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Abstract
Background: Modern gene perturbation techniques, like RNA interference (RNAi), enable us to
study effects of targeted interventions in cells efficiently. In combination with mRNA or protein
expression data this allows to gain insights into the behavior of complex biological systems.

Results: In this paper, we propose Deterministic Effects Propagation Networks (DEPNs) as a
special Bayesian Network approach to reverse engineer signaling networks from a combination of
protein expression and perturbation data. DEPNs allow to reconstruct protein networks based on
combinatorial intervention effects, which are monitored via changes of the protein expression or
activation over one or a few time points. Our implementation of DEPNs allows for latent network
nodes (i.e. proteins without measurements) and has a built in mechanism to impute missing data.
The robustness of our approach was tested on simulated data. We applied DEPNs to reconstruct
the ERBB signaling network in de novo trastuzumab resistant human breast cancer cells, where
protein expression was monitored on Reverse Phase Protein Arrays (RPPAs) after knockdown of
network proteins using RNAi.

Conclusion: DEPNs offer a robust, efficient and simple approach to infer protein signaling
networks from multiple interventions. The method as well as the data have been made part of the
latest version of the R package "nem" available as a supplement to this paper and via the
Bioconductor repository.

Background
Reverse engineering of biological networks is a key for the
understanding of biological systems. The exact knowledge
of interdependencies between proteins in the living cell is
crucial for the identification of drug targets for various dis-
eases. However, due to the complexity of the system a
complete picture with detailed knowledge of the behavior

about the individual proteins is still in the far future.
Nonetheless, the advent of gene perturbation techniques,
like RNA interference (RNAi) [1], has enabled the possi-
bility to study cellular systems systematically under vary-
ing conditions, hence opening new perspectives for
network reconstruction methods.
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A number of approaches have been proposed in the liter-
ature for estimating networks from perturbation effects.
Many of these approaches aim at reconstructing a network
from directly observable effects. For example, Rung et al.
[2] builds a directed disruption graph by drawing an edge
(i, j), if gene i results in a significant expression change at
gene j. Wagner [3] uses such disruption networks as a
starting point for a further graph-theoretic method, which
removes indirect effects [4], hence making the network
more parsimonious. Tresch at el. [5] extend this approach
by additionally making use of p-values and fold-change
directions to make the network more consistent with the
observed biological effects.

Also Bayesian Networks have been used to model the sta-
tistical dependency between perturbation experiments
[6,7]. For this purpose Pearl [8] proposes an idealized
model of interventions. He assumes that once a network
node is manipulated, the influence of all parent nodes is
eliminated and the local probability distribution of the
node becomes a point mass at the target state. Besides for
Bayesian Networks, ideal interventions have also been
applied for factor graphs [9] and dependency networks
[10].

Epistasis analysis offers a possibility for learning from
indirect downstream effects. For example, Driessche et al.
[11] use expression profiles from single and double
knockdowns to partly reconstruct a developmental path-
way in D. discoideum via a simple cluster analysis.

Also fully quantitative models using differential equation
systems have been suggested. For example, Nelander et al.
[12] propose a model for predicting combinatorial drug
treatment effects in cancer cells.

Recently, Nested Effects Models (NEMs) [13-21] have been
proposed as a method, which is specifically designed to
learn the signaling flow between perturbed genes from
indirect, high-dimensional effects, typically monitored via
DNA microarrays. NEMs use a probabilistic framework to
compare a given network hypothesis with the observed
nested structure of downstream effects. Perturbing one
gene may have an influence on a number of downstream
genes, while perturbing others affects a subset of those.
Moreover, several of these subsets could be disjoint, i.e.
the knockdown of gene i shows effects, which mostly do
not overlap with the effects seen at the knockdown of gene
j. NEMs have been applied successfully to data on
immune response in Drosophila melanogaster [13], to the
transcription factor network in Saccharomices cerevisiae
[14], to the ER- pathway in human breast cancer cells
[16,17], and to the synthetic lethality interactions net-
work in Saccharomicies cerevisiae [18].

The work presented in this paper is designed for a differ-
ent scenario: We would like to reverse engineer a protein
signaling network based on experimentally measured
effects on protein expression and activation level after
multiple interventions. These interventions may also be
combinatorial [22], i.e. there is more than one knock-
down at a time. Importantly, the set of all perturbations
should cover a fraction as large as possible of the network
proteins.

Effects of all interventions on the network proteins are
quantified directly on protein expression and activation
level, for instance via Reverse Phase Protein Arrays
(RPPAs) [23]. Here, we propose a probabilistic approach
called Deterministic Effects Propagation Networks
(DEPNs), which can estimate the most likely signaling
network based on these data. DEPNs are a special case of
Bayesian Networks, which employ a mixture of purely
deterministic and Gaussian variables. While DEPNs and
NEMs have a similar effects propagation scheme, DEPNs
differ from NEMs with respect to the following aspects:

• In NEMs each node corresponds to one perturbation
experiment. In DEPNs each node corresponds to one
single protein, potentially influenced by one or several
perturbations.

• NEMs only work, if the number of perturbations is
much smaller than the number of monitored down-
stream effects. In DEPNs the opposite is true: DEPNs
assume that at least each network node has been per-
turbed once. More perturbations are beneficial.

