSH
subject descriptors (both major and minor subject head-
ings were included) used to index the same set of docu-
ments. Only the MeSH descriptors are reported (ignoring
large amounts of additional subject-related metadata such
as descriptor modifiers, supplementary concept records,
and links to other databases such as NCBI Gene [20]).

In terms of tags per post, the users of CiteULike and Con-
notea were very similar. As Table 1 indicates, the mean
number of tags added per biomedical document by indi-
vidual users was 3.02 for Connotea and 2.51 for CiteU-
Like, with a median of 2 tags/document for both systems.
These figures are consistent with tagging behaviour
observed throughout both systems and with earlier find-
ings on a smaller sample from CiteULike which indicated
that users typically employ 1-3 tags per resource [21,22].
On independent samples of 500,000 posts (tagging
events) for both CiteULike and for Connotea, including
posts on a wide variety of subjects, the medians for both
systems were again 2 tags/document and the means were
2.39 tags/document for CiteULike and 3.36 for Connotea.
The difference in means is driven, to some extent, by the
fact that CiteULike allows users to post bookmarks to
their collections without adding any tags while Connotea
requires a minimum of one tag per post. Other factors that
could influence observed differences are that the user pop-
ulations for the two systems are not identical nor are the
interfaces used to author the tags. In fact, given the many
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The number of distinct new biomedical citations indexed per month by CiteULike and by MEDLINEFigure 2
The number of distinct new biomedical citations indexed per month by CiteULike and by MEDLINE. The figure 
illustrates the increasing rates of growth, per month, of new citations with PubMed identifiers to be indexed by MEDLINE 
(upper points in pink) and tagged by users of CiteULike (lower points in blue). The numbers for MEDLINE were estimated by 
taking the reported yearly totals and dividing by 12. The numbers for CiteULike were measured directly from a database 
export.

Table 1: Tag density in Connotea, CiteULike and MEDLINE on PubMed citations

System N sampled mean median min max stand. dev. coefficient of variation

Connotea per tagging 28236 3.02 2 1 115 3.74 1.24

CiteULike per tagging 45525 2.51 2 0 44 2.16 0.86

Connotea aggregate 19118 4.15 3 1 119 5.14 1.24

CiteULike aggregate 19118 5.1 4 0 74 5.29 1.04

MEDLINE 19118 11.58 11 0 42 5.3 0.46

'N sampled' refers to the number of tagged citations considered. For example, the first row shows the statistics for the number of tags associated 
with distinct posts to the Connotea service. In contrast, the 'Connotea aggregate' row merges all the posts for each citation into one. In the 
aggregate cases, the numbers of tags reported refer to the number of distinct tags -- repeats are not counted.
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potential differences, the observed similarity in tagging
behaviour across the two systems is striking.

As more individuals tag any given document, more dis-
tinct tags are assigned to it. After aggregating all of the tags
added to each of the citations in the sample by all of the
different users to tag each citation, the mean number of
distinct tags/citation for Connotea was 4.15 and the mean
number for CiteULike was 5.10. This difference is a reflec-
tion of the larger number of posts describing the citations
under consideration by the CiteULike service. In total,
45,525 CiteULike tagging events produced tags for the
citations under consideration while data from just 28,236
Connotea tagging events were considered.

Overall, the subject descriptors from MEDLINE exhibited
a much higher density, at a mean of 11.58 and median of
11 descriptors per citation, than the social tagging systems
as well as a lower coefficient of variation across citations.
Figures 3, 4 and 5 plot the distribution of tag densities for
Connotea, CiteULike, and MEDLINE respectively. From
these figures we can see that even after aggregating the tags
produced by all of the users, most of the citations in the

social tagging systems are described with only a few dis-
tinct tags. Note that the first bar in the charts shows the
fraction of citations with zero tags (none for Connotea).

One of the reasons for the low numbers of tags/citation,
even in the aggregate sets, is that most citations are tagged
by just one person, though a few are tagged by very many.
To illustrate, Figures 6, 7, 8 and 9 plot the number of cita-
tions versus the number of users to post each citation in
the Connotea-CiteULike-MEDLINE intersection. Figures 6
and 7 show the data from Connotea on both a linear (Fig-
ure 6) and logarithmic scale (Figure 7) and Figures 8 and
9 show the equivalent data from CiteULike. The plots
clearly indicate exponential relationships between the
number of resources and the number of times each
resource is tagged that are consistent with previous studies
of the structure of collaborative tagging systems [14].

Current levels of tag density are indicative, but the rates of
change provide more important insights regarding the
potential of these young systems. Figures 10 and 11 plot
the increase in distinct tags/citation as more Connotea
(Figure 10) and CiteULike (Figure 11) users tag PubMed

The number of distinct tags assigned per PubMed citation by the aggregate of Connotea usersFigure 3
The number of distinct tags assigned per PubMed 
citation by the aggregate of Connotea users. The fig-
ure provides a probability density histogram of the number 
of distinct tags per PubMed citation within Connotea. For 
each citation, the non-redundant set of tags assigned to that 
citation by all of the users to post it to their collections is 
counted. The peak of the distribution (just under a density of 
0.3) is at one tag per citation (all Connotea posts have at 
least one tag) and it drops off smoothly as the number of tags 
per citation increases down to negligible number beyond 
about 11 tags per document.

