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Abstract
Background: Computational enzyme design is far from being applicable for the general case. Due
to computational complexity and limited knowledge of the structure-function interplay, heuristic
methods have to be used.

Results: We have developed TransCent, a computational enzyme design method supporting the
transfer of active sites from one enzyme to an alternative scaffold. In an optimization process, it
balances requirements originating from four constraints. These are 1) protein stability, 2) ligand
binding, 3) pKa values of active site residues, and 4) structural features of the active site. Each
constraint is handled by an individual software module. Modules processing the first three
constraints are based on state-of-the-art concepts, i.e. RosettaDesign, DrugScore, and PROPKA.
To account for the fourth constraint, knowledge-based potentials are utilized. The contribution of
modules to the performance of TransCent was evaluated by means of a recapitulation test. The
redesign of oxidoreductase cytochrome P450 was analyzed in detail. As a first application, we
present and discuss models for the transfer of active sites in enzymes sharing the frequently
encountered triosephosphate isomerase fold.

Conclusion: A recapitulation test on native enzymes showed that TransCent proposes active sites
that resemble the native enzyme more than those generated by RosettaDesign alone. Additional
tests demonstrated that each module contributes to the overall performance in a statistically
significant manner.

Background
Enzymes are highly specific and efficient biocatalysts. It is
of great scientific and practical interest to alter the func-
tion and stability of enzymes, or even generate them de
novo from first principles [1]. Due to our limited under-
standing of the structure-function interplay, most of the

successful enzyme design examples have been achieved by
"directed evolution", i.e. by performing several rounds of
random mutagenesis in combination with efficient
screening or selection systems to isolate beneficial vari-
ants [2]. However, the complexity of the problem calls for
computational methods that are aimed at guiding enzyme
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design experiments, and during the last years we have seen
significant progress along these lines. The first computer-
based approaches described were Dezymer [3] and ORBIT
[4]. Since then, novel program suites have been developed
[5-7], and a few successful experimental enzyme designs
have been based on computational methods [8,9]. Only
recently, the successful design of Kemp elimination cata-
lysts [10] and of retro-aldol enzymes accommodating a
multistep reaction [11] have been reported. Despite this
progress, computational enzyme design is far from being
applicable to any arbitrary problem.

Why is this the case? The structural basis of enzyme catal-
ysis is often not well understood, which makes it difficult
to define the critical optimization criteria in a specific
enzyme design problem [12]. Factors that might be rele-
vant and often mutually interdepend are binding of the
substrate and transition state of a given reaction, release of
the product, conformational flexibility or dynamics, and
pKa values of catalytic residues. Considering protein
dynamics is still beyond the scope of current optimization
methods. However, ligand-binding [13] and adjusting
pKa values of active site residues [14] can be integrated
into the optimization process. Additionally, a statistical
analysis of homologous proteins might help to incorpo-
rate factors that cannot be considered explicitly. Multiple
sequence alignments (MSAs) have already been used for
consensus design approaches [15]. Ensemble-based scor-
ing functions [16] and knowledge-based potentials [17]
turned out to be valuable approaches for deducing addi-
tional characteristics from larger datasets.

Along these lines, we designed the computational enzyme
design program TransCent. In order to focus on the most
relevant determinants, we restrict the design goal to a well
defined task: This is the transfer of an active center from
one enzyme (the template) to a second protein (the scaf-
fold) whose backbone remains fixed. The novel approach
implemented with TransCent is the concurrent considera-
tion of four constraints during modeling. These are pro-
tein stability, ligand binding, pKa values of active site
residues, and structural features of the active site described
by knowledge-based potentials. The program comprises
four modules, each of which processes one constraint. We
show that each module contributes to the quality of the
3D model, and that the combination of all modules per-
forms best. As a first application, we present and discuss
models transferring active sites of (βα)8-barrels, which
form a frequently encountered and catalytically versatile
enzyme family [18,19].

Results
Prerequisites and conventions
TransCent supports the transfer of an active site from one
enzyme (the template) to another protein backbone (the
scaffold). We focused on design problems that fulfill the fol-

lowing prerequisites: 1) The 3D structure of both the tem-
plate and the scaffold are available with adequate quality
(resolution < 2.5 Å, position of all atoms in the active site
resolved, no loops missing). 2) The pose of the ligand-tem-
plate complex is known. 3) The active sites of the scaffold
and the template can easily be superimposed. 4) For the tem-
plate, the sequences of at least 80 homologous proteins are
available, allowing the inference of a well populated MSA.

Moreover, in order to reduce computational complexity
of the algorithm, the following assumptions and restric-
tions are also effective: 5) The backbone of the scaffold
and the position of the ligand are kept fixed in 3D space
during optimization. 6) Only side chain conformations of
a backbone dependent rotamer library [20] are consid-
ered. 7) The pose of the ligand as observed in the template
is assumed to be the relevant one for catalysis (i.e. repre-
sents the active binding mode).

Note that the above limitations are either related to the
precision required for reliable predictions (conditions 1
and 2) or could be circumvented by combining TransCent
with existing programs like RosettaMatch [6] (condition
3) or by computing transition states [11] (condition 7).
Computational complexity imposes conditions 5 and 6;
for many proteins condition 4 can easily be accomplished
due to the abundance of completely sequences genomes.

During the design process, residues are grouped with
respect to their distance from the ligand. We name resi-
dues, which have to the ligand a distance of at most 7 Å,
the active center ACT_CENT. ACT_CENT is surrounded by
a shell SHELL_1 consisting of residues having a distance
between 7 Å and 15 Å. All other residues belong to
SHELL_2. The central shells are larger than those used
elsewhere [11] in order not to miss relevant residues. In
the design phase, the backbone of the scaffold has to be
decorated with side-chains. Residues belonging to
ACT_CENT will be redesigned; residues of SHELL_1 will
be repacked to flexibly embed the amino acids constitut-
ing ACT_CENT. For SHELL_2, TransCent keeps residues
and side chain conformations as found in the scaffold.
Altogether, this selection of constraints is a compromise
of speed and precision by allowing a flexible modeling of
the active site and the conservation of remote residues,
which are presumably less relevant for catalysis.