• In NEMs indirect, high dimensional downstream
intervention effects are monitored. In DEPNs inter-
vention effects are monitored on all other network
proteins (i.e. they are typically of low dimension).

• DEPNs offer the possibility to include combinatorial
interventions in addition to single interventions in a
natural way.

• DEPNs can use latent network nodes (proteins with-
out effects measurements, which have been per-
turbed). This has not been introduced for NEMs so far.

• DEPNs offer a mechanism for missing value imputa-
tion. This has not been introduced for NEMs so far as
well.

In contrast to other Bayesian Networks, DEPNs allow for
directed graph structures with loops, because they employ
a deterministic effects propagation scheme. Our approach
was first validated using an extensive simulation study.
Afterwards it was employed to reverse engineer the ERBB
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receptor regulated G1/S transition network in HCC1954
human breast cancer cells, which show de novo resistance
against trastuzumab (a monoclonal antibody targeting
the ERBB2 receptor in ERBB2 overexpressing cells [24]).
In this dataset [25] knock-downs of 16 proteins utilizing
RNAi were performed and effects were measured via
RPPAs.

Results and Discussion
Deterministic Effects Propagation Networks
Our basic assumption is that we measure an unknown sig-
naling network of proteins by performing multiple inter-
ventions on these proteins. These perturbations may affect
single network proteins at a time or may also be combina-
torial, i.e. they affect several network proteins at one time.
For each network protein in the network we monitor the
effect of all interventions carried out on proteins in the
network. Note, that each specific intervention not only
influences direct targets, but may also cause effects on
downstream network proteins. We explicitly assume that
in one experiment all network proteins are unperturbed.

We employ special instances of Bayesian Networks, which
we call Deterministic Effects Propagation Networks
(DEPNs), to infer the most likely protein network given
measurements from multiple interventions under differ-
ent experimental conditions (e.g. stimulated/unstimu-
lated) or time points. Our implementation of DEPNs can
deal with latent network nodes (proteins without meas-
urements) and with missing data. The details of our
method are described in the Section Material and Meth-
ods. Briefly, the idea is that we have an unknown network
graph, where each node can have two states: perturbed
and unperturbed. In principle, this could also be extended
to three states (activated/inhibited/unperturbed), but in
this paper we only deal with the simpler binary case. Fur-
thermore, attached to each node we have experimental
measurements, which for each time point are assumed to
come from two Gaussian distributions, one for the per-
turbed and one for the unperturbed case. The parameters
of these distributions are determined in the following
way:

1. For each perturbation experiment we compute the
expected downstream effects. This is done by assum-
ing node i to be perturbed whenever i itself or any of
its parents are perturbed, i.e. perturbation effects are
propagated in a deterministic fashion from parents to
children. This implies that the network structures
learned by DEPNs are always transitively closed
graphs: If there is a path from a to b then there is also
an edge a  b. It should to mentioned that the pertur-
bations state of a protein can never depend on itself
through a loop in our model, i.e. when the state of a

variable is obtained it is not updated further. How-
ever, this behavior could be changed in principle.

2. Since we have several perturbation experiments and
also one control experiment, we can now determine
for each protein measurement, whether the protein
was perturbed or not.

3. With this information the data for each protein gets
divided into two distributions: one for the perturbed
and one for the unperturbed case. The parameters of
these distributions, which are supposed to be Gaus-
sian, are estimated either in a maximum likelihood or
in a Bayesian fashion. The details are described in the
Material and Methods Section.

Given the parameters we can then calculate the probabil-
ity of observing the data for all proteins under a given net-
work hypothesis. An edge a  b in this network denotes
an influence of a on b. This may be interpreted as the
direction of the signal flow. Our model does not distin-
guish between signaling via a transcriptional regulation or
via a protein phosphorylation. The type of the edge is
dependent on the type of antibody used (i.e. measure-
ment of protein expression levels or of phosphorylation/
activation levels).

Figure 1 shows a graphical representation of DEPNs as a
special type of a Bayesian Network. Protein nodes (white)
can be either perturbed or unperturbed by the application
of a specific intervention, i.e. they are deterministic. In

Schematic view on DEPNs as a special type of Bayesian Net-works: White nodes (proteins) have a deterministic state, whereas grey nodes (measurements) are GaussianFigure 1
Schematic view on DEPNs as a special type of Baye-
sian Networks: White nodes (proteins) have a deter-
ministic state, whereas grey nodes (measurements) 
are Gaussian. Combinatorial intervention effects are prop-
agated in a deterministic way between proteins. Measure-
ments are only affected indirectly and are conditionally 
independent from each other. Protein P1 has no associated 
measurements and is therefore a latent node.
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contrast, measurement nodes (grey) attached to proteins
are Gaussian.

If the number of nodes in the network is considerably
small (e.g. < 5), we can enumerate all possible network
hypothesis and take the one with the highest likelihood.
However, this exhaustive search will be impossible as
soon as the network gets larger. For instance, for 10 nodes
there are already 1027 network hypothesis to test. There-
fore, here we restrict ourselves to a greedy hill climbing
approach, in which we begin with an initial network (usu-
ally the empty network, if not stated otherwise) and then
successively add the edge (and all transitively implied
edges) increasing the likelihood most. All possible alter-
natives are checked. We do not use any arbitrary starting
point for the hill climber, because DEPNs operate in the
space of transitively closed graphs only. Therefore, no
backtracking/edge removal step can be implemented in
an obvious way. Hence, initial networks should be chosen
in a sensible way.