N tags

D
en

si
ty

0 2 4 6 8 11 14 17 20 23 26 29

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

The number of distinct tags assigned per PubMed citation by the aggregate of CiteULike usersFigure 4
The number of distinct tags assigned per PubMed 
citation by the aggregate of CiteULike users. The fig-
ure provides a probability density histogram of the number 
of distinct tags per PubMed citation within CiteULike. For 
each citation, the non-redundant set of tags assigned to that 
citation by all of the users to post it to their collections is 
counted. The peak of the distribution (just under a density of 
0.15) is at two tags per citation with nearly equivalent densi-
ties at one and three tags per citation. Beyond three tags, the 
distribution drops off smoothly with densities becoming neg-
ligible beyond about 20 tags per document.
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citations. These figures suggest that in order to reach the
same density of distinct tags per resource as MeSH descrip-
tors per resource produced by MEDLINE (median 11),
roughly 5 to 7 social taggers would need to tag each cita-
tion. Since, at any given time it appears that the vast
majority of citations will be described by just one person,
as indicated in Figures 6, 7, 8 and 9, the data suggests that
the density of distinct socially generated tags used to
describe academic documents in the life sciences will
remain substantially lower than the density of institution-
ally created subject descriptors. This prediction is, of
course, dependent on current parameters used for the
implementations of academic social tagging systems. As
interfaces for adding tags change, the density of tags per
post as well as the level of agreement between the differ-
ent taggers regarding tag assignments may change.

Inter-annotator agreement
Measures of inter-annotator agreement quantify the level
of consensus regarding annotations created by multiple
annotators. Where consensus is assumed to indicate cor-
rectness, it is used as measure of quality. The higher the

agreement between multiple annotators, the higher the
perceived confidence in the annotations.

In a social tagging scenario, agreement regarding the tags
assigned to particular resources can serve as a rough esti-
mate of the quality of those tags from the perspective of
their likelihood to be useful to people other than their
authors. When the same tag is used by multiple people to
describe the same thing, it is more likely to directly pertain
to the important characteristics of the item tagged (e.g.
'VEGF' or 'solid organ transplantation') than to be of a
personal or erroneous nature (e.g. 'BIOLS_101', 'todo', or
'**'). Rates of inter-annotator agreement can thus be used
as an approximation of the quality of tag assignments
from the community perspective. Note that, as [23] dis-
cusses, there may be interesting, community-level uses for
other kinds of tags, such as those bearing emotional con-
tent. For example, tags like 'cool' or 'important' may be
useful in the formation of recommendation systems as
implicit positive ratings of content. However, the focus of
the present study is on the detection and assessment of
tags from the perspective of subject-based indexing. Note
also that the small numbers of tags per document in the

The number of MeSH subject descriptors assigned per PubMed citation by MEDLINEFigure 5
The number of MeSH subject descriptors assigned 
per PubMed citation by MEDLINE. The figure provides 
a probability density histogram of the number of MeSH sub-
ject descriptors assigned per PubMed citation. The peak (just 
under a density of 0.1) is at 10 descriptors with a near-nor-
mal (skewed slightly towards 0) distribution falling away from 
that maximum to negligible numbers of descriptors at 1 tag 
per document and about 26 tags document. The one excep-
tion to the smooth distribution is an outlier group at zero 
descriptors per citation with a density of approximately 
0.025.
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Relationship between number of PubMed citations and number of Connotea posts per citationFigure 6
Relationship between number of PubMed citations 
and number of Connotea posts per citation. The X 
coordinates of each point on the plot correspond to the 
number of different people to post a particular citation. The 
Y coordinates are counts of the number citations that occur 
in each of the bins provided by the number of posts. The 
point at the upper left of the chart shows that more than 
14,000 citations (of a sample of 19,118 unique citations) were 
only posted by one user. This number decreases exponen-
tially as the number of users to post each citation increases.
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systems under consideration here bring into question the
relationship between consensus and quality.