A framework for enzyme design
A typical protein design program consists of three ele-
ments [21]. These are a modeling unit, which generates
the atomic details of a protein model, a unit that evaluates
the quality of a model via an energy function, and an opti-
mization unit that directs the design process to find low
energy configurations. A state-of-the-art program for pro-
tein modeling is RosettaDesign [22], which predicts an
optimal sequence for a given backbone and comprises the
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above mentioned three elements. We utilized Rosetta as a
framework for TransCent, i.e. we did not alter the mode-
ling and optimization unit. However, we extended its
energy function to include features relevant for enzyme
design. The novel energy function consists of four terms,
which are computed by separate modules. These are
related to protein stability (ST-module), ligand binding
(LB-module), knowledge-based potentials (KP-module),
and pKa-values (PK-module). In the following, these
modules are described in detail.

Protein stability: ST-module
Rosetta's built-in energy function generates sequences to
optimize protein stability by combining terms for van der
Waals interactions, hydrogen bonds, solvation, a knowl-
edge-based pair-wise potential that accounts primarily for
electrostatics, and a score derived from the frequency of
rotamers deposited in a library. The outcome of many stud-
ies has demonstrated the excellent performance of Rosetta
for predicting stable proteins [23]. Therefore, to assess the
stability of a protein model, we decided to use Rosetta's
approach and named the corresponding energy term EST:

EST is the sum of all self-energies E(resi) and pairwise ener-
gies E(resi, resj) for all residues i and all residue pairs i, j of
a 3D model [22]. In order to increase speed, Rosetta stores
pre-calculated partial results of this energy term in tabular
form. The ST-module accesses this table during the opti-
mization process. As an alternative to Rosetta's approach,
a different energy function like the one implemented by
EGAD [7] might be utilized for the ST-module.

Ligand binding: LB-module
A prerequisite for catalysis is substrate binding. Since
many of the X-ray structures of the template enzymes do
not have the true substrate bound but a substrate ana-
logue/product/product analogue, we termed this module
ligand-binding module. During modeling, three con-
straints have to be considered. These are 1) the position-
ing of the ligand, 2) ligand conformation and 3) adequate
interactions of the ligand with the atoms of the scaffold
making up the binding site. TransCent expects a specifica-
tion of the ligand position and its conformation as input.
It is the task of the LB-module to optimize the interaction
of the active site with the ligand. For this purpose we uti-
lized DrugScore, which is a knowledge-based scoring
function for protein-ligand interactions [24]. Based on
this potential, the LB-module computes a score ELB:

ELB is the sum of DrugScore energies determined for the
interaction of ligand atoms with residues of the model.

Knowledge-based potentials: KP-module
For modeling enzyme function, it is crucial to parameterize
all relevant aspects of the active site. However, frequently it
is unclear, which details of a protein structure are relevant
for catalysis. In such cases, the usage of knowledge-based
potentials is a proper method of including information
given implicitly by protein structures or sequences [25]. We
utilized this approach to determine type and location of
catalytic active residues and those residues that interact
with the ligand by analyzing residue conservation and net-
works of hydrogen bonding (see Methods).

A prerequisite for the determination of knowledge-based
potentials is a sufficiently large number of structures that
can be exploited for statistical analysis. However, for
enzyme design the number of highly resolved structures is
too low in most cases. In order to increase the number of
samples, we created homology models, which we utilized
as a surrogate. Modeller [26] was fed with homologous
sequences originating from the respective Pfam [27] entry
to which the template belongs. We only used highly sim-
ilar sequences during homology modeling: For residues
constituting ACT_CENT, sequence identity with the tem-
plate had to be > 40% and the average T-Coffee core index
[28] (which indicates the quality of the alignment) had to
be > 2.0. It is known that composition and 3D arrange-
ment of active sites are generally highly conserved. There-
fore, one can expect high precision for the predicted
arrangement of residues participating in catalysis and may
use the models alternatively to known structures. Using a
superposition of these models and known structures, for
each hydrogen bond involving ligand atoms, its variation
in 3D position was determined and utilized to parameter-
ize shape and location of an ellipsoid constituting an indi-
vidual probability density function (PDF). These PDFs
were transformed to knowledge-based potentials (KBP,
see Methods) which formed the basis for the computation
of the energy term EKP. Figure 1 illustrates our approach.

For each residue of an active site to be modeled, a set of
atoms PUT_HB_SETi may participate in hydrogen bonds
with the ligand; see Methods. For an assignment of indi-
vidual PUT_HB atoms to KBPs, we used the Hungarian
Method [29]. In each case, the outcome of an assignment
are three sets: HB_ KBP consists of those PUT_HB atoms
and KBPs assigned to each other. HB_UNLINKED con-
tains all PUT_HB atoms that were not allocated to a KBP,
and KBP_UNLINKED subsumes all KBPs, that were not
occupied by a PUT_HB atom. Based on this assignment,
EKP is computed as:

EKP = EHB_KBP + EHB_UNLINKED + EKBP_UNLINKED (3)
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The three terms score those residues contributing to the
related sets; see Eq. (13).

Optimizing pKa values: PK-module
In many cases, pKa values of titratable groups belonging to
the active site are shifted. These shifts can be crucial for
catalysis if the groups participate in proton transfer steps.
Therefore, the respective pKa values arising in a designed
site have to be similar to those found in the template. The
level of pKa perturbation depends on the local environment
of the respective residue. This is why pKa shifts impose an
additional constraint for sequence optimization. PROPKA
[30] is one of the most accurate methods for computing
pKa values [31]. However, although it is also a fast method,
we had to further increase execution speed in order to
incorporate pKa determination into the optimization proc-
ess. The PK-module computes the energy term EPK:

Here,  is the predicted pKa value for residue

i of the template used as a reference and  is the

predicted pKa value of the corresponding residue in the

model. The factor λpKa was determined together with other

parameters (see below). λpKa = 2.0 turned out to be ade-

quate, which is in agreement with previous recommenda-
tions [32]. The weight cons(resi) is related to residue

conservation deduced from the amino acid frequency dis-
tribution of an MSA of homologous proteins; see Methods,
Eq. (7). It is 1.0 for strictly conserved residues and decreases
for less conserved ones. The assignment routine of the KP-
module was utilized to deduce from the set HB_ KBP those
m residues that were considered for pKa optimization.