Simulation Studies
Graph Sampling
We tested the performance of our approach in a simula-
tion study on artificial data, which were created as follows:
Subgraphs with n = 6 and n = 10 nodes were cut out ran-
domly from randomly selected KEGG [26] signal trans-
duction pathways. Only gene-gene interactions were
considered as edges in the graph. Please note that our
sampled subgraphs are not random graphs, but randomly
selected existing subgraphs of KEGG pathways. For n = 6
96.75% of the sampled subgraphs were acyclic. For n = 10
these were 85.5%.

Data Simulation
Single knock-downs of all individual network proteins as
well as one experiment without interventions were simu-
lated as follows: For each simulated experiment m repli-
cates were drawn from normal distributions for each
network node. The means of these normal distributions
were sampled from N(0.6, 0.01), if the node was expected
to be perturbed according to the deterministic effects
propagation scheme described above, and from
N(0.95,0.01) otherwise. The variances of the normal dis-
tributions were drawn from Inv-2(4.4, 0.023). The choice
of these parameters corresponds to those in Section
"Methods" and is in agreement with our experimental
data.

Network Reconstruction
Figures 2, 3, 4 and 5 visualize the performance of a net-
work reconstruction with our approach for a varying
number of replicates in terms of sensitivity (i.e. the rate of
true positive edges) and specificity (i.e. rate of truly not
inferred edges). For each number of replicates 100 net-

works with simulated perturbation data were generated as
described before. As seen from the plots our method
achieves a constantly high specificity of >90% with a sen-
sitivity between 70% and 80%, i.e. the number of repli-
cates has only a minor influence on the quality of the
network reconstruction. The reason for this robust behav-
ior is that due to the effects propagation scheme, we only
operate in the space of transitively closed graphs. The
restricted model class can be viewed as a kind of regulari-
zation [27] helping to identify a well performing network
structure. Additionally, effects propagation increases the
chance of getting enough data for both, the perturbed and
the unperturbed case, for reliable parameter estimation.

We compared our DEPN approach to a standard imple-
mentation of Bayesian Networks, which directly models
the dependency of measurements (called BNstandard in
the following): For this purpose we discretized our simu-
lated data (see "Data Simulation"). This was done by set-
ting 0, if the data entry was closer to 0.6 (the expectation
value of the perturbed data) than to 0.95 (the expectation
value of the unperturbed data), and 1 otherwise. The con-
ditional distribution at each network node was therefore
a binomial with parameter equal to the perturbation

Average sensitivity for the reconstruction of KEGG signaling networks with n = 6 nodes from artificial data via Determinis-tic Effects Propagation Networks (DEPNs), Bayesian Net-works modeling directly dependencies between measurements (BNstandard), and Nested Effects Models (NEMs)Figure 2
Average sensitivity for the reconstruction of KEGG 
signaling networks with n = 6 nodes from artificial 
data via Deterministic Effects Propagation Networks 
(DEPNs), Bayesian Networks modeling directly 
dependencies between measurements (BNstandard), 
and Nested Effects Models (NEMs). Error bars indicate 
standard deviations.
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probability of the node. We employed the R package
bnlearn to learn the BN network structure via a hill climb-
ing procedure initialized with an empty network. The
Bayesian Dirichlet score was used to evaluate network
structures. Please note, that BNstandard in contrast to
DEPNs can only learn network structures without cycles.
However, the vast majority of all original KEGG graphs
were acyclic here (see "Graph Sampling").

Since our simulated data contains only single knock-outs,
we also compared our DEPN approach to Nested Effects
Models (NEMs): For this purpose we discretized our sim-
ulated data as before. The likelihood model introduced in
[13] was employed with type I and type II error rates 0.06,
which are expected by the known variances and means of
the perturbed and unperturbed distributions. The same
greedy hillclimber as for DEPNs was employed for net-
work structure search.

Figures 2, 3, 4 and 5 show a similar performance of
BNstandard compared to DEPNs in terms of specificity,
but a significantly worse sensitivity. The performance on
acyclic graphs was essentially the same as on all graphs
(including graphs with cycles). In terms of computation

times BNstandard is clearly faster than the DEPN
approach (Figure 6). Future optimizations of our DEPNs
implementation may reduce this gap. Nevertheless,
DEPNs are (up to now) only suitable for small network
reconstructions. This is, however, in the light of the large
experimental effort for multiple interventions and deter-
mination of their respective effects on network proteins
not really a practical limitation.

In summary the comparison clearly demonstrates that a
standard Bayesian Network approach, which models only
conditional dependencies between measurements while
ignoring the perturbation signal flow in the network, is
not suitable for our kind of data.

Compared to NEMs, DEPNs show a significantly higher
specificity and a slightly reduced sensitivity (Figures 2, 3,
4, 5). In terms of computation times, NEMs are clearly
faster than DEPNs (Figure 6). This is expected, because
NEMs can be formulated in a much more efficient way
[13,20]. Since NEMs only employ single gene perturba-
tions, they allow to perform deterministic effects propaga-
tion in an implicit rather than explicit way and do not
have to estimate distribution parameters like DEPNs.