To gauge levels of inter-annotator agreement, we calculate
the average level of positive specific agreement (PSA)
regarding tag assignments between different users [24].
PSA is a measure of the degree of overlap between two sets
- for example, the sets of tags used to describe the same
document by two different people. It ranges from 0, indi-
cating no overlap, to 1, indicating complete overlap. (See
the Methods section for a complete description.) For this
study, we measured PSA for tag assignments at five differ-
ent levels of granularity: string, standardized string, UMLS
concept, UMLS semantic type, and UMLS semantic group.
At the first level, PSA is a measurement of the average like-
lihood that two people will tag a document with exactly
the same string of characters. At the next level, we measure
the likelihood that two people will tag the same resource
with strings of characters that, after syntactic standardiza-
tion (described in the Methods section), are again exactly
the same. Moving up to the level of concepts, we assess the
chances that pairs of people will use tags that a) can be
mapped automatically to concept definitions in the UMLS

and b) map to the same concepts. (Note that not all of the
tags in the sample were successfully mapped to UMLS
concepts; only tagging events where at least one UMLS
concept was identified were considered for the concept,
type, and group level comparisons.) At the level of seman-
tic types, we are measuring the degree to which pairs of
taggers are using the same basic kinds of concepts where
these kinds are each one of the 135 semantic types that
compose the nodes of the UMLS semantic network
[25,26]. At the uppermost level, we again measure the
agreement regarding the kinds of tags used, but here, these
kinds are drawn from just 15 top-level semantic groups
designed to provide a coarse-grained division of all of the
concepts in the UMLS [27]. Table 2 provides examples
from each of these levels.

The reason for including multiple levels of granularity in
the measures of agreement is to provide a thorough com-
parison of the meanings of the tags. Since the tags are cre-
ated dynamically by users entering simple strings of text,
we expect large amounts of variation in the representa-
tions of the same concepts due to the presence of syno-
nyms, spelling errors, differences in punctuation,
differences in plural versus singular forms, etc. The map-

Relationship between number of PubMed citations and number of Connotea posts per citation plotted on a log-log scaleFigure 7
Relationship between number of PubMed citations 
and number of Connotea posts per citation plotted 
on a log-log scale. The X coordinates of each point on the 
plot correspond to the Log of the number of different people 
to post a particular citation. The Y coordinates are the Log 
of the counts of the number citations that occur in each of 
the bins provided by the number of posts. The near linearity 
chart illustrates the exponential relationship between the 
number of citations and the number of Connotea users to 
post a citation -- a few citations are posted by many people 
but most are only posted by a few.
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Relationship between number of PubMed citations and number of CiteULike posts per citationFigure 8
Relationship between number of PubMed citations 
and number of CiteULike posts per citation. The X 
coordinates of each point on the plot correspond to the 
number of different people to post a particular citation. The 
Y coordinates are counts of the number citations that occur 
in each of the bins provided by the number of posts. The 
point at the upper left of the chart shows that more than 
10,000 citations (of a sample of 19,118 unique citations) were 
only posted by one user. This number decreases exponen-
tially as the number of users to post each citation increases.
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ping to UMLS concepts should help to reduce the possibil-
ity of such non-semantic variations masking real
conceptual agreements. Furthermore, by including analy-
ses at the levels of semantic types and semantic groups, we
can detect potential conceptual similarities that exact con-
cept matching would not reveal. (While the present study
is focused on measures of agreement, in future work this
data could be used to pose questions regarding the seman-
tic content of different collections of tags - for example, it
would be possible to see if a particular semantic group like
'concepts and ideas' was over-represented in one group
versus another.)

Table 3 captures the average levels of PSA observed for
CiteULike and Connotea users on taggings of PubMed
citations. It shows that average PSA among CiteULike tag-
gers ranged from a minimum of 0.11 at the level of the
String to a maximum of 0.52 at the level of the Semantic
Group with Connotea users following a very similar tra-
jectory. Table 3 also again illustrates the low numbers of
tags per post in the social tagging data and the even lower
number of UMLS Concepts that could be confidently
associated with the tags. The majority of the posts from

both social tagging services contained no tags that could
be linked to UMLS concepts. For those posts for which at
least one Concept was identified, means of just 1.39
UMLS Concepts per post were identified in CiteULike and
1.86 in Connotea.

One interpretation of the low levels of agreement is that
some users are providing incorrect descriptions of the cita-
tions. Another interpretation is that there are many con-
cepts that could be used to correctly describe each citation
and that different users identified different, yet equally
valid, concepts. Given the complex nature of scientific
documents and the low number of concepts identified per
post, the second interpretation is tempting. Perhaps the
different social taggers provide different, but generally
valid views on the concepts of importance for the descrip-
tion of these documents. If that is the case, then, for items
tagged by many different people, the aggregation of the

