
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch
Parallel short sequence assembly of transcriptomes
Benjamin G Jackson*1, Patrick S Schnable2 and Srinivas Aluru1

Address: 1Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA and 2Center for Plant Genomics, Iowa
State University, Ames, IA 50011, USA

Email: Benjamin G Jackson* - zbbrox@iastate.edu; Patrick S Schnable - schnable@iastate.edu; Srinivas Aluru - aluru@iastate.edu

* Corresponding author

Abstract
Background: The de novo assembly of genomes and transcriptomes from short sequences is a
challenging problem. Because of the high coverage needed to assemble short sequences as well as
the overhead of modeling the assembly problem as a graph problem, the methods for short
sequence assembly are often validated using data from BACs or small sized prokaryotic genomes.

Results: We present a parallel method for transcriptome assembly from large short sequence data
sets. Our solution uses a rigorous graph theoretic framework and tames the computational and
space complexity using parallel computers. First, we construct a distributed bidirected graph that
captures overlap information. Next, we compact all chains in this graph to determine long unique
contigs using undirected parallel list ranking, a problem for which we present an algorithm. Finally,
we process this compacted distributed graph to resolve unique regions that are separated by
repeats, exploiting the naturally occurring coverage variations arising from differential expression.

Conclusion: We demonstrate the validity of our method using a synthetic high coverage data set
generated from the predicted coding regions of Zea mays. We assemble 925 million sequences
consisting of 40 billion nucleotides in a few minutes on a 1024 processor Blue Gene/L. Our method
is the first fully distributed method for assembling a non-hierarchical short sequence data set and
can scale to large problem sizes.

Background
Introduction
The development of high-throughput short sequencing
technologies, such as the Illumina Solexa and Applied
Biosystems Solid systems, has sparked renewed interest in
sequence assembly. The promise of inexpensive short
reads has opened the door to the possibilities of rese-

quencing individuals and sequencing more organisms at
lower cost.

An important problem in short sequence assembly is de
novo genome reconstruction. For genomes with high
repeat content, this task is already difficult with the much
longer Sanger reads [1]. For accurate assembly of short
sequences, many have proposed using more rigorous

from The Seventh Asia Pacific Bioinformatics Conference (APBC 2009)
Beijing, China. 13–16 January 2009

Published: 30 January 2009

BMC Bioinformatics 2009, 10(Suppl 1):S14 doi:10.1186/1471-2105-10-S1-S14

<supplement> <title> <p>Selected papers from the Seventh Asia-Pacific Bioinformatics Conference (APBC 2009)</p> </title> <editor>Michael Q Zhang, Michael S Waterman and Xuegong Zhang</editor> <note>Research</note> </supplement>

This article is available from: http://www.biomedcentral.com/1471-2105/10/S1/S14

© 2009 Jackson et al; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 12
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/10/S1/S14
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2009, 10(Suppl 1):S14 http://www.biomedcentral.com/1471-2105/10/S1/S14
graph models rather than to the overlap-based greedy
heuristics often utilized for Sanger reads. Graph models of
particular interest include De Bruijn graphs and string
graphs in either directed or bidirected forms.

As graph models of assembly are compute and memory
intensive, and the coverage needed with short read tech-
nologies is large, it is difficult to validate the proposed
methods on large eukaryotic genomes. Pevzner et al. [2]
originally tested the EULER assembler using bacterial
genomes. Myers [3], Medvedev et al. [4], and Hernadez et
al. [5] also demonstrate their methods on prokaryotes.
Zerbino et al. [6], Warren et al. [7] and Dohm et al. [8] val-
idated their methods using single BACs.

Butler et al. [9] computed an assembly of 39 million bases
in 2 days using a database and a workstation with 64 giga-
bytes of RAM. They use a modified directed string graph
model for assembly, and require clone pairs of three dif-
ferent lengths to achieve the result. Their paper, while pre-
senting a sequential method, does demonstrate that the de
novo assembly of long genomes using very short shotgun
sequences is possible.