Average specificity for the reconstruction of KEGG signaling networks with n = 6 nodes from artificial data via Determin-istic Effects Propagation Networks (DEPNs), Bayesian Net-works modeling directly dependencies between measurements (BNstandard), and Nested Effects Models (NEMs)Figure 3
Average specificity for the reconstruction of KEGG 
signaling networks with n = 6 nodes from artificial 
data via Deterministic Effects Propagation Networks 
(DEPNs), Bayesian Networks modeling directly 
dependencies between measurements (BNstandard), 
and Nested Effects Models (NEMs). Error bars indicate 
standard deviations.
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Average sensitivity for the reconstruction of KEGG signaling networks with n = 10 nodes from artificial data via Determin-istic Effects Propagation Networks (DEPNs), Bayesian Net-works modeling directly dependencies between measurements (BNstandard), and Nested Effects Models (NEMs)Figure 4
Average sensitivity for the reconstruction of KEGG 
signaling networks with n = 10 nodes from artificial 
data via Deterministic Effects Propagation Networks 
(DEPNs), Bayesian Networks modeling directly 
dependencies between measurements (BNstand-
ard), and Nested Effects Models (NEMs). Error bars 
indicate standard deviations.
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Apart from that NEMs and DEPNs have a lot of similari-
ties, but also major differences, which we highlight in Sec-
tion "Related Work".

Altogether, both comparisons demonstrate that DEPNs
seem to be well suited for the low dimensional knock-
down effects data, which we are interested in here.

Missing Values
We next investigated the effect of an increasing number of
missing values in a dataset with 10 replicate measure-
ments in networks with n = 6 and n = 10 nodes, i.e. 7 × 10
× 6 = 420 and 11 × 10 × 10 = 1100 data points in total
(note that there is always one control experiment, where
all nodes are unperturbed). The positions of missing val-
ues were chosen uniform randomly in the complete data
matrix. As seen from Figures 7, 8, 9, 10 our method
behaves very robust against replacing missing values with
estimated posterior distribution mode values, even with
250 out of 420 (n = 6) and 500 out of 1100 (n = 10) miss-
ing values in total. Again, this robust behavior can be
attributed to the same reasons as described before: a
restricted model class together with the deterministic
effects propagation scheme.

Average specificity for the reconstruction of KEGG signaling networks with n = 10 nodes from artificial data via Determin-istic Effects Propagation Networks (DEPNs), Bayesian Net-works modeling directly dependencies between measurements (BNstandard), and Nested Effects Models (NEMs)Figure 5
Average specificity for the reconstruction of KEGG 
signaling networks with n = 10 nodes from artificial 
data via Deterministic Effects Propagation Networks 
(DEPNs), Bayesian Networks modeling directly 
dependencies between measurements (BNstandard), 
and Nested Effects Models (NEMs). Error bars indicate 
standard deviations.
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Average computation times of DEPNs, BNstandard and NEMs on artifical dataFigure 6
Average computation times of DEPNs, BNstandard 
and NEMs on artifical data. Error bars indicate standard 
deviations.

6 10

# network nodes

co
m

pu
ta

tio
n 

tim
e 

(s
)

0
20

40
60

80
10

0
12

0
14

0

DEPN
BNstandard
NEM

Influence of the number of missing values on average sensitiv-ity of network reconstruction via DEPNs for networks with n = 6 nodesFigure 7
Influence of the number of missing values on average 
sensitivity of network reconstruction via DEPNs for 
networks with n = 6 nodes. Error bars indicate standard 
deviations.
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Latent Nodes
We also monitored the effect of having latent nodes in the
network. Again, data with 10 replicates was simulated in
networks with n = 6 and n = 10 nodes. The results shown
in Figures 11, 12, 13, 14 reveal a constantly high specifi-
city of >90%, whereas the sensitivity drops with 1 latent
node from ~80% to ~60% with n = 6 and ~80% to ~70%
with n = 10, respectively. With 2 latent nodes we still
achieve a sensitivity of ~40% with n = 6 and > 60% with n
= 10. With 5 latent out of 6 nodes we have ~20% sensitiv-
ity, and with 5 latent out of 10 nodes we have ~40% sen-
sitivity. We have to remind here that only outgoing edges
from latent nodes can be estimated (see Section "Meth-
ods", Subsection "Latent Nodes" for details), hence the
result shows an expected behavior. Note that on average
with each latent node the number of unobservable edges
should increase by roughly 1/6 = ~17% with n = 6 and by
10% with n = 10 (supposing the same average node
degree). We believe that a positive point of our method is
that still the specificity is rather high, meaning we do not
get too many false positive edges.

Reconstruction of the ERBB Receptor-Regulated G1/S 
Transition Network
RNAi and Reverse Phase Protein Arrays
Sixteen proteins playing a role in the G1/S transition of
human cells were taken. Among these proteins there were

the receptors ERBB1, ERBB2 and ERBB3, several signaling
intermediates (e.g. AKT1, MEK1) and cell cycle proteins
(e.g. CDK4). Finally, we included the retinoblastoma pro-
tein pRB1, which regulates the G1/S transition. Interac-
tions between these proteins known from the literature
are shown in Figure 15 and Additional file 1.