Relationship between number of PubMed citations and number of CiteULike posts per citation plotted on a log-log scaleFigure 9
Relationship between number of PubMed citations 
and number of CiteULike posts per citation plotted 
on a log-log scale. The X coordinates of each point on the 
plot correspond to the Log of the number of different people 
to post a particular citation. The Y coordinates are the Log 
of the counts of the number citations that occur in each of 
the bins provided by the number of posts. The near linearity 
chart illustrates the exponential relationship between the 
number of citations and the number of CiteULike users to 
post a citation -- a few citations are posted by many people 
but most are only posted by a few.
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Increase in tag density per PubMed citation with increase in number of Connotea posts per citationFigure 10
Increase in tag density per PubMed citation with 
increase in number of Connotea posts per citation. 
Each vertical box and whisker plot describes the distribution 
of the number of distinct Connotea tags associated with 
PubMed citations tagged by the number of people indicated 
on the X axis. For example, the first plot, at X = 1, describes 
the density of tags per citation assigned by just one person 
while the second plot, at X = 2, describes the density of dis-
tinct tags per citation assigned by the aggregated tags of 2 
people and so forth. The median of the distribution is indi-
cated by the horizontal line, the upper and lower boundaries 
of the box indicate the medians of the first and third quartiles 
(such that 50% of the data lies within those boundaries), the 
whiskers extend either to the extremes of the observations 
or a maximum of 1.5 times the interquartile range, and cir-
cles indicate outliers.
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many different views would provide a conceptually multi-
faceted, generally correct description of each tagged item.
Furthermore, in cases where conceptual overlap does
occur, strength is added to the assertion of the correctness
of the overlapping concepts.

To test both of these assumptions, some way of measuring
'correctness' regarding tag assignments is required. In the
next several sections, we offer comparisons between
socially generated tags and the MeSH subject descriptors
used to describe the same documents. Where MeSH anno-
tation is considered to be correct, the provided levels of
agreement can be taken as estimates of tag quality; how-
ever, as will be shown in the anecdote that concludes the
results section and addressed further in the Discussion
section, MeSH indexing is not and could not be exhaus-
tive in identifying relevant concepts nor perfect in assign-
ing descriptors within the limits of its controlled
vocabulary. There are likely many tags that are relevant to
the subject matter of the documents they are linked to yet
do not appear in the MeSH indexing; agreement with
MeSH indexing can not be taken as an absolute measure
of quality - it is merely one of many potential indicators.

Agreement with MeSH indexing
As both another approach to quality assessment and a
means to precisely gauge the relationship between socially
generated and professionally generated metadata in this
context, we compared the tags added to PubMed citations
to the MeSH descriptors added to the same documents.
For these comparisons, we again used PSA, but in addi-
tion, we report the precision and the recall of the tags gen-
erated by the social tagging services with respect to the
MeSH descriptors. (For readers familiar with machine
learning or information retrieval studies, in cases such as
this where one set is considered to contain true positives
while the other is considered to contain predicted posi-

Increase in tag density per PubMed citation with increase in number of CiteULike posts per citationFigure 11
Increase in tag density per PubMed citation with 
increase in number of CiteULike posts per citation. 
Each vertical box and whisker plot describes the distribution 
of the number of distinct CiteULike tags associated with 
PubMed citations tagged by the number of people indicated 
on the X axis. For example, the first plot, at X = 1, describes 
the density of tags per citation assigned by just one person 
while the second plot, at X = 2, describes the density of dis-
tinct tags per citation assigned by the aggregated tags of 2 
people and so forth. The median of the distribution is indi-
cated by the horizontal line, the upper and lower boundaries 
of the box indicate the medians of the first and third quartiles 
(such that 50% of the data lies within those boundaries), the 
whiskers extend either to the extremes of the observations 
or a maximum of 1.5 times the interquartile range, and cir-
cles indicate outliers.
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Table 2: Examples of different levels of granularity

Level Example

String 'Adolescent-Psychology'

Standardized String 'adolescent psychology'

UMLS Concept CUI 0001584: 'Adolescent Psychology'

UMLS Semantic Type SUI T090: 'Biomedical Occupation or Discipline'

UMLS Semantic Group OCCU: 'Occupations'
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tives, PSA is equivalent to the F measure - the harmonic
mean of precision and recall.)

For each of the PubMed citations in both CiteULike and
Connotea, we assessed a) the PSA, b) the precision, and c)
the recall for tag assignments in comparison to MeSH
terms at the same five semantic levels used for measuring
inter-annotator agreement. For each PubMed citation
investigated, we compared the aggregate of all the distinct
tags added by users of the social tagging service in ques-
tion to describe that citation with its MeSH descriptors.
Table 4 provides the results for both systems at each level.
It shows how the degree of agreement with MeSH index-
ing increases as the semantic granularity at which the
comparisons are made widens. As should be expected
based on the much lower numbers of UMLS Concepts
associated with the social tagging events, the recall is
much lower than precision at each level.

Focusing specifically on precision, we see that approxi-
mately 80% of the concepts that could be identified in

both social tagging data sets fell into UMLS Semantic
Groups represented by UMLS Concepts linked to the
MeSH descriptors for the same resources. At the level of
the Semantic Types, 59% and 56% of the kinds of con-
cepts identified in the Connotea and CiteULike tags
respectively, were found in the MeSH annotations.
Finally, at the level of UMLS Concepts, just 30% and 20%
of the concepts identified in the Connotea and CiteULike
tags matched Concepts from the MeSH annotations.