Sundquist et al. [10] propose the SHRAP hierarchical
short sequence protocol and method for assembling hier-
archical data in parallel. The hierarchical nature of their
problem results in a natural decomposition into smaller
problems that can be distributed, which is fundamentally
different from the problem of assembling shotgun data in
parallel, which we present here.

In this paper, we present a method for assembling the
transcriptome of an organism from short reads derived
from unnormalized expression libraries. We follow Myers'
and Medvedev's lead [3,11] and model the assembly
problem as that of finding a tour of a bidirected string
graph, which we consider a natural model. Importantly,
we address the challenges of constructing and manipulat-
ing this graph using multiprocessor computers. In addi-
tion to speeding up the assembly process, the main
benefit of using such machines is the large amount of
memory available for the manipulation of the graph for
large problems.

Our method is a fully distributed parallel method that can
process high coverage data sets and quickly reconstruct
the underlying sequences. First, we construct the distrib-
uted bidirected string graph. Once the graph has been
constructed, we identify and compact chains within the
graph, which correspond to unique long contigs. The final
step of the algorithm is to process the graph in such a way
that we can reduce the edges, and, correspondingly,
increase the length of each edge, or the length of each con-
tig in the assembly. In this manipulation, we make novel

use of the variation in sequence coverage of the transcrip-
tome naturally arising due to differential expression. Cov-
erage has been used in assembly methods before,
particularly in transforming the assembly problem to that
of network flow [3]. However, instead of using uniform
coverage as do these methods, our method leverages non
uniform coverage.

We analyze the error in Solexa data and then use this anal-
ysis to generate synthetic data for the maize (Zea mays)
transcriptome. We then use a parallel implementation of
our method to assemble 40 billion bases in a few minutes
on a 1024 node Blue Gene/L computer. We validate the
method by aligning our assembled contigs back to the ref-
erence genome.

Model of parallel computation
To ensure practical applicability, we use the distributed
memory model of parallel computation. Each processor
has access to its local memory, and remote memory access
is achieved through communication over an interconnec-
tion network. The run-time of an algorithm is character-
ized by the parallel computation time and
communication time. We use the permutation network
model, in which each processor can simultaneously send/
receive a message of m bytes provided no two source/des-
tination processors have the same id. The communication
complexity is then measured by the number of such com-
munication rounds, and the total volume of parallel com-
munication. The former accounts for the number of times
the expensive latency cost is paid, while the latter accounts
for the cost of network routing.

Let p denote the number of processors. We make use of
the regular all-to-all communication primitive, in which

each processor sends a distinct message of O() bytes to

every other processor (i.e., one communication round

with O() parallel communication volume). A many-to-

many communication is similar, except that each proces-
sor sends and receives variable sized chunks of data. A
bounded many-to-many communication can be made to
behave as a regular all-to-all communication with total
size r + s, where s is the total number of elements sent by
any processor and r is the maximum number of elements
received by any processor [12].

When we refer to an element in an array sending a mes-
sage to another element in an array, we implicitly mean
that each processor will collect all such messages and send
and receive them using a many-to-many communication
before routing them to their final array destination.

n

p2

n
p

Page 2 of 12
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S14 http://www.biomedcentral.com/1471-2105/10/S1/S14
Parallel sorting is an important subroutine in our method,
and the best algorithm for parallel sort on distributed
memory machines that achieves a good final distribution
of the sorted values is regular sample sort [13]. A regular
sample sort uses a constant number of bounded many-to-

many communications and O () local computation for

integer sort, and O () local computation time for

comparison sort.

A primary concern in the development of parallel algo-
rithms is to demonstrate that the algorithm scales well as
the number of processors increases. This allows one to
handle larger problem sizes by using larger machines
without compromising on time to solution. Perfect spee-
dup is characterized as linear speedup with number of
processors.