Sixteen knock-downs (including 3 double knock-downs)
with chemically synthesized siRNAs for proteins in our
network and one experiment with MOCK transfected cells
were conducted. After each siRNA transfection cells were
stimulated with EGF for 12 hours. We measured the pro-
tein expression of signaling intermediates (in total 10
antibodies were available) for each knockdown sample
using Reverse Phase Protein Arrays [23] before and after
EGF stimulation with 4 technical and 3 biological repli-
cates. These data were integrated using quantile normali-
zation [28]. Further details of the experimental setup and
a list of performed interventions can be found in the
Material and Methods part of this paper. Additional infor-
mation can be found in our earlier publication [25]. A
heatmap of the data matrix is available in the supplement
of this paper [see Additional file 2].

Network Reconstruction with DEPNs
We used DEPNs to learn a network between the sixteen
proteins purely from data. Since for 6 out of the 16 pro-

Influence of the number of missing values on average specifi-city of network reconstruction via DEPNs for networks with n = 6 nodesFigure 8
Influence of the number of missing values on average 
specificity of network reconstruction via DEPNs for 
networks with n = 6 nodes. Error bars indicate standard 
deviations.
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Influence of the number of missing values on average sensitiv-ity of network reconstruction via DEPNs for networks with n = 10 nodesFigure 9
Influence of the number of missing values on average 
sensitivity of network reconstruction via DEPNs for 
networks with n = 10 nodes. Error bars indicate standard 
deviations.
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teins in our network no measurements were available due
to the lack of antibodies, they were marked as latent nodes
(see Material and Methods and Figure 16). Furthermore,
for pERK1/2 we had only 2 instead of 3 biological repli-
cates for Cyclin E1 and Cyclin D1 knock-downs. Since our
method in the current implementation requires the same
amount of data for each experiment, measurements for
the third biological replicate were treated as missing val-
ues and imputed during network learning using the EM
algorithm approach described in the Materials and Meth-
ods part of this paper. Network structure learning was per-
formed via greedy hill climbing.

In order to retrieve a measure of confidence for the indi-
vidual edges learned by our method, we performed a non-
parametric stratified bootstrap [29]. That means we
sampled 100 times with replacement from each replicate
group within each condition (stimulated/unstimulated).
On each bootstrap sample (containing a subset of the
complete dataset with possible duplicates) we estimated a
network using DEPNs. After the bootstrap we counted the
relative frequency of each edge in all 100 DEPN recon-
structions. The relative frequency is an approximate prob-
ability for each edge (essentially the parameter of a
binomial distribution). Only edges with a probability >
0.5 were considered as being reliable.

The result shown in Figure 16(A) reveals that our methods
correctly recovered 20/29 interactions from the literature
network with probability > 0.5, although we had 6 latent
nodes. Here we also counted edges as correct, if they cor-
respond to indirect interactions in the original network.
This was valid, since DEPNs learn transitively closed
graphs. The edge ERBB2  ERBB1 could be explained by
the fact that ERBB1 and ERBB2 together form a het-
erodimer activating the MAPK and PI3K pathway [30,31].
Likewise, the edge CDK6  CDK4 was there, because both
proteins form a complex [32]. The complex formation of
CDK4 and CDK6 could also explain the edge CDK6  p27
[33]. It was found that AKT1 increases the expression of
human IGF1R [34], which explained the edge pAKT1 
pERK1/2 as an indirect activation of pERK1/2 by AKT1
through IGF1R. In conclusion there were only three edges,
namely CDK6  ERBB1, pAKT1  ERBB1 and MYC 
ERBB1 for which we could not find any explanation in the
literature.

We additionally performed a network inference starting
from the literature network as an initial network for the
greedy hill-climber (see Section "Methods", Subsection
"Network Structure Learning"), i.e. we tried to learn addi-
tional edges from the data, which are missing in the liter-
ature network. This would be the intended and devised
approach for using DEPNs practice, if possible. Like

Influence of the number of missing values on average specifi-city of network reconstruction via DEPNs for networks with n = 10 nodesFigure 10
Influence of the number of missing values on average 
specificity of network reconstruction via DEPNs for 
networks with n = 10 nodes. Error bars indicate standard 
deviations.
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Influence of the number of latent nodes on average sensitivity of network reconstruction via DEPNs for networks with n = 6 nodesFigure 11
Influence of the number of latent nodes on average 
sensitivity of network reconstruction via DEPNs for 
networks with n = 6 nodes. Error bars indicate standard 
deviations.
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before, we applied the nonparametric stratified bootstrap
to derive edge probabilities. As shown in Figure 16(B) the
initialization with known edges from the literature made
all three spurious edges dispensable to explain our data.
Two edges were inferred in addition to the initial network:
pAKT1  pERK1/2 and CDK4:  CyclinD1. As mentioned
before, pAKT1  pERK1/2 can be explained as an indirect
activation of pERK1/2 by AKT1 through IGF1R. Further-
more, it has been observed that CDK1 and CyclinD1 can
form a complex phosphorylating pRB [35], which
explains CDK4  CyclinD1.

In conclusion of our experiments we have shown that
DEPNs were able to reconstruct the ERBB-regulated G1/S
transition network in a sufficient quality, even if there
were many latent nodes.

The approach presented in this paper differs significantly
from the one in our earlier publication on this data set
[25], in which our aim was to explore biological implica-
tions of the literature network. This was done by compar-
ing outcomes of knock-down simulations to our
experimental data. Specifically, in our previous paper no
likelihood model of the data was employed and therefore
no network inference could be made. Both of these com-
plementary modeling approaches, i.e. network recon-
struction (here) and network based prediction of

outcomes [25] demonstrate a good consistency of the lit-
erature network with the experimental data we have.