A combined energy function
Based on the outcome of the four modules, TransCent
computes the energy ETransCent:

ETransCent = 1.0·EST + wLB·ELB +wKP·EKP·+ wPK·EPK

(5)

which is a combination of the above introduced terms.
We utilized the outcome of the ST-module as reference.
Therefore, wST is 1.0. The remaining three weight factors
and λpKa were determined by analyzing a training set (see
below). TransCent performed best with wLB = 0.15·10-3,
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Determination of knowledge-based potentials for a template's active siteFigure 1
Determination of knowledge-based potentials for a template's active site. In order to illustrate the determination of 
potentials, 10 3D models were created for homologs of TrpF and superimposed (left panel). The right panel shows the 3D 
position of groups (the various sets HB_Seti) forming hydrogen bonds with the ligand rCdRP, which is plotted in green. The 
geometry of resulting scatter-plots was utilized to determine for each residue a knowledge-based potential; see Methods for 
details. Color code: (Arg, His, Lys), blue; (Asp, Glu), red; (Asn, Cys, Gln, Ser, Thr, Tyr), yellow. Hydrophobic residues are plot-
ted in grey. Plots were generated by using SWISS-MODEL.

Superposition of Models HB_Sets
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wPK = 0.5, and wKP = 1.0. ETransCent was embedded into
Rosetta as an alternative energy function. Note that indi-
vidual energy terms of ETransCent can be eliminated by set-
ting the respective weight to 0.0. In the following, we will
designate a non-standard combination of modules by
enumerating active modules as for example in Trans-
Cent(ST, LB). In this case, the ST- and the LB-modules are
enabled and the KP- and the PK-modules are disabled.
The term TransCent(*) is equivalent to TransCent(ST, LB,
KP, PK).

Training the weights
A common method for in silico training and for bench-
marking design algorithms is the recapitulation of native
proteins [3,6,22,33], where – for a given set of examples –
the concordance of calculated models and the wild-type is
evaluated. We selected a set of 128 enzymes (see Materi-
als), which we named ENZ_TEST. For training and evalu-
ation, we used two different similarity measures, both of
which assess the correspondence of protein sequences of
a given model and the native protein. The first one
[IDENT_RES] was the percentage of identical residues; the
second one [BLOSUM_SCORE, see Eq. (6)] was deduced
from amino acid similarity. Both values were determined
by analyzing residues belonging to the active centers
ACT_CENT. Among the proteins of ENZ_TEST, the size of
active centers varied from 10 to 60 residues; the mean was
28 residues. Due to the simulated annealing protocol [34]
used during optimization, final models may differ for
individual experiments. Therefore, we computed for all
entries of ENZ_TEST 10 individual designs each and
determined the mean for both similarity measures. In the
following, these mean results will be reported.

At first, this approach was used to determine optimal
weights required for Eq. (5). Different combinations of
TransCent's modules were used and weights were varied
within an appropriate range of values. Those weights were
identified that gave the highest BLOSUM_SCOREs. The
outcome of these computations was as follows:

ST-module
In order to assess the improvement gained by combining
TransCent's modules, we first determined the perform-
ance of the ST-module on ENZ_TEST. The IDENT_RES
values varied between 9% and 56%, the mean was 29.5%;
the BLOSUM_SCOREs were between -0.4 and 3.4, the
mean was 1.1. The rank correlation of IDENT_RES values
and BLOSUM_SCORE values was high with statistical sig-
nificance (rs = 0.92, p << 0.001), indicating that both sim-
ilarity measures are equally well suited to evaluate model
quality.

LB-module
For the determination of wLB, the LB-module was com-
bined with the ST-module. IDENT_RES and

BLOSUM_SCORE values had an optimum at wLB =
0.15·10-3. In this case, the mean IDENT_RES value was
37% and the mean BLOSUM_SCORE was 1.5.

KP-module
A prerequisite for using this module is the existence of a
sufficiently large set of homologous sequences, which was
the case for the 27 elements of the subset named
ENZ_TESThom. To determine an optimal weight wKB, Tran-
sCent(ST, KP) was used. In this case, both the IDENT_RES
values and the BLOSUM_SCORE values did not show a
distinct optimum, but ascended a plateau. In order to
avoid an overvaluation of the associated potential, we
selected wKP = 1.0 which is the smallest value gaining the
plateau. In this case, the mean IDENT_RES value was 48%
and the BLOSUM_SCORE value was 2.2.

PK-module
This module depends on the identification of a specific set
of residues accomplished by the KP-module (see Meth-
ods). Therefore, ENZ_TESThom was analyzed using the
combination TransCent(ST, KP, PK). As wKP was set to 0.0,
the contribution of EKP was disabled. Performance was
maximal for wPK = 0.5. In this case IDENT_RES was 39.5%
and the BLOSUM_SCORE was 1.7.

Assessing TransCent's performance
A central paradigm for evaluating the quality of a design
program is the in silico recapitulation experiment intro-
duced above. Due to the specific requirements of catalysis,
active sites are generally highly conserved. Therefore, the
comparison of modeled sites with the active site of the
wild-type enzyme allows the evaluation of a program's
performance. In order to assess the contribution of indi-
vidual modules to the performance of TransCent, eight
different combinations of TransCent's modules were
tested. We generated 20 models for each enzyme belong-
ing to ENZ_TESThom. Mean IDENT_RES values were deter-
mined and plotted. Results are summarized in Figure 2.
The data clearly show that each module contributes signif-
icantly to the performance of TransCent. Compared to an
exclusive usage of the ST-module, the combination of all
four modules resulted in an increase of identical residues
from 29.5% to 54.3%. A t-test based on IDENT_RES val-
ues showed that each addition of a module improved the
performance in a statistically significant manner (p <<
0.01).

One might argue that training and test data were not sep-
arated for the above evaluation. However, as we trained
only four parameters (wLB, wKP, wPK, λpKa), the program
cannot memorize specific arrangements of active sites
possessing hundreds of degrees of freedom each. In order
to confirm this argument and to show that our training
allows an unbiased determination of the above weights,
we performed a leave-one-out test. Each of the 27
Page 5 of 16
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enzymes belonging to ENZ_TESThom was used for valida-
tion, while deducing individual weights from the remain-
ing 26 enzymes taken for training as described above. By
conducting a grid search, optimal weight factors were
determined. These factors were then used to measure the
performance of each module in combination with the ST-
module. Results were added to Figure 2. As can be seen,
there is no significant performance difference between
related tests. This result indicates that the training set
allows a robust determination of the above parameters
and confirms that the parameter set generalizes well.