The bidirected graph model
In a bidirected graph G = {V,E}, each edge has two direc-
tions, one associated with each incident node. For each
ordered pair of nodes (u,v) there are four possible con-
necting edges: uЈ-Јv, uЎ-Ўv, uЎ-Јv, and uЈ-Јv.
Edges are represented by tuples <u, v, du, dv>, with du, dv ∈
{Ј, Ў}. For each unordered pair of nodes {u, v} exactly
two such tuples exist, one for each of the ordered pairs (u,
v) and (v, u), respectively. Accordingly, we represent the
bidirected graph as a distributed tuple list, two tuples per
edge.

In this representation, sorting tuples by node labels will
distribute edges such that all edges adjacent to a given
node reside in the same processor. Alternatively, sorting
tuples by a canonical representation (for example consid-
ering the smaller node ID followed by the larger node ID)
will move both tuples corresponding to an edge to the
same processor.

The sequence assembly problem is naturally modeled as a
bidirected graph (See Fig. 1) [3,11]. Consider each input
sequence as a DNA molecule by taking both the sequence
and its complementary strand. By convention, we label
the lexicographically larger of the two strands as '+', and
the lexicographically smaller of the two strands as '-'. We
begin with a bidirected De Bruijn graph of the input
sequences [11] and transform it into a bidirected string
graph, which is an edge labeled graph upon which some
traversal of the graph corresponds to the underlying
genomic sequence [3].

In the bidirected De Bruijn graph, each node u corre-
sponds to a k-molecule present in some input sequence.
We label its two strands by u+ and u-. If two such molecules
u and v contain a k - 1 length overlap, they can do so in
four possible ways, each of which directly corresponds to
the types of edges in a bidirected graph.

• Case I: The (k - 1)-length suffix of u+ is a prefix of v+. This
is denoted uЈ-Јv.

• Case II: The (k - 1)-length suffix of u- is a prefix of v-. This
is denoted uЎ-Ўv.

• Case III: The (k - 1)-length suffix of u- is a prefix of v+.
This is denoted uЎ-Јv.

• Case IV: The (k - 1)-length suffix of u+ is a prefix of v-.
This is denoted uЈ-Ўv.

The bidirected De Bruijn graph can be easily converted
into a bidirected string graph, with two character labels on
each edge, cu and cv where cu corresponds to the next char-
acter on the DNA molecule when traveling away from u
along the edge, and cv corresponds to the next character on
the DNA molecule when traveling away from v along the
edge. This data is added to the edge tuple, resulting in
tuples of the form �u, v, du, dv, cu, cv�.

n
p

n
p

n
plog

Bidirected graphFigure 1
Bidirected graph. The bidirected model for use in assembly. The figure shows the four edge types as described in the text, as
well as the corresponding edge labels in the string graph.
Page 3 of 12
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S14 http://www.biomedcentral.com/1471-2105/10/S1/S14
A valid path in a bidirected graph is any ordered sequence

of tuples �e1, e2, ... ex�, where ei = �ui, vi, , �, such that

vi = ui+1 and for all consecutive tuples ei and ei+1

in the path.

Conceptually, what it means to travel along an edge that
"changes direction" is to align the positive strand in node
u to the negative strand in node v. To travel along an edge
that maintains its direction is to align the positive to pos-
itive. One advantage of this model is that a single tour of
the graph is used to construct both strands of the double
stranded DNA simultaneously. Another advantage is that
the number of nodes in the graph is reduced by half when
compared to a directed graph model.

Methods
Parallel graph construction

We are given m sequences of total length n, sampled from
a genome of total length g, distributed among p processors

such that there are bases per processor. We wish to con-

struct a bidirected string graph with O(g) edges and nodes,
distributed among processors such that each processor

knows all edges adjacent to O () nodes. For a detailed

description and analysis of graph construction, as well as
refinements to the basic algorithm presented here, see
Jackson et al. [14].