Improving agreement with MeSH through voting
The data in Table 4 represents the conceptual relation-
ships between MeSH indexing and the complete, unfil-
tered collection of tagging events in CiteULike and
Connotea. In certain applications, it may be beneficial to
identify tag assignments likely to bear a greater similarity
to a standard like this - for example, to filter out spam or
to rank search result lists. One method for generating such
information in situations where many different opinions
are present is voting. Assuming that there is a greater ten-
dency for tag assignments to agree with the standard than

Table 3: Positive Specific Agreement among pairs of social taggers on PubMed citations

CiteULike Connotea

Mean PSA N pairs measured Mean terms per 
post

Mean PSA N pairs measured Mean terms per 
post

String 0.11 19782 2.49 0.14 13156 3.06

Standardized 
String

0.13 19782 2.49 0.16 13156 3.06

Concepts 0.39 9128 1.39 0.31 4022 1.86

Types 0.43 9128 1.36 0.38 4022 1.72

Groups 0.52 9128 1.29 0.45 4022 1.56

Table 4: Average agreement between social tagging aggregates and MeSH indexing.

CiteULike verse MEDLINE Connotea verse MEDLINE

N Citations Mean 
precision

Mean recall Mean PSA N Citations Mean 
precision

Mean recall Mean PSA

String 19059 0 0 0 19118 0.03 0.02 0.02

Normalized 
String

19059 0.09 0.03 0.04 19118 0.10 0.04 0.05

Concepts 8933 0.20 0.02 0.03 9290 0.30 0.04 0.07

Types 8933 0.56 0.07 0.12 9290 0.59 0.10 0.16

Groups 8933 0.81 0.18 0.29 9290 0.81 0.22 0.32
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to disagree - where multiple tag assignments for a particu-
lar document are present - then the more times a tag is
used to describe a particular document the more likely
that tag is to match the standard.

To test this assumption in this context, we investigated the
effect of voting on the precision of the concepts linked to
tags in the CiteULike system with respect to MeSH index-
ing. (Once again Connotea was very similar to CiteU-
Like.) Figure 12 illustrates the improvements in precision
gained with the requirement of a minimum of 1 through
5 'votes' for each Concept, Semantic Type, or Semantic
Group assignment. As the minimum number of required
votes increases from 1 to 4, precision increases in each cat-
egory. At a minimum of 5 votes, the precision of semantic
types and semantic groups continues to increase, but the
precision of individual concepts drops slightly from 0.335
to 0.332. We did not measure beyond five votes because,

as the minimum number of required votes per tag
increases, the number of documents with any tags drops
precipitously. For documents with no tags, no measure-
ments of agreement can be made. Figure 13 illustrates the
decrease in citation coverage associated with increasing
minimum numbers of votes per tag assignment. Requir-
ing just two votes per tag eliminates nearly 80% of the
citations in the CiteULike collection. By 5 votes, only
1.7% of the citations in the dataset can be considered. This
reiterates the phenomenon illustrated in Figures 6, 7, 8
and 9 - at present, most PubMed citations within aca-
demic social tagging systems are only tagged by one or a
few people.

An anecdotal example where many tags are present
Though the bulk of the socially generated metadata inves-
tigated above is sparse - with most items receiving just a
few tags from a few people - it is illuminating to investi-

Precision increase and coverage decrease with voting in CiteULikeFigure 12
Precision increase and coverage decrease with voting in CiteULike. The X axis indicates the minimum number of 
times a given UMLS Concept (in green), Semantic Type (in pink), or Semantic Group (in dark blue), would need to be associ-
ated with a PubMed citation (through the assignment of a tag by a CiteULike user that could be linked to the Concept) to be 
considered. The Y axis plots the precision with which these different voted aggregates predict the corresponding MeSH anno-
tations.
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gate the properties of this kind of metadata when larger
amounts are available both because it makes it easier to
visualize the complex nature of the data and because it
suggests potential future applications. Aside from ena-
bling voting processes that may increase confidence in cer-
tain tag assignments, increasing numbers of tags also
provide additional views on documents that may be used
in many other ways. Here, we show a demonstrative,
though anecdotal example where several different users
tagged a particular document and use it to show some
important aspects of socially generated metadata - partic-
ularly in contrast to other forms of indexing.

Figure 14 illustrates the tags generated by users of Con-
notea and CiteULike to describe an article that appeared
in Science in June of 2008 [28]. In the figure, the different

tags are sized based on their frequency and divided into
three differently coloured classes: 'personal', 'non-MeSH',
and 'MeSH Overlap'. The MeSH descriptors for the docu-
ment are also provided. The figure shows a number of
important characteristics of social tagging given current
implementations. There are personal tags like 'kristina'
and 'bob' but the majority of the tags are topical - like
'neuro-computation'. There are spelling errors and simple
phrasing differences in the tags; for example, 'astroctyes,
'astrocytes', 'Astrocytes', and 'astrocyte' are all present
(highlighting some of the difficulties in mapping tag
strings to concepts). The more frequently used tags ('astro-
cytes', 'vision', 'methods') are all of some relevance to the
article (entitled "Tuned responses of astrocytes and their
influence on hemodynamic signals in the visual cortex").
There is some overlap with MeSH indexing but many of