For the above recapitulation test, all residues of
ACT_CENT are considered equally important. However,
their distance to the ligand and their conservation levels
(deduced from the MSA) differ. For a model of higher
quality, it is plausible to expect a higher rate of recapitu-
lated amino acids at those positions which are closer to
the ligand or which are more conserved. Analyzing these
two parameters, we further assessed the performance of
TransCent. Different combinations of modules were used
to generate 20 models each in a recapitulation experiment
for all enzymes belonging to ENZ_TESThom. For each resi-
due resi, the distance of the Cβ-atom (Cα in case of Gly) to

the nearest atom of the ligand was determined. In addi-
tion, related MSAs were used to deduce the residue-spe-
cific conservation cons(resi); see Eq. (7). Modeled residues
were grouped according to their concordance with the
template. The group "identical AA" contains the recapitu-
lated positions; "different AA" are those ones, where Tran-
sCent proposed an amino acid not seen in the template.
For these two groups, mean distance values were deter-
mined and plotted. Figure 3 shows the results. By utilizing
more modules, the distance of "identical AA", i.e. recapit-
ulated residues, decreased steadily from 4.0 Å when using
TransCent(ST), to 3.6 Å when enabling all modules. Syn-
chronously, the distance of "different AA" increased from
3.9 Å to 4.3 Å. That is, the more modules are used, the
higher is the probability that residues located close to the
ligand are recapitulated. The right panel depicts the mean
conservation as deduced from the respective MSAs and as
expressed by the score cons(resi). By using more modules,
the conservation level of "identical AA" (recapitulated res-
idues) increased, whereas the conservation level of "differ-
ent AA" decreased. For TransCent(ST), the conservation
for "identical AA" is 0.79 and for "different AA" it is 0.75.
For TransCent(*), the mean conservation for "identical
AA" increased to 0.84, whereas the score for "different AA"

The performance of different module combinations of TransCent as judged by in silico recapitulation of active sitesFigure 2
The performance of different module combinations of TransCent as judged by in silico recapitulation of active 
sites. Mean IDENT_RES values and standard deviations were determined for different combinations of modules. Abbreviations 
for modules are: ST (stability), LB (ligand binding), KP (knowledge-based potential), and PK (pKa values). For each combination 
of modules, 20 models were generated for each enzyme belonging to ENZ_TESThom. Values labeled with a # originate from a 
leave-one-out cross validation test.
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fell to 0.64. That is, the more modules are used, the higher
is the probability of conserved residues to be recapitu-
lated. In summary, the results indicate that the active sites
became more similar to the template by using additional
modules. Note that the shell defining an active site for
TransCent is larger than that used elsewhere [11]. There-
fore, it is not implausible, that a certain fraction of these
residues differs from the template. This notion is sup-
ported by the above results: The mean conservation for
the set "different AA", i.e. those residues decorated by
TransCent with an amino acid not seen in the template is
0.64. This value indicates a substantial degree of variation
even in MSAs which sample closely related homologs.

Recapitulating the oxidoreductase cytochrome P450
In order to exemplify the progress gained by combining
TransCent's modules, we present the results of an in silico
recapitulation which allows best to track the cooperation
of the modules. Oxidoreductase cytochrome P450 2B4
(pdb code 1po5[35]) is – according to the SCOP classifi-
cation [36] – an all-alpha protein. In this case, ACT_CENT
consists of 39 residues. TransCent(*) recapitulated 23
(59%), whereas the ST-module alone recapitulated only
10 (26%) of the native residues. Figure 4 shows an MSA of
ACT_CENT residues listing the proposals of the various

combinations. There are only two positions (61 and 340),
which were recapitulated by different module combina-
tions but not by TransCent(*). At position 340, the mod-
ule combinations TransCent(ST), TransCent(ST, LB), and
TransCent(ST, LB, KP) proposed the native valine, all
other combinations predicted a tyrosine or a phenyla-
lanine. At position 61, only TransCent(ST) proposed the
native lysine, all other combinations proposed an aspartic
acid or an asparagine. In contrast, TransCent(ST) as well
as TransCent(ST, LB) did not recapitulate a group of three
arginine residues (positions 71, 106, 407). TransCent(ST,
KP) and TransCent(ST, KP, PK) proposed two arginines
and a glutamate, which constitute a salt bridge. Only after
adding the LB-module, all three arginines were proposed.
A further indicator for the high quality of the design is the
similarity between the model and the native active site: A
superposition of the 23 recapitulated side chains with the
template gave an RMSD-value of only 1.0 Å for all side
chain atoms (Figure 5).

A case study: converting (βα)8-barrels that bind ribulose-
phosphate
As a first application, in silico transfer experiments were
performed with five enzymes belonging to the SCOP [36]
superfamily of ribulose-phosphate binding proteins,

Dependence of distance to the ligand and residue conservation for recapitulated and not recapitulated residues on TransCent's configurationFigure 3
Dependence of distance to the ligand and residue conservation for recapitulated and not recapitulated resi-
dues on TransCent's configuration. Different combinations of modules were used to generate 20 models each in a reca-
pitulation experiment for all enzymes belonging to ENZ_TESThom. All residues resi ACT_CENT were analyzed. The left panel 
depicts the mean distance of their Cβ-atoms (Cα in case of Gly) to the nearest atom of the ligand. The right panel depicts the 
mean conservation as deduced from the respective columns of the MSA and as expressed by the score cons(resi). For the mod-
els, residues were grouped: "identical AA" are those residues possessing the same amino acid as the templates, "different AA" 
are those ones, where TransCent proposed a different amino acid. Abbreviations for modules are: ST (stability), LB (ligand 
binding), KP (knowledge-based potential) and PK (pKa values).
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which belong to the frequently encountered and catalyti-
cally versatile enzyme class of (βα)8-barrels [18,19]. These
were the enzymes phosphoribosyl-5-amino-1-phosphori-
bosyl-4-imidazolecarboxamide isomerase (HisA), the
cyclase subunit of imidazole glycerol phosphate synthase
(HisF), phosphoribosylanthranilate isomerase (TrpF),
indole-3-glycerol-phosphate synthase (TrpC), and the α
subunit of tryptophan synthase (TrpA). HisA and HisF
catalyze two successive steps within histidine biosynthe-
sis, whereas TrpF, TrpC, and TrpA catalyze three consecu-
tive reactions within tryptophan biosynthesis [37]. For
HisA and HisF, the ligand is N1-[(5'-phosphoribo-
syl)formimino]-5-aminoimidazol-4-carboxamide ribo-
nucleotide (PRFAR). Reduced 1-(o-
carboxyphenylamino)-1-deoxyribulose 5-phosphate
(rCdRP) is bound to TrpF and TrpC; imidazole glycerol
phosphate (IGP) is bound to TrpA. Note that the ligand of
HisA and HisF, which contains two sugar phosphate moi-
eties, is twice as large as the ligands of TrpF, TrpC and
TrpA, which contain only a single sugar phosphate group.
Although the general topology of these five enzymes is
similar, the mean RMSD value of related Cα-atoms is as
high as 3.0 Å, as determined by TM-align [38]. For each of
the experiments described below, 10 models were gener-
ated and mean similarity values were calculated. Based on
the five enzymes, 25 models can be generated; among
these are five recapitulation experiments. For the latter
cases, the mean number of identical residues in active sites
was between 46% and 54%, which is in agreement with
the mean performance of the program (see Figure 2). For
the transfer experiments, the mean sequence identity
value was 27%. In the following, several models resulting
from recapitulation and transfer experiments are
described.