Related Work
In this paper we introduced Deterministic Effects Propaga-
tion Networks as a special instance of Bayesian Networks
for robustly estimating signaling networks from multiple
and combinatorial intervention effects. DEPNs have cer-
tain similarities but also major differences to Nested
Effects Models (NEMs) [13-21]. NEMs were especially
designed to estimate signaling networks from high
dimensional secondary intervention effects monitored on
microarray data. The idea is to reverse engineer upstream
signaling cascades from the nested structure of down-
stream effects, which is observed from several single gene
interventions. The network is estimated between all per-
turbed genes.

Although our data in this paper looks relatively different
at a first glance (i.e. relatively few proteins are monitored
under single and combinatorial perturbations), there are
also some similarities: If a certain protein i is perturbed,
we expect to see a perturbation of all downstream proteins
as well. That means the set of proteins being perturbed, if
i is perturbed is a superset of the proteins being perturbed
if any downstream protein of i is perturbed. In fact with
our approach we implicitly learn this nested effects struc-

Influence of the number of latent nodes on average specificity of network reconstruction via DEPNs for networks with n = 6 nodesFigure 12
Influence of the number of latent nodes on average 
specificity of network reconstruction via DEPNs for 
networks with n = 6 nodes. Error bars indicate standard 
deviations.
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Influence of the number of latent nodes on average sensitivity of network reconstruction via DEPNs for networks with n = 10 nodesFigure 13
Influence of the number of latent nodes on average 
sensitivity of network reconstruction via DEPNs for 
networks with n = 10 nodes. Error bars indicate standard 
deviations.
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ture from data and encode it into a network. It should be
mentioned that both, NEMs and DEPNs, can be inter-
preted within the Bayesian Networks framework in a sim-
ilar way [18].

An additional feature of DEPNs compared to current NEM
implementations is the possibility for latent network
nodes. The advantage of this property is a more compre-
hensive view of the network of interest. However, it
should be mentioned that it is only possible to estimate
edges leading from latent nodes to measured nodes from
data. Another major difference to NEMs is that DEPNs
reconstruct the network between affected nodes from
combinatorial perturbations of the same nodes. There-
fore, DEPNs and NEMs may be seen as orthogonal
approaches.

DEPNs are quite different from other Bayesian Network
approaches for learning networks from intervention
effects [6,7]: DEPNs do not assume a direct conditional
dependence between measurement distributions. Instead
DEPNs rely on a deterministic effects propagation
scheme, which makes all measurement distributions sta-
tistically independent. Therefore, DEPNs can learn graphs
structures containing loops, whereas usual Bayesian Net-
works are restricted to directed acyclic graphs. This is also
an important difference to [6,7], which both employ ideal

interventions [8]. These approaches assume to have few
perturbations and a large amount of measurements (gene
expression profiles) without interventions. In contrast,
DEPNs make the opposite assumption: perturbations for
almost all proteins in the network, but only few measure-
ments (protein expressions) without interventions.

In contrast to mechanistic, quantitative approaches [12],
DEPNs are probabilistic network models. DEPNs do not
aim to model real protein concentration changes over
time (usually involving a lot of a-priori knowledge on the
system), but purely make probabilistic inference on the
network structure given experimental data.

DEPNs differ significantly from reconstruction methods
that overlay experimental data with known pathway
information (e.g. [36]). In contrast DEPNs make a statis-
tical inference of network structures from experimental
measurements using a likelihood model.

Conclusion
Studies of intervention effects play an increasing role in
the understanding of complex biological networks. We
introduced Deterministic Effects Propagation Networks
(DEPNs) as a Bayesian Network computational approach
to infer non-transcriptional signaling networks from mul-
tiple and combinatorial low dimensional intervention
effects. In this paper these were quantitative proteomics
data measured via Reverse Phase Protein Arrays. Our
method hence aims at a system's understanding on the
protein level. Nonetheless, DEPNs are in principle not
limited to proteomics data and could be applied to other
data showing similar characteristics.

Unlike Nested Effects Models [13-21], our method is espe-
cially designed for cases, where the number of perturba-
tions exceeds the number of proteins in the network. Our
method allows for the existence of latent nodes and of
missing values. The reconstruction accuracy of DEPNs
degrades with an increasing number of latent nodes
within an expected range. This phenomenon is up to a cer-
tain degree unavoidable and common to all statistical
approaches, since latent nodes imply a complete lack of
data for one or several variables, which need to be
deduced from available information. Apart from that our
method was shown to be highly robust in our simulation
studies. This specifically includes a very robust behavior
against missing values.

We applied DEPNs to reconstruct the ERBB signaling net-
work in trastuzumab resistant breast cancer cells from 16,
partially combinatorial, siRNA interventions. The data
were measured via Reverse Phase Protein Arrays. Although
the data contained a high fraction of nodes without meas-
urements, our network reconstruction was highly specific

Influence of the number of latent nodes on average specificity of network reconstruction via DEPNs for networks with n = 10 nodesFigure 14
Influence of the number of latent nodes on average 
specificity of network reconstruction via DEPNs for 
networks with n = 10 nodes. Error bars indicate standard 
deviations.
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and showed only three spurious interactions. These could
be made dispensable by starting the network reconstruc-
tion from current literature knowledge. Altogether our
approach was able to reliable uncover a significant
amount of the currently known ERBB-regalated human
G1/S transition network, even with relatively little data.