Precision increase and coverage decrease with voting in CiteULikeFigure 13
Precision increase and coverage decrease with voting in CiteULike. The X axis indicates the minimum number of 
times a given UMLS Concept would need to be associated with a PubMed citation (through the assignment of a tag by a CiteU-
Like user that could be linked to the Concept) to be considered. If no concepts can be identified for a particular document at 
each threshold, the document is removed from consideration. The Y axis shows the fraction of PubMed citations associated 
with UMLS Concepts at each threshold. Only Concepts are plotted as each Concept is linked to a Semantic Type and a Seman-
tic Group hence the other plots would be redundant.
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the tags - such as 'receptive-field', 'V1', and 'neurovascular-
coupling' - that do not match directly with MeSH descrip-
tors also appear to be relevant to the article.

In some cases, the tags added by the users of the social tag-
ging systems are more precise than the terms used by the
MeSH indexers. For example, the main experimental
method used in the article was two-photon microscopy -
a tag used by two different social taggers (with the strings
'two-photon' and 'twophoton'). The MeSH term used to
describe the method in the manuscript is 'Microscopy,
Confocal'.

Within the MeSH hierarchy, two-photon microscopy is
most precisely described by the MeSH heading 'Micros-

copy, Fluorescence, Multiphoton' which is narrower than
'Microscopy, Fluorescence' and not directly linked to
'Microscopy, Confocal'; hence it appears that the social
taggers exposed a minor error in the MeSH annotation. In
other cases, the social taggers chose more general catego-
ries - for example, 'hemodynamics' in place of the more
specific 'blood volume'.

The tags in Figure 14 show two important aspects of
socially generated metadata: diversity and emergent con-
sensus formation. As increasing numbers of tags are gen-
erated for a particular item, some tags are used repeatedly
and these tend to be topically relevant; for this article, we
see 'astrocytes' and 'vision' emerging as dominant descrip-
tors. In addition to this emergent consensus formation

Tags for a popular PubMed citation from Connote and CiteULikeFigure 14
Tags for a popular PubMed citation from Connote and CiteULike. The tag cloud or "Wordle" at the top of the figure 
shows the tags from both CiteULike and Connotea for the Science article "Tuned responses of astrocytes and their influence 
on hemodynamic signals in the visual cortex" (PubMed id 18566287). As the frequency scale at the bottom left indicates, the 
tags are sized based on the number of times they were used to describe the article. As the colour key at middle-right shows, 
the tags are divided into three, manually assigned categories: 'personal', 'non-MeSH', and 'MeSH overlap'. Personal tags are 
those, like 'kristina', that do not appear topical, 'non-MeSH' tags appear topical but do not match directly with any of the MeSH 
descriptors for the article (listed on the bottom-left), and the 'MeSH overlap' tags have matches within the MeSH descriptors 
assigned to the article.
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(which might be encouraged through interface design
choices) other tags representing diverse user backgrounds
and objectives also arise such as 'hemodynamic'. 'neuro-
plasticity', 'two-photon', and 'WOW'. In considering
applications of such metadata, both phenomenon have
important consequences. Precision of search might be
enhanced by focusing query algorithms on high-consen-
sus tag assignments or by enabling Boolean combinations
of many different tags. Recall may be increased by incor-
porating the tags with lower levels of consensus.

While we assert that this anecdote is demonstrative, a
sample of one is obviously not authoritative. It is offered
simply to expose common traits observed in the data
where many tags have been posted for a particular
resource.

Discussion
The continuous increase in the volume of data present in
the life sciences, illustrated clearly in Figure 2 by the
growth of PubMed, renders processes that produce value-
enhancing metadata increasingly important. It has been
suggested by a number of sources that social tagging serv-
ices might generate useful metadata, functioning as an
effective intermediate between typically inexpensive, but
low precision automated methods and expensive profes-
sional indexing involving controlled vocabularies
[15,21,22,29]. Evidence in favour of this claim comes
from reported improvements in the relevance of Web
search results gained by integrating information from
social tagging data into the retrieval process [17]. Where a
substantial density of socially generated tags is present, we
demonstrated that it is possible to achieve both deep
resource descriptions (Figure 14) and improvements in
annotation precision via aggregation (Figure 12). Unfor-
tunately, the results presented here also suggest that much
of this potential is as yet unavailable in the context of the
life sciences because the coverage of the domain is still
very narrow and the number of tags used to describe most
of the documents is generally very low.