HisA (1qo2[39]) and HisF (1thf[39]) are similar, both
with respect to structure and function. The product of
HisA is the substrate of HisF; moreover HisF of Thermotoga
maritima has weak HisA activity [39]. Three aspartate resi-
dues are strictly conserved among and between the HisA
and HisF enzymes (Asp 8, Asp 127, Asp 169 in HisA; Asp
11, Asp 130, and Asp 176 in HisF). These aspartates are
either essential or important for turnover of the substrates
(ProFAR in case of HisA, PRFAR in case of HisF); addition-
ally, a conserved threonine residue (Thr 161 in HisF; Thr
164 in HisA) influences enzymatic activity [40,41]. Trans-
Cent's HisF recapitulation restored at their correct posi-
tion all above mentioned residues as well as Cys 9, which
is also conserved in the known HisF sequences (Figure
6A). This finding indicates that TransCent was able to
reconstruct the catalytic environment of the PRFAR ligand
guided by the knowledge-based HB potential energy EKP.
(The binding mode of PRFAR in HisF was taken from the
X-ray structure of the yeast enzyme, 1ox5[42]. In agree-
ment with these findings, TransCent also chose these res-
idues or chemically similar ones (D127E and D169E
exchanges) for the HisF(template) → HisA(scaffold)
transfer (Figure 6B). The comparison of the EST scores
computed for the HisF recapitulation and the HisF →
HisA transfer signaled only a minor loss of protein
stability.

Recapitulating HisA is hindered by insufficient data, as no
X-ray structure of HisA in complex with a bound ligand is
known. Alternatively, we used for the design process HisA
with modeled PRFAR. The complex of HisA and PRFAR
was minimized employing the force field MAB as imple-
mented in the Program Moloc [43]. An inspection of the
HisA recapitulation and the HisA → HisF design showed

MSA showing the outcome of in silico recapitulation experiments for cytochrome P450 2B4Figure 4
MSA showing the outcome of in silico recapitulation experiments for cytochrome P450 2B4. Different combina-
tions of modules were used to generate models in a recapitulation experiment. The first column lists the module combination, 
the last column the number and fraction of correctly determined residues belonging to ACT_CENT. The last line gives the native 
sequence as deduced from pdb-entry 1po5. Recapitulated residues are indicated by a gray background. Abbreviations for mod-
ules are: ST (stability), LB (ligand binding), KP (knowledge-based potential) and PK (pKa values).
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that TransCent introduced the mutations D8K during
recapitulation and D11K in the transfer experiment, thus
replacing one of the negatively charged catalytic aspartates
by a positively charged lysine residue. The Rosetta energy
score EST indicates a stabilization of about -1 kcal/mol
caused by this exchange. In addition, the catalytically
important Thr 164 was replaced by leucine during recapit-
ulation. In the modeled binding mode the distances of
residues Asp 8 and Thr 164 to the ligand are above Trans-
Cent's global cutoff (4.0 Å); consequently no knowledge-
based potential was determined. Therefore, amino acids
were selected upon stability criteria for these positions.
This is why the HisA → HisF transfer sequence contains
the exchanges D11K and T171A, although the native HisF
residues would match the catalytic residues Asp 8 and Thr
164 in HisA. The positively charged lysine side chain of
D11K is placed near the negatively charged D176E on the
opposite side of the active site, enabling a stabilizing elec-
trostatic interaction. This example indicates that the visual
inspection of the models is crucial to detect stabilizing
mutations, which may be disadvantageous for catalysis

and could be due to parameter settings or limitations of
our approach.

TrpF catalyses the isomerization of phosphoribosylan-
thranilate (PRA) to carboxyphenylamino-1'-deoxyribu-
lose-5'-phosphate (CdRP). The X-ray structure of TrpF
(1lbm[41]) from T. maritima in complex with the product
analog rCdRP is known; the catalytic residues are Cys 7
and Asp 126 [41]. TransCent's redesign of TrpF recovered
the complete environment around the ligand, including
the catalytic residues (Figure 6C). For the 41 residues mak-
ing up ACT_CENT, the program proposed 17 exchanges;
11 are located in loops at the surface. The remaining 6
replacements Q81N, A103G, L124T, V155I, S135T, and
V179A, which are located inside the barrel, are conserva-
tive ones. Energy minimization of the crystal structure and
the model resulted in similar stability and ligand binding
energy.