We represent each k-molecule in the input sequence as a
base 4 number (in 2k bits) using its lexicographically
larger stand. These representatives can then be sorted in
parallel, with identical elements merged into one. Due to
the 4-letter DNA alphabet, a k-molecule u could overlap
with at most 8 k-molecules v. We construct the messages
to be sent to hypothetical molecules v that could be
attached to u, such that for all such molecules, either v will
send a message to u or u will send a message to v.

The messages are constructed for each of the three ways in
which u can overlap with v. We construct each message
such that it can be sent to the representative of v (we target
the hypothetical positive strand). For each message, we
construct a tuple �id, dest, type, char�, where id is the node
id of u, dest is the representative of v, type is the type of the
message, which will inform the type of edge to draw in the
graph, and char is the character to be associated with the
edge when moving from u to v. Each hypothetical edge in
the bidirected De Bruijn graph is thus represented by
exactly one message.

For each message �id, dest, type, char� received by k-mole-
cule v, we generate two tuples. The resulting tuple list is

sorted and any duplicates are removed, resulting in a dis-
tributed tuple list representation of the graph.

Using a linear time radix sort, parallel graph construction

is achieved in O () parallel compute time, O(1) com-

munication rounds, and O () parallel communication

volume.

Dealing with error
Pevzner et al. [2] and Dohm et al. [8] deal with erroneous
sequences by editing those that have suspicious k-mers.
The idea is that, given high coverage, errors will manifest
themselves in the sequences as k-mers that occur only
once. This is because as long as error is not systematic, the
likelihood of seeing the same error twice at the same posi-
tion is low. If a sequence containing a suspicious k-mer
can be uniquely edited into a valid sequence, then the
editing is done; if not, the sequence is discarded.

This approach, being a preprocessing step, can be used in
conjunction with any assembly method to greatly reduce
error in input sequences, and many recent works on
assembly have advocated its use. We can use the same
concept to identify error at a later stage in the method, by
removing the offending k-mers from the bidirected De
Bruijn graph.

Parallel identification of unique contigs
The bidirected graph generated in the previous section
will likely have many long chains, each corresponding to
sequences that can be unambiguously assembled into a
single contig. These chains are then connected in a more
interesting topology that must be further analyzed. Will
will compact these chains (forming a single edge in the
graph for each chain) using undirected list ranking.

Weighted undirected list ranking problem

For the undirected list ranking problem, we are given a set
of weighted, undirected lists of total length n as an array

of tuples [u] = �A1, W1, A2, W2� of size n, where u.A1 and

u.A2 hold pointers to the two nodes adjacent to node u,

and u.W1 and u.W2 hold the corresponding weights. If u is

an endpoint, then either u.A1 or u.A2 will point to u. If u is

the sole element of a list, then both u.A1 and u.A2 will

point to u. If u.Ai = v, then either v.A1 = u or v.A2 = u. If u.Ai

= v and v.Aj = u, then u.Wi = v.Wj.

For the undirected list ranking problem, we wish to com-

pute the tuple [u] = �R1, E1, R2, E2�. u.R1 is the rank of u

relative to u.E1, the list endpoint in the direction of u.A1.

dui
 vi

d dv ui i
≠

+1

n
p

g
p

n
p

n
p

Page 4 of 12
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S14 http://www.biomedcentral.com/1471-2105/10/S1/S14
u.R2 and u.E2 are respectively defined in the direction of

u.A2.

List ranking transformation
Conceptually, graph compaction involves replacing all
chains in the graph with single edges, labeled by the con-
catenation of all edge labels along the chain. We will now
show how to transform this problem to the problem of
undirected list ranking. Consider edge tuples �u, v, du, dv,
cu, cv� augmented with two additional pieces of informa-
tion id and adj. We will transform the graph compaction
problem to the undirected list ranking problem using the
following algorithm:

1. Sort all tuples with the smaller node id as the primary
key and the larger node id as the secondary key. This
results in both tuples for a given edge coming together in
the sorted order.