If metadata from social tagging services is to be useful in
support of applications that are similar in purpose and
implementation to those currently in operation, more
documents need to be tagged and more tags need to be
assigned per document. These objectives can be
approached by both expanding the number of users of
these systems and adjusting the interfaces that they inter-
act with. Looking forward, the increasing volume of con-
tributors to social tagging services should help to increase
resource coverage and, to some extent, tag density, yet
both the rich-get-richer nature of citation and the limited
actual size of the various sub-communities of science will
likely continue to result in skewed numbers of posts per
resource. To make effective use of the annotations pro-

duced by social tagging applications, the metadata gener-
ated by individual users needs to be improved in terms of
density and relevance because, in most cases, the number
of people to tag any particular item will be extremely low.
Identifying design patterns that encourage collectively
useful tagging behaviour is thus a critical area for future
investigations. It has been shown that careful interface
and interaction design can be used to guide individual
users towards tagging behaviours that produce more use-
ful metadata at the collective level [30,31]. Future research
will help to provide a better understanding of this process,
illuminating methods for guiding user contributions in
particular directions, e.g. towards the use of larger num-
bers of more topical tags, without reducing the individual
benefits of using these systems that seem to provide the
primary incentive for participation [32]. One such experi-
ment in interaction design would be to inform the users
of these systems that the annotations they create for them-
selves are to be used in the creation of applications that
operate on a collective level and thus benefit the commu-
nity as a whole. By making the desire to create such appli-
cations known and by explaining the attributes of the
annotations required to make these applications effective,
it is possible that some individuals might act intentionally
to improve the collective product. Such an experiment
would help to shed light on the question of why there are
such differences between the tagging behaviours of typical
users and the annotations produced in professional con-
texts. Perhaps an increased overlap in purpose would
result in increased overlap in product.

Aside from such overt requests, changes to the interfaces
used to author annotations within social tagging systems
might also have substantial effects. One key area of devel-
opment in terms of tagging interface design is the incorpo-
ration of controlled vocabularies into the process.
Emerging systems in this domain let users tag with con-
trolled terms [33,34] and automatically extract relevant
keywords from text associated with the documents to sug-
gest as potential tag candidates [35]. By providing the
well-known benefits of vocabulary control - including
effective recognition and utilization of relationships such
as synonymy and hyponymy - and by gently pressing
users towards more convergent vocabulary choices and
fewer simple spelling errors, such systems seem likely to
produce metadata that would improve substantially on
that analyzed here. In preliminary investigations of such
'semantic social tagging' applications - including Faviki
[34], the Entity Describer [36,37], and ZigTag [33] - the
degrees of inter-tagger agreement do appear higher than
for the free-text interfaces however the number of tags per
document remains about the same (data not shown). Sys-
tems that aid the user in selecting tags - for example, by
mining them from relevant text - may aid in the expansion
of the number of tags added per document.
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In addition to recruiting more users and producing inter-
faces that guide them towards more individually and col-
lectively useful tagging behaviours, additional work is
needed to better understand other aspects of the metadata
from social tagging systems that are both important and
completely distinct from previous forms of indexing. For
example, one of the fundamental differences between
socially generated and institutionally generated indexes is
the availability of authorship information in the social
data [38]. It is generally not possible to identify the person
responsible for creating the MeSH indexing for a particu-
lar PubMed citation, but it is usually possible to identify
the creator of a public post in a social tagging system. This
opens up whole new opportunities for finding informa-
tion online whose consequences are little understood. For
example, it is now possible for users to search based on
other users e.g. searching for items in Connotea that have
been tagged by 'mwilkinson' [39] or 'bgood' [40]. In addi-
tion to this simple yet novel pattern of information inter-
action, research is being conducted into ways to
incorporate user-related data into keyword-based retrieval
algorithms [41].

Conclusion
Academic social tagging systems provide scientists with
fundamentally new contexts for collaboratively describ-
ing, finding, and integrating scientific information. In
contrast to earlier forms of personal information manage-
ment, the public nature and open APIs characteristic of
social tagging services make the records of these impor-
tant scientific activities accessible to the community.
These new public metadata repositories provide a novel
resource for system developers who wish to improve the
way scientists interact with information.

Based on the results presented above, it is clear that the
information accumulating in the metadata repositories
generated through social tagging offers substantial differ-
ences from other kinds of metadata. In particular, both
the number of documents described by these systems and
the density of tags associated with each document remain
generally very low and very unequally distributed across
both the user and the document space. While expanding
numbers of user-contributors and improving user inter-
faces will likely help to encourage the formation of greater
numbers of tagged documents and more useful tags, the
unbalanced distribution of scientific attention will almost
certainly result in the continuation of the skewed num-
bers of taggers (and thus tags) per document displayed in
Figures 6, 7, 8 and 9.

At a broad level, the key implication of these results from
the standpoint of bioinformatics system design is that -
despite surface similarities - these new metadata resources
can not be used in the same manner as metadata assem-

bled in other ways. Rather, new processes that make use of
the additional social context made accessible through
these systems need to be explored. In the long run, it may
turn out that the primary benefit of social tagging data
might not be found in the relationships between tags and
documents as explored here but instead in the informa-
tion linking documents and tags to users and users to each
other.