When judging the quality of a model with respect to the
successful recapitulation of catalytic residues and calcu-

Comparison of the residues constituting ACT_CENT in cytochrome P450 2B4 and a model generated in a recapitulation exper-imentFigure 5
Comparison of the residues constituting ACT_CENT in cytochrome P450 2B4 and a model generated in a reca-
pitulation experiment. In the left panel, the active site of cytochrome P450 (1po5) is plotted; in the right panel, the active 
site of the best model generated by TransCent is shown. The RMSD of the 23 recapitulated residues is 1.0 Å. Color code of 
side chains, which are depicted as sticks: (Arg, His, Lys), blue; (Asp, Glu), red; (Asn, Cys, Gln, Ser, Thr, Tyr), yellow. Hydropho-
bic resides are plotted in grey, the heme group is shown in green. Fig. 5 and 6 were created using Accelrys DS Visualizer 2.0 
http://accelrys.com.
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lated ligand binding energy, then the best design of the
TrpF template was accomplished on the HisF scaffold. It
has been shown experimentally that moderate TrpF activ-
ity can be established on the HisF-scaffold by mutating
Asp 130 to a non-negatively charged residue [44]. In our
TrpF → HisF transfer, TransCent proposed the D130H
exchange, reconstituting His 83 of the TrpF template. The
essential catalytic residues Cys 7 and Asp 126 of the tem-
plate were introduced in the scaffold by TransCent at the
correct locations near the ligand by exchanges V48C and
T171D (Figure 6C, D). Interestingly, Asp 126 and T171D

are both located on β-sheet 6 and perfectly superimpose,
whereas Cys 7 is located on β-sheet 1, but V48C on β-sheet
2. This finding demonstrates that TransCent can position
an essential residue in a different secondary structure ele-
ment of the scaffold than utilized in the template. This
capability is further demonstrated by an arginine interact-
ing with the anthranilic acid moiety of the ligand: In the
TrpF template, Arg 36 is located in the long loop after β-
sheet 2 and its positively charged guanidinium side chain
forms a salt bridge with the negatively charged carboxylate
moiety of rCdRP (Figure 6C). In the HisF scaffold this

Comparison of wild-type active sites with transfer models HisF(template) → HisA(scaffold) and TrpF(template) → HisF(scaf-fold) determined by TransCentFigure 6
Comparison of wild-type active sites with transfer models HisF(template) → HisA(scaffold) and TrpF(tem-
plate) → HisF(scaffold) determined by TransCent. The catalytic residues in native HisF (A, 1thf) and the designed resi-
dues of the HisF → HisA transfer (B) are shown in complex with PRFAR (HisF substrate and HisA product). The designed 
residues in the HisA scaffold are located at equivalent positions as in the HisF template (compare panel B and A). The catalytic 
residues in native TrpF (C, 1lbm) and the corresponding residues of the designed TrpF → HisF model (D) are shown in com-
plex with rCdRP (product analogue of TrpF). In wild-type TrpF, Cys 7 is located on β-sheet 1, and Arg 36 is located on a long 
loop after β-sheet 2. In the model, an arginine residue, which is responsible for ligand binding, is placed in the elongated β-sheet 
1 (D11R exchange), whereas the catalytic cysteine (V48C exchange) is located in β-sheet 2. The aspartic acid D126 (TrpF) and 
the designed exchange T171D (TrpF → HisF transfer) are located at equivalent positions.
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loop is missing. However, β-sheet 1 is elongated and the
exchange D11R introduces an arginine with a side chain
oriented towards the ligand (Figure 6D). In this case, all
three terms ELB, EKP, and EPK are negative, i.e. all constrains
demand for this mutation. In summary, the above exam-
ples illustrate the interplay of TransCent's modules when
constructing active sites.

Discussion
Computational enzyme design methods improve slowly 
and are far from being perfect
Recent work [10,11] demonstrates that the de novo design
of enzymatic activities not found in natural biocatalysts
has become feasible. However, the designed activities
were considerably lower than those evolved by nature
[45], although the computation consumed more than 100
000 CPU hours. Thus, in spite of these pioneering efforts,
we are still far away from an adequate understanding of
enzyme structure-function relationship and the de novo
design of highly effective active sites.

When developing TransCent, we followed a less ambigu-
ous goal by transferring an already existing active site to a
different backbone. TransCent is based on RosettaDesign
and comprises modules for the optimization of ligand
binding (LB-module) and pKa values of essential residues
(PK-module). Using knowledge-based potentials as
implemented in the KP-module contributed favorably to
the performance of TransCent, demonstrating that active
site "fingerprints" can be deduced from homology models
and structure databases. In order to limit computer time,
we concentrated on the most important features of
enzyme catalysis, accepting restrictions such as fixed back-
bones and ligands. However, due to the modular concept
of TransCent and the structure of its energy function [Eq.
(5)], additional constraints can easily be integrated. Along
these lines, methods for assessing side-chain conforma-
tional entropy have been proposed recently [46] and the
latest version of Rosetta contains a "Backrub"-model
introducing local backbone flexibility [47].

Approaching specific requirements in enzyme design
The modules of TransCent constitute an approach of a
multi-objective optimization for enzyme design. Here, we
utilized a classical energy function [Eq. (5)]; alternative
non-standard approaches have recently been described
[48]. Each of TransCent's modules contributes to the qual-
ity of the design and has its specific strengths and weak-
nesses that will be discussed below. In general, the
ultimate proof demonstrating success in model building
is the biochemical characterization of enzyme function.
Unfortunately, wet-lab experiments are time-consuming
and expensive. Therefore, in silico methods must serve as a
surrogate especially for the evaluation of algorithms.
However, these approaches allow us at best to demon-

strate the plausibility of a design, and the assessment rests
on the assumption that wild-type sequences are optimal
for catalysis [22]. Trusting in this postulate, we have per-
formed active center recapitulation experiments to esti-
mate the significance of individual modules for the design
success. It is the aim of the ST-module to guarantee the
stability of the modeled protein. When used exclusively,
this module recovered on average 30% of the wild-type
residues (Figure 2). This value is within expectation for
two reasons: 1) Active sites resemble more the surface
than the core of a protein. For remodeling, a recovery rate
varying between 27% for surface positions and 52% for
core positions has been reported [22]. 2) Residues of the
active sites often do not contribute to stability, and cata-
lytically relevant residues even tend to destabilize the
enzyme [49]. Therefore, programs focusing on protein sta-
bility will fail to recover these residues. The same holds for
residues that are constrained due to the shape of the bind-
ing pocket. The observation that RosettaDesign neverthe-
less recovered almost one third of the residues in active
sites could indicate that the backbone conformation
restricts the selection of amino acids at certain positions.
Differences in rotamer frequencies for backbone inde-
pendent and backbone dependent libraries support this
notion. In addition, recent studies indicate that side-chain
rotamers may lock the backbone into slightly different
conformations [47].