2. If necessary, shift boundary tuples to guarantee that no
edge is split between processors.

3. Give each pair of tuples a unique ID in the range 1 to
|E|.

4. Sort all tuples with the first node id as the primary key
and the second node id as the secondary key. This results
in all tuples for a given node coming together in the sorted
order.

5. If necessary, shift boundary tuples to guarantee that all
tuples with the same first node id are on the same proces-
sor.

6. For each set of tuples sharing the first node id u:

(a) If = {x, y} and x.du ≠ y.du (there is a valid path

through this node in the graph), then set x.adj ← y.ID and

y.adj ← x.ID.

(b) Otherwise, for all tuples x ∈ set x.adj ← x.id.

7. Sort all tuples with the smaller node id as the primary
key and the larger node id as the secondary key. Shift
boundary tuples as necessary.

8. For each pair of tuples x and y corresponding to the

same edge, set [id] ← �x.adj, 1, y.adj, 1�.

The runtime of the transformation is dominated by a con-
stant number of parallel sort operations.

Parallel list ranking
The undirected list ranking problem is a modification of
the traditional list ranking problem, which has been
extensively studied on parallel computers. The sparse rul-
ing set algorithm achieves the best run time on large data
sets with a large number of processors [15], and we have
accordingly designed a modified version of the sparse rul-
ing set algorithm for undirected lists.

The sparse ruling set algorithm is a recursive algorithm on
a weighted list (each edge is associated with a weight or
distance). In the base case, the lists are gathered to one
processor and solved using a serial list ranking algorithm,
in linear time.

For the inductive case of the algorithm, we wish to achieve
the following objectives. First, we wish to mark some sub-
set of nodes which include all endpoints and some other
nodes. Second, we wish to find the distance between each
unmarked node and its two closest marked nodes. Finally,
we wish to find the distance between adjacent marked
nodes.

Once we have this information, we will set the adjacencies
of each marked node to the nearest marked nodes in the
list, and the weights as the distance to those marked
nodes, and recursively solve the problem (see Fig. 2). After
the recursion, we will know for all marked nodes. We
can use the stored distance information from the
unmarked nodes to the marked nodes to compute for
all unmarked nodes.

We will now formally describe an in place recursive algo-
rithm. The algorithm communicates messages with four

components: = �t, s, m, r�, where t is the target of the
message, m is the id of the originating marked node, s is
the source of the message, and r is the distance to the orig-
inating marked node.

For each node u we define u.i, an integer marking of the
node. Let l identify the level of recursion. u.i and l will be
used in conjunction to identify unmarked nodes and
marked nodes for each recursion level, allowing for an in
place algorithm. For each level l, u.i = l if and only if then
u is an unmarked node. u.i = l + 1 if and only if u is a
marked node. Initially u.i = 0 for all u. Initially l = 0. Let nl
be the number of nodes with u.i = l. We execute the fol-
lowing recursive algorithm:

1. Mark nodes: For each node u that is unmarked (u.i = l),
mark u (u.i ← l + 1) under the following conditions:

• u is an end point.

 u

 u

 u

Page 5 of 12
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S14 http://www.biomedcentral.com/1471-2105/10/S1/S14
• with some probability ρ.

2. Construct messages: For each node u that is a marked
node, construct messages to be sent to the neighbors of u:
�u.A1, u, u, u.W1� and �u.A2, u, u, u.W2�

3. Propagate messages: While there exist some messages
to send:

(a) Send and receive all messages. This is a many-to-many
communication.

(b) For each message received with target t, we can get
the origin of the message by comparing s with t.A1 and

t.A2. We will assume that s = t.A1; the other case is handled

similarly.

• If t is a marked node then set the new adjacencies and
weights for the recursive problem: t.A1 ← m and t.W1 ← r.

• If t is an unmarked node then:

❍ Record the originating marked node and the distance to
it: t.E1 ← m and t.R1 ← r.