In conclusion of our work we believe that DEPNs offer a
robust and reliable approach to reverse engineer non-tran-
scriptional signaling cascades from multiple low dimen-
sional intervention effects. Compared to other Bayesian
Networks, which model directly conditional dependen-
cies between measurements, DEPNs showed a much
higher network reconstruction accuracy in our simulation
studies. At the same time DEPNs have a simpler inference
mechanism, which allows for learning cyclic network
structures in a straight forward way.

A limitation of DEPNs lies in the supposed deterministic
way of effects propagation. Moreover, there is no infer-
ence made on the combinatorial functions carried out by
the individual network nodes. Furthermore, DEPNs cur-
rently do not offer a model of the time dynamics (see [37]
as an example for such an approach). While a model of
the time behavior made no sense for our specific data, it is
worthwhile to investigate dynamic DEPNs for different
data types in the future.

Clearly, there are lots of other possibilities to improve the
current method in the future. Besides inference on combi-
natorial functions of network nodes, this includes a more
efficient way to deal with missing values and latent nodes,
e.g. via structural EM [38], inference of up- and downreg-
ulated edges and improved network structure search strat-
egies [39]. These issues should be investigated in the
future.

Network of 16 proteins compiled from the literatureFigure 15
Network of 16 proteins compiled from the literature. Numbers point to corresponding references listed in a supple-
ment to this paper [see Additional file 1].
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The complete method as well as the data set is available as
part of the R package "nem" [40] as a supplement to this
paper [see Additional file 3].

Methods
siRNA Transfections and EGF Stimulation
HCC1954 cells (CRL-2338, from ATCC) were cultured in
RPMI 1640 Modified Medium which is supplemented
with 50 U/mL penicillin, 50 g/mL streptomycin sulphate,
1% non-essential amino acids and 10% fetal bovine
serum (all media and supplements from Gibco BRL). The
cells were seeded at a number of 7 × 105 for 24 hours
before transfection. Cells were transfected with 20 nM
siRNA pool for each gene (except ESR1, 50 nM) and 25 L
Lipofectamine 2000 transfection reagent (Invitrogen,
Carlsbad, CA). For further experimental details, validation
of the used cell line, siRNA and prime sequences, see [25].
After transfection, cells were synchronized using Dif-3 (30
M, Sigma) for 22 hours in medium containing 10% FBS.
Cells were further starved in 0% FBS medium for 2 hours.

After 24 hours of starvation, cells were stimulated with
EGF (25 ng/mL) for 6, 12, 18 and 24 hours.

In total 16 gene knock-downs were performed: AKT1,
MEK1, CDK2, CDK4, p21, p27, Cyclin D1, ERBB2 +
ERBB3, ERBB1 + ERBB3, ERBB1, ERBB1 + ERBB2, IGF1R,
CDK6, ER-a, c-MYC, Cyclin E1.

Cell lysis and Reverse Phase Protein Arrays
The cells were lysed on ice by scraping the cells in M-PER
lysis buffer (Pierce, Rockford, IL) containing protease
inhibitor Complete Mini (Roche, Basel), anti-phos-
phatase PhosSTOP (Roche, Basel), 10 mM NaF and 1 mM
Na4VO3. Protein concentrations were determined with a
BCA Protein Assay Reagent Kit (Pierce, Rockford, IL).
Lysates were mixed 1:2 with 2× Protein Arraying Buffer
(Whatman, Brentfort, UK) to obtain a final protein con-
centration of 1.5 g/L. Briefly, these lysates were printed
onto nitrocellulose coated ONCYTE-slides (Grace Bio
Labs, Bend, USA) using a non-contact piezo spotter, sci-

A: Network learned by Deterministic Effects Propagation Networks purely from dataFigure 16
A: Network learned by Deterministic Effects Propagation Networks purely from data. Gray nodes indicate latent 
nodes without measurements. Dashed arrows were inferred from data, but cannot be explained by current literature knowl-
edge. For the sake of better visualization we omit indirect edges between nodes, i.e. interactions, which can be explained by a 
cascade of others (transitive reduction). Numbers at edges indicate bootstrap probabilities. B: Network learned by Deter-
ministic Effects Propagation Networks from data when inference started with known interactions. The dashed 
line indicates an interaction that cannot be explained by the literature network. Numbers at edges indicate bootstrap probabil-
ities.
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Flexxarrayer S5 (Scienion, Berlin, Germany). After pri-
mary and near-infrared (NIR)-dye labeled secondary
antibodies applied, spots were analysed using an Odyssey
scanner (LI-COR, Lincoln, USA) and signal intensities
were quantified using Odyssey 2.0 software. Further infor-
mation and an antibody list can be found in [25]. Since
no antibody against MEK1 was available, we measured
protein expression of pERK1/2, which is downstream of
MEK1.