The LB-module aims at optimizing ligand binding. It uses
a rotamer-based version of DrugScore allowing TransCent
to assess the impact of each individual rotamer. However,
due to algorithmic complexity, the rotamer-based version,
in contrast to the original version, is not able to consider
the desolvation effect, as the orchestration of neighboring
residues influences the outcome markedly. Despite this
restriction, the performance data shown in Figure 2 illus-
trates that the LB-module contributes significantly to the
recapitulation success of TransCent.

The KP-module determines the characteristics of the tem-
plate's active site by deducing potentials without expert
knowledge. The module aims at optimizing the protein-
ligand hydrogen bond network by arranging donors and
acceptors in a way resembling the template. As the mod-
ule considers residue conservation as well, the selection of
amino acids can be carefully balanced. In other programs,
relevant amino acids have to be fixed before active site
optimization can be started and therefore only residues
relevant for catalysis could be considered until now [3,6].
Thus, our approach of using knowledge-based potentials
adds flexibility not yet implemented in traditional com-
putational design methods. This option requires that the
sequences of at least 80 homologous proteins must be
available to deduce the potentials with acceptable quality.
However, the sequencing of hundreds of genomes [50]
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during the past years ensures that this condition can be
fulfilled in most cases.

The PK-module optimizes the electrostatic embedding of
residues relevant for catalysis. We introduced this module,
because in general it is not sufficient to merely place active
site residues in the correct orientation. In addition, often
a proper pKa value will be essential for a specific residue to
act as general acid or base during catalysis. In accordance
with this statement, the markedly improved activity of a
computationally designed enzyme by means of a directed
evolution experiment has been explained with the pKa
shift of a catalytic site [10]. We consider the simultaneous
optimization of protein stability and of pKa values in a
rotamer based protein design framework as a key feature
of TransCent. However, one might argue that ignoring the
effect of ligand atoms onto pKa values or an insufficient
accuracy of pKa value determination by PROPKA could
render the results ambiguous. However, a systematic devi-
ation of absolute values has only a minor effect on the
outcome of the design, as both the template and the
model are treated in the same way. In accordance with this
notion, Figure 2 illustrates the significant positive contri-
bution of the PK-module to the performance of Trans-
Cent.

Transfer experiments will promote computational enzyme 
design
Reflecting the status quo of computational protein and
enzyme design, the current potential and limitations of
these methods become obvious. For several algorithms,
their ability of creating stable proteins by decorating
native backbones has been successfully demonstrated
[51,52]. Therefore, generating in silico a stable protein
based on a native fold should be feasible in most cases.
For enzyme design, taking this constraint is clearly not suf-
ficient and additional features such as substrate binding
[13] and transition state stabilization [10] have to be con-
sidered to generate native-like active sites. Drafting artifi-
cial folds might be regarded as a further step towards de
novo enzyme design. However, it is doubtful whether this
effort is a necessary prerequisite to establish novel func-
tions or to surpass the proficiency of existing enzymes. For
example, when searching a suitable scaffold for the Kemp-
elimination reaction, more that 100 000 locations for
putative active sites were identified in natural folds [10].
In addition, the observed preference for the ancient and
frequently encountered (βα)8-barrel [53], which accom-
modates enzymatic reactions covering five of the six
classes defined by the Enzyme Commission [19], suggests
that computational design can readily use folds evolved
by nature. Nevertheless, in spite of first promising success
cases, our limited understanding of most enzymatic reac-
tions makes de novo design a very difficult task and leaves
room for simpler, nevertheless instructive approaches.

Following recapitulation experiments, the transfer of an
existing active site to a new scaffold – as supported by
TransCent – is the next obvious step to take. Both the in
silico analysis of generated 3D models as done above, and
particularly the biochemical characterization of the
designed proteins will identify properties that were mod-
eled in an acceptable or insufficient way. These findings
will help to validate or improve in a feedback-loop [45]
both TransCent as a whole and the individual methods
implemented in its modules. Thus, transfer experiments
will contribute to our understanding of enzyme function
and bring forward computational enzyme design.

Conclusion
TransCent is a computational enzyme design program,
which predicts mutations in a scaffold aimed at establish-
ing the activity of a template enzyme. During the design
process, protein stability, substrate binding, pKa values of
essential residues and knowledge-based hydrogen bond-
ing networks are considered simultaneously by integrat-
ing separate optimization modules. Our in silico
evaluation demonstrated that TransCent can recapitulate
a considerable fraction of active site residues for a given
template. We will now experimentally test some of the
transfer designs in order to further judge the prediction
quality of the program. Depending on the outcome, we
will take advantage of TransCent's modular character to
incorporate additional features such as backbone and lig-
and flexibility, which promises a further fine-tuning of the
designed active site.

Methods
Test data ENZ_TEST
Using the following rules, 128 entries of the pdb database
[54] were selected with a culling server [55]: 1) The reso-
lution had to be at least 1.6 Å and the R-factor at most
0.25. 2) The structure had to be determined via X-ray crys-
tallography and the sequence had to consist of at least 100
residues. 3) One ligand consisting of more than 10 atoms
had to be part of the structure. 4) At least ten residues had
to be not more than 5 Å apart from the ligand. 5) For the
pairwise comparison of all entries, a maximal sequence
identity value of 20% was tolerated. We named this set of
3D structures ENZ_TEST; additional file 1 lists the pdb
codes. For maximal performance of TransCent, a set of at
least 80 homologous sequences has to be available for a
protein. This was the case for those 27 proteins printed
bold in the data set listed in additional file 1. We named
this set ENZ_TESThom.

Multiple sequence alignments
To create an MSA, we realigned the sequence of the tem-
plate with sequences originating from the corresponding
Pfam entry by using MAFFT [56]. Those sequences were
selected that fulfilled two criteria imposed on residues
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belonging to ACT_CENT (For a definition of the set
ACT_CENT, see Results). 1) A pairwise comparison with
corresponding residues of the template resulted in a
sequence identity value > 40%. 2) The mean T-Coffee core
index [28] for these residues was > 2. This cut-off assures
a sufficient quality of the alignment. We deduced these
criteria from a recapitulation experiment: By using Model-
ler version 8.2 [26], we created homology models for at
least 80 sequences and determined the mean RMSD value
for all atoms of ACT_CENT residues of the template and
the models. When applying the above criteria, the average
RMSD was ~2 Å (determined by TM-align [38], data not
shown).

BLOSUM score
For the comparison of two sequences A = a1... an, and B = b1...
bn, we determined a mean BLOSUM score by computing

As the sequences A, B of native proteins or models are of
equal length, an alignment consists of n residue pairs
making up sequences A or B. BLOSUM62 values are from
the related scoring matrix [57].