❍ Propogate as �t.A2, m, t, r + t.W2�.

4. Recursion: At this point, the recursive problem has
been initialized. If nl+1 <T proceed with the base case. Oth-
erwise recurse with l ← l + 1.

5. Recursive Result: When the recursion is complete, all
marked nodes will have [u] computed.

6. Compute [u] for all unmarked nodes: For each u
with u.i = l:

(a) Get flanking nodes: For flanking nodes: v ← u.E1 and

w ← u.E2, gather [v] and [w] if v and w are not local.

Notice that v and w are marked.

(b) Calculate [u]: It must be the case that either v.E1 =

w.E1 or v.E1 = w.E2. We will consider the first case, as the

second case is handled similarly.

• If (v.R1 < w.R1) then set [u] ← �u.R1 + v.R1,v.E1,w.R2 -

u.R2,v.E2�.

• If (v.R1 > w.R1) then set [u] ← �v.R1 - u.R1,v.E2,w.R2 +

u.R2,v.E1�.

The base case of the algorithm requires gathering all
remaining n' marked nodes to a single processor to be
ranked. To do so, we must map the pointers in the original
array of size n to the new array of size n'. We construct an
additional array that maps from the domain of n' to the
domain of n. Once this array is gathered to a single proc-
essor, an inverted mapping is created. This inverted map-
ping is used to map the adjacency pointers, which index
into the global domain, to the smaller domain.

Run-time analysis

The number of rounds of message passing in Step 3 is
given by the longest distance between two marked nodes.
As each node is randomly marked, this distance is
bounded by 3p ln(nl) with high probability [16]. There-

fore, the expected number of communication rounds is

Sparse ruling set algorithmFigure 2
Sparse ruling set algorithm. The recursive step of the sparse ruling set algorithm. a) The input lists. b) The marked list with
edges drawn between marked nodes, as well as pointers from unmarked nodes to nearest marked nodes (dashed). Edge
weights are shown via line widths. c) The recursive problem (notice that list on the right has been completed and does not
form a recursive subproblem).
Page 6 of 12
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S14 http://www.biomedcentral.com/1471-2105/10/S1/S14
O(log(nl)). The communication volume over these

O(log(nl)) rounds is O (). Because nl is expected to

exponentially decrease in O(log n) recursive calls, the the
total expected run-time of undirected list ranking is given

by O () parallel compute time, O(log2 n) communica-

tion rounds, and O () parallel communication volume.

Compacted graph construction
After solving the list ranking transformation, we will set id
and adj for tuples x and y as follows:

• if [id].E1 ≤ [id].E2:

❍ x.id ← y.id ← [id].E1

❍ x.adj ← y.adj ← [id].R1

• if [id].E1 > [id].E2:

❍ x.id ← y.id ← [id].E2

❍ x.adj ← y.adj ← [id].R2

The id component of each edge tuple corresponds to the
chain id, and the adj component of each edge tuple corre-
sponds to the chain position. By sorting the tuples using
these two fields as the primary key and the secondary key
respectively, we can order all tuples according to their
chain membership and position. If we shift boundary ele-
ments such that all elements with the same id are on the
same processor, all tuples belonging to the same chain
will be local to a processor. From these sorted tuples, we
will construct our compacted graph representation.

First, we must store chains, each chain consisting of a
sequence of bases. Each base in the chain is represented by
a tuple �b1, b2, id, pos�, where b1,b2 ∈ {A, C,G,T}. This rep-
resentation arises naturally from the tuples in the sorted
order described above, and in fact the transformation to
this representation only removes redundant and unneces-
sary information.

In addition to the chains, we also construct a distributed
tuple list that models the compacted string graph. Each
tuple is of the form �u, v, du, dv, cov, ch_id, ch_dir�, with u
the first endpoint, v the second endpoint, du the direction
of the arrowhead at u, dv the direction of the arrowhead at
v, cov the average coverage on that edge, ch_id the identi-
fier of the chain that labels this edge, and ch_dir = {for-

ward, reverse} corresponding to which strand of the chain
should be read when moving from u to v.