Network Inference with Deterministic Effects Propagation 
Networks
Likelihood Model

Each protein corresponds to one node in our network

graph . We suppose measurements  for the ith pro-

tein at time point (or experimental condition - e.g. stimu-
lated/unstimulated) t under perturbations p (p are the
indices of perturbed nodes) to be drawn from a Gaussian
distribution with unknown mean and variance:

where pa(i) denotes the set of parents of node i. The for-
mula means that perturbations are propagated in a deter-
ministic fashion from parents to direct children, i.e. a
node is considered as perturbed whenever either itself or
any of its parents was perturbed. If we have an edge a  b
and a is perturbed we expect to observe an effect for meas-
urements of a and b. These measurements for each time
point are drawn from two normal distributions, one for
the perturbed and one for the unperturbed case. Whether
a given data point is drawn from the one or the other nor-
mal distributions only depends on the perturbation state
of the network node and therefore on the network struc-
ture.

Eq. 1 assumes all parents to cause the same directional
effect (activation or inhibition) on children. However,
this simplification can easily be overcome by introducing
two distributions for the perturbed case: one, if an activa-
tion is expected and one, if an inhibition is expected. In
order to simplify the explanation of our approach we here
only refer to the binary perturbed/non-perturbed case.

Unlike other Bayesian Network approaches [41,42] we do

not assume a direct dependency of  from measure-

ments of other proteins. Instead,  only depends only

on the perturbation state of node i, which itself depends
on the perturbation state of its parent nodes via the net-

work structure  in a deterministic way. We believe that
this assumption does not only simplify our calculations,
but also leads to a better robustness against noise, e.g. due
to differences in protein antibody sensitivities. Our mod-
eling approach allows us to directly make use of the sup-
posed flow of perturbation signals for network graph
likelihood calculation (see below). Further, our approach
allows for arbitrary directed network graph structures, i.e.
also cyclic networks, which are often observed in biologi-
cal signaling pathways.

The data  implicitly may also depend on the meas-

urements at the previous time point t - 1. However, we do
not model this time dependency here, since this would
require long time course data.

If the network structure  is known, the parameters ( ,

) and ( , ) can be estimated in two ways. For

the sake of brevity in the following we only talk about

( , ), but of course the same also holds for ( ,

):

1. Maximum likelihood estimate:  =  and  =

, where  and  are the empirical (unbiased)

mean and standard deviation, respectively.

2. Bayesian estimate: We suppose |  ~N (0,

/0)and  ~Inv-2(0, 0), where 0, 0, 0 and

0 should be chosen in dependency of the perturba-

tion state. According to the expectations for our data

we set 0 = 0.95, 0 = 4, 0 = 4.4, 0 = 0.023 for the

unperturbed and o = 0.6, 0 = 4, 0 = 4.4, 0 = 0.023

for the perturbed state. This corresponds to an

expected i of 0.2 with a standard deviation of 0.1. The

marginal posterior distributions for  and  can

be calculated in analytical form [43]:
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where (n, n/n) denotes the Student-t distribution

with n degrees of freedom, location n and scale n/n.

Inv-2 denotes the scaled inverse 2 distribution, and

parameters n, n, n and n are given as:

where ni is the number of observations used to compute

the conditional density for . The posterior modes of

|  and |  are n and .

Let us now assume we have a data set D = { } of

measurements of all proteins at all time points under var-

ying perturbations. Let  denote the vector of all estimated
posterior mode parameters. Let  denote the the set of all
perturbations. The likelihood of a network hypothesis is
then calculated as:

where T is the number of time points, n the number of
nodes and r the number of replicate measurements.

Missing Data Imputation

Missing data points are an often observed problem in real
life data. We use an EM algorithm [44] to address this
issue. The first iteration of the EM-algorithm works as fol-
lows: In the M-step we infer the parameters for a given net-
work structure as described before. In the E-step we
calculate the likelihood of the data under the given net-
work structure when filling in posterior mode values for

the missing data points. The posterior modes of |

and |  are n and  (see above). In the

next iteration of the EM algorithm in the M-step we infer

parameters on the data with missing values being
replaced. Based on these parameters we get new posterior
mode parameters, which we then fill in for the values
marked as missing before. The whole procedure is
repeated until convergence.

Latent Network Nodes
Our method also allows for a scenario, in which we have
performed knockdowns on proteins without available
antibodies and thus without direct available measure-
ments. Nevertheless, these latent network nodes can have
an influence on the other nodes, and this influence can be
quantified indirectly by perturbing them and measuring
the downstream influence on the other network mem-
bers. This way it is possible to estimate outgoing edges
from latent nodes: Please note that in our model perturba-
tions are propagated from parents to children, i.e. when-
ever there is an edge between two nodes a  b and a is
perturbed, we expect to see an effect in all measurements
of b. Assume there is no data given for a. Nevertheless, the
edge a  b can be necessary to explain the data for b.
Hence, a network hypothesis including this edge will
receive a higher likelihood than another one without this
edge.

Practically, we do not need to do anything different in the
case we have latent nodes than in the case we have full
observations: Given a network hypothesis  we propagate
expected downstream perturbation effects and calculate
the likelihood of observing our data according to the per-
turbation state of all network nodes.

Network Structure Learning
Network structure learning was performed in a greedy hill
climbing fashion: Beginning from an initial network
(which is, if not mentioned otherwise, the empty net-
work) we successively added that edge, which increased
the likelihood function Eq. (8) most. Afterwards the tran-
sitive closure of the new graph was calculated, which was
necessary in order to perform learning within the space of
transitively closed graphs. This process was continued
until no improvement could be gained any more. Please
note that in the space of transitively closed graphs there is
no clear way of performing edge deletions and reversals.
Hence, we restricted ourselves to edge insertions.
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