Methods
Data Acquisition
The Connotea data was gathered using the Connotea Web
API [42] and a client-side Java library for interacting with
it [43]. All tagging events accessible via the API prior to
November 10, 2008 were retrieved and, with the excep-
tion of a small number lost due to XML parsing errors,
stored in a local MySQL database for analysis.

The CiteULike data was downloaded on November 9,
2008 from the daily database export provided online [44].
Once again, the data was parsed and loaded into a local
MySQL database for processing.

Once the Connotea and CiteULike data was gathered, the
associated PubMed identifiers from both datasets were
used to retrieve the PubMed records using a Java client
written for the United States National Centre for Biotech-
nology's Entrez Programming Utilities [45]. This client
retrieved the metadata, including MeSH term assign-
ments, for each identifier and stored it in the local data-
base.

Resource coverage
The coverage of PubMed by Connotea and CiteULike was
estimated through inspection of the number of unique
identifiers supplied for each posted citation in the down-
loaded data. Only citations that were linked by the tagging
systems to PubMed identifiers were counted.

Tag density
The data generated for the tag density tables and figures
was assembled from the local database using Java pro-
grams. The figures were generated using R [46].

Calculation of Positive Specific Agreement (PSA)
In situations where there is no defined number of negative
cases, as is generally the case for the assignment of descrip-
tive tags to documents, PSA has been shown to be an effec-
tive measure of inter-annotator agreement [24]. PSA can
be calculated for any pair of overlapping sets. Here it is
used to compare the degree of overlaps between sets of
terms, concepts, semantic types, and semantic groups. If
one set is considered to be the standard against which the
other set is being measured, then PSA is equivalent to the
F-statistic (the harmonic mean of precision and recall)
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commonly used in the machine learning and information
retrieval literature. For two sets S1 and S2, consider the set
a as the members of the intersection of A and B, b as the
members of S1 outside of the intersection and c as the
members of S2 outside of the intersection.

Equation 1: Positive Specific Agreement for the members
of sets S1, S2 whose intersection is a and where b = S1
excluding a and c = S2 excluding a. For more information,
see [24].

To provide an estimation for quality of tag assignments in
academic social tagging systems, we measure the levels of
agreement between the sets of tags assigned to the same
resource by multiple users as follows:

- For resources associated with more than one tagging
event

� For pairs of users to tag the resource

▪ measure and record the positive specific
agreement (PSA) between the tags assigned to
the resource between the pair

- Summarize by average PSA for each distinct (user-
pair, resource) combination

String standardization for tag comparisons
As PSA is a metric designed for comparing sets, to use it, it
is necessary to define a rigid equivalence function to
define the members of the sets. For comparisons between
concepts, types, and groups from the UMLS, unique iden-
tifiers for each item are used; however, for comparisons
between tags, only the strings representing the tag are
available. For the results presented at the level of standard-
ized strings, operations were applied to the tags prior to
the comparisons as follows:

1. All non-word characters (for example, commas,
semi-colons, underscores and hyphens) were mapped
to spaces using a regular expression. So the term "auto-
matic-ontology_evaluation" would become "auto-
matic ontology evaluation".

2. CamelCase [46] compound words were mapped to
space separated words - "camelCase" becomes "camel
case".

3. All words were made all lower case ("case-folded").

4. Any redundant terms were removed such that, after
operations 1-3, each term in a set composed a string of
characters that was unique within that set.

5. Porter stemming was applied to all terms and sub-
terms [47].

6. All sub-terms were sorted alphabetically.

Mapping tags and descriptors to UMLS concepts
For MeSH terms, associated UMLS concepts were identi-
fied within the information provided in the 2008 version
of the MeSH XML file provided by the NLM [48]. In a few
cases, concepts were missing from this file in which case
they were retrieved using a Java client written to make use
of the Web services made available as part of the UMLS
Knowledge Source Server (UMLSKS) [49].

For the tags, the UMLSKS client program was designed to
identify matching concepts with high precision. For each
tag, the UMLSKS web service method findCUIByExact was
used to identify concepts from any of the source vocabu-
laries represented in the metathesaurus where at least one
of the names assigned to that concept matched the tag
directly [50]. To further increase precision, only concepts
whose primary name (rather than one of the several pos-
sible alternate names) matched the tag were included.

To assess the performance of this concept identification
protocol, we tested it on its ability to rediscover the con-
cepts associated with MeSH descriptors using the text of
the preferred label for the descriptor (acting as a tag) as the
input to the system. The concepts already associated with
each MeSH descriptor in the MeSH XML file provided by
the NLM were used as true positive concept calls for com-
parison. On a test of 500 MeSH descriptors, the concept
calling protocol used to generate the data presented above
produced a precision of 0.97 and a recall of 0.91. Without
the requirement that the primary concept name match the
query string, precision decreases to 0.82 while the recall
increases to 1.0 for the same query set. The reduction in
the precision is due to false positives such as 'Meningeal
disorder' being identified for the query term 'Meninges'.
Once a unique concept identifier was identified, the Java
client was used to extract its semantic type and semantic
group and store this information in our local database.
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