The tuples for the compacted graph can be easily con-
structed by scanning the original graph tuples in the
sorted order described above. For every chain starting with
tuple �u, v, du, dv, cu, cv, id, 0� and ending with tuple �x, y, dx,
dy, cx, cy, id, adj�, we construct tuples �u, y, du, dy, cov, id,
forward� and �y, u, dy, du, cov, id, reverse�. Assume that the
coverage information for each can be calcualted as the
average coverage of all positions along the chain.

Graph reduction
At this point of graph processing, much of the repeat
structure of the genome will be hidden in the graph, and
as a result the length of all chains will be less than g. We
wish to perform a sequence of reductions that will simul-
taneously simplify the graph while expanding the length
of all chains to approach the size of g. We do this by per-
forming graph manipulations centered at some nodes.

Consider the set of tuples = {t1, t2, ... tk} all sharing

the first node id u. These tuples correspond to edges inci-

dent to u in the graph. We can partition into two sets

 and , where ti ∈ if and only if ti.du = Ў, while

tj ∈ if and only if tj.du = Ј. Thus, conceptually when

traversing the graph, if we enter the node u along an edge

that corresponds to a tuple in , we must exit the node

in an edge that corresponds to a tuple in , and vice

versa. This means that for each ti ∈ there are | | pos-

sible continuations, and for each tj ∈ there are | |

possible continuations. Our goal is to reduce these possi-
bilities.

First, we will choose some to remove from .

Next, for each ti ∈ , we define a subset . These

are the nodes from that we wish to remain connected

to ti. We then can define as the set of edges to

remove from .

When we remove graph edges corresponding to and

, we will replace them with the following edges. For

each ti = �u, v, du, dv, ...� ∈ and tj = �u, w, du, dw, ...� ∈ ,

construct new edge with tuples �v, w, dv, dw, ...� and �w, v, dw,

dv, ...�. We will also update the chain associated with these

new edges to be the concatenation of the corresponding

nl
p

n
p

n
p

 u

 u

 u u u

u

 u

u

 u u

u u

′ ⊆ u u u

′ u ′ ⊆ u u

u

′ = u i u
i∪

u

′ u

′u

′ u u
i

Page 7 of 12
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S14 http://www.biomedcentral.com/1471-2105/10/S1/S14
chains for the deleted edges. We call this sequence of oper-
ations a graph reduction centered on node u.

The actual choice of and result from the following

rules:

Rule 1: Y to V reduction

We show an example of this rule being applied in Fig. 3.a.

A Y-node is a node in which | | = 1 and | | > 1 (or

vice versa). We will consider the case where | | = 1 and

| | = k. For the Y to V transformation, we set

and . Because the adjacency list for u is now

empty, we consider u removed from the graph. In essence,
this rule allows for repeated elements from the genome to
be duplicated in the graph. With each such operation, we
would expect the total length of all edge labels in the
graph to approach the actual length of the genome, but
still be bounded by said length.

Rule 2: Loop reduction

We show an example of this rule being applied in Fig. 3.b.

A loop node is a node in which = {�u, v, Ў, dv, ...�, �<u,

u, Ў, Ј, ...�} and = {�u, w, Ј, dw, ...�, �u, u, Ј, Ў, ...�.

There exists exactly one valid traversal of the graph at a
loop node u: enter u, take the loop, and then exit u. As in
the previous rule, we remove all edges adjacent to u, but
this time we replace these adjacencies with a single edge.
As shown in Fig. 3.b, the resulting chain is the concatena-
tion of three chains (labeled x, y, and z in the figure).

These two rules were also described by Medvedev et al.
[11]. Their iterative application to the graph results in a
graph that Medvedev termed the conflict graph, consisting

entirely of nodes that fall under two classes-either | | =

1 or | | > 1 and | | > 1.