Cons(resi): Scoring the conservation of individual residues
To score the conservation of amino acids at an individual
position i in an MSA, the following term [58] was com-
puted:

n is the number of lines in the MSA,  and  are the

amino acids occurring in lines j or k at position i.
BLOSUM62 values are from the related scoring matrix

[57]. For strictly conserved residues, cons(resi) is 1.0.

Creating a superposition of models and structures
In order to increase the number of structures utilized for
the determination of knowledge-based potentials, homol-
ogy models were created. Starting from the respective
Pfam [27] entry to which the template belongs, an MSA
was generated (see above). Related sequences were fed
into Modeller version 8.2 [26]. Resulting structures were
superimposed based on the alignment given by the MSA.
We name a template-specific ensemble of superimposed
3D structures TEMPL_ENS. For illustrations, plots were
generated by using SWISS-MODEL [59].

Setting the position and conformation of the ligand
For the transfer experiments described in Results, the
input for the LB-module was generated by first superim-
posing active site residues of the template and the scaf-
fold, and by transferring the ligand's pose from the
template to the scaffold. In general, strategies developed
for ligand docking [60] or drug discovery [61] as well as
methods identifying key residues [62] may be considered
for specifying the pose of the ligand.

Determining knowledge-based potentials and scores
In order to establish a hydrogen bonding pattern for an
active site, which is in agreement with those ones
observed in TEMPL_ENS, knowledge-based potentials
[25] were used. To specify these potentials, each residue
position i belonging to ACT_CENT was considered sepa-
rately. For each residue i, all atoms HB participating in
hydrogen bonds with the ligand were determined. Candi-
dates are those nitrogen, oxygen or sulphur atoms belong-
ing to the side chains of Arg, Asn, Asp, Cys, Glu, Gln, His,
Lys, Ser, Thr, Tyr, and Trp, which are in close proximity to
the ligand (distance < 4.0 Å). Backbone atoms were not
considered as the design algorithm does not alter the
backbone conformation. All HB atoms related to position
i were combined in the set HB_SETi.

For each set HB_SETi, a knowledge-based potential KBPi

was deduced as a log-odds ratio of probability density
functions [25]. The 3D positions of all atoms belonging to
HB_SETi were used to determine a probability density

function PDFobs, i modeled by means of a multivariate

Gaussian distribution. By limiting in each direction the

spread of a PDF to ± 3 σ from its center, it describes a vol-
ume with an ellipsoid shape. We named this volume
PDF_VOLi. The expected probability function PDFexp, i is

approximated as a uniform distribution filling PDF_VOLi.

For each 3D coordinate coord, the corresponding proba-
bility was deduced from the PDFs in a cube of 1 Å 3. The

knowledge-based potential (coord) is then defined

as:

Additionally, we added a factor that scores the conserva-
tion of those amino acids contributing to HB_SETi. The
observed frequency fobs, i(as) is the number of cases where
the amino acid as contributed to HB_SETi divided by
#TEMPL_ENS, which is the number of structures. In order
to determine the expected frequency fexp, i(as), all rotamers
of a backbone dependent library [20] were modeled at

BLOSUM SCORE A B
n

BLOSUM a bi i

i

n

_ ( , ) ( , )=
=
∑1

62

1

(6)

cons res
n n

BLOSUM as j
i ask

i

BLOSUM as j
i as j

i B
i( )

/( )

( , )

( , )
=

−
2

1

62

62 LLOSUM ask
i ask

i
k

n

j

n

6211 ( , )==
∑∑

(7)

as j
i ask

i

KBPi
D3

KBP coord
PDFobs i coord

PDFexp i coordi
D3 ( ) , ( )

, ( )
= −

⎛

⎝
⎜

⎞

⎠
⎟ln (8)
Page 13 of 16
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:54 http://www.biomedcentral.com/1471-2105/10/54
position i. fexp, i(as) results from the library-specific fre-
quencies of as rotamers possessing a HB at position i. The
potential was computed as

Scores (8) and (9) were combined to score positions orig-
inating from a model:

For modeling, we use PUT_HBj to name an atom of resj
that might contribute a hydrogen bond with the ligand.
An atom PUT_HBj has the coordinates coordj and belongs
to an amino acid asj. Thus, it can be tested to what extent
this PUT_HBj matches the preferences seen in
TEMPL_ENS.

Not all hydrogen bonds occur in all structures of
TEMPL_ENS. This indicates that some areas of the active
site are indifferent with respect to polarity. To score these
variations, a "hydrophobic tendency" was computed for
each PDF_VOLi as a log-odds ratio:

fapolar, obs(i) is the ratio of cases where no hydrogen bond

was observed in structures of TEMPL_ENS divided by
#TEMPL_ENS. Similarly, fapolar, exp(i) was deduced from the

number of rotamers that cannot provide a HB atom by
normalizing with the total frequency of rotamers for posi-
tion i in the rotamer library. Sapolar(i) is used to score cases

where an active site of a model does not provide a

PUT_HB atom that corresponds to the potential .

A fixed penalty Penalty_Val = 6.9 (deduced from an error
rate of approximately 1/1000) was used to score PUT_HBj
atoms of the model that could not be assigned to any KBP.

SNO_HB = Penalty_Val (12)

During optimization, the KP-module computes the
energy EKP as a combination of three terms and based on
the outcome of the assignment due to the Hungarian
Method [29]:

EKP = EHB_KBP + EHB_UNLINKED + EKBP_UNLINKED (13)

EHB_KBP is the sum of SHB_KBP scores [see Eq. (10)] deduced
from the model under study:

The function HM(resj) selects the specific KBPi assigned to
resj by means of the Hungarian Method. Here, all PUT_HB
atoms are considered that belong to the current set
HB_KBP. See also the description of the KP-module in
Results.

The term EHB_UNLINKED originates from the number of
unlinked PUT_HB atoms multiplied with the penalty
score SNO_HB:

EHB_UNLINKED = #PUT_HPUNLINKED·SNO_HB (15)

Each KBP belonging to KBP_UNLINKED indicates the
absence of a hydrogen bond in a certain region of the
model. The energy EKBP_UNLINKED sums up Sapolar(resi) val-
ues [see Eq. (11)] of these cases:
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