Rule 3: Coverage matching

We show an example of this rule being applied in Fig. 3.c.
We will make use of the special nature of transcriptome
data to match incoming tuples with outgoing tuples. Con-
sider an incoming tuple ti and outgoing tuple tj. If |covi -

covj| <T, where T is some threshold, then we term ti and tj
compatible. If ti is only compatible with tj and tj is only com-

patible with ti, then we term them uniquely compatible. We

now define to be that set of all tuples ti in that

have a uniquely compatible tuple tj in and define

= {tj}.

We have introduced this rule for the specific problem of
transcriptome assembly. Through this rule we leverage the
coverage information inherent in the graph to reduce the
number of possible traversals of the graph.

Parallel graph reduction
We wish to perform the described graph reduction in par-
allel. In general, we will proceed in a series of iterations.
In each iteration we will identify nodes that center reduc-
tions and carry out those reductions in parallel.

The first step is to find nodes that will center reductions.
We can identify all nodes obeying one or more of our
reduction rules in parallel because our rules require only

′ u ′u

 u u

 u

u ′ ← u u

′ ← ← u u
i

u

 u

u

 u

 u u

′ u u

u u
i

Graph reduction rulesFigure 3
Graph reduction rules. The three graph reduction rules as described in the text: a) Y to V reduction b) loop reduction c)
coverage matching. Each figure is labeled with a node identifier and chain identifier, and shows the structure of the graph
before and after the reduction. It also shows how the underlying chains are concatenated for each type of reduction.
Page 8 of 12
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S14 http://www.biomedcentral.com/1471-2105/10/S1/S14
local adjacency information, which is available on a single
processor if we sort tuples by the first node ID. However,
we cannot concurrently carry out reductions on all of
these nodes, because if nodes u and v both center reduc-
tions, and u and v are adjacent in the graph, the operations
they wish to perform will be incompatible. This is because
node u might want to remove itself from the graph, while
node v might wish to make a new edge with u as an end-
point.

For this reason during each iteration we can only operate
on an independent set of the nodes identified as centering
valid reductions. An independent set of nodes is a set of
nodes such that the induced graph has an empty edge set.
Finding a maximum independent set is NP-hard [17] (it is
equivalent to finding the maximum sized clique in the
complement graph). A randomized parallel algorithm for
fining a maximal independent exists [18], but it uses O(log
n) communication rounds. Instead, we describe a heuris-
tic algorithm that chooses a large independent set of
nodes assuming that the nodes have similar degree and
the node identifiers are randomly permuted. When the
following algorithm completes, black nodes mark an
independent set.

1. Mark all nodes white.

2. For each node u identified as centering a reduction:

(a) Mark u black.

(b) Send messages to all nodes adjacent to u.

(c) For each black node v adjacent to u, if u.id > v.id, mark
u white.

The second step is to carry out the reductions in parallel.
For this we define a sufficient set of four operations. For
each of the operations, the processor holding the reduc-
tion node sends messages to the processors holding the
tuples and chains to be modified.

1. Delete(u,v): Deletes two tuples.

2. Insert(u, v, du, dv, cov, ch_id, ch_dir): Creates two tuples
for the new edge.

3. Update(ch_idold, ch_id, of f set, flip): Updates chain iden-
tified by ch_idold: sets the identifier to ch_id, adds of f set to
the molecule positions, and possibly flips the orientation
of the chain by reversing the order.

4. Duplicate(ch_idold, ch_id, of f set, flip): Copies the chain
and then updates it.

We will now describe the parallel algorithm for graph
reduction.

1. Find all reduction nodes in the graph.

2. Find an independent set of such nodes using the heuris-
tic described above.

3. For all nodes in the independent set, create messages for
updating the graph, and distribute these messages using a
many to many communication.

4. Process in parallel the graph manipulation messages.
This can be done using a single scan of the distributed
tuple array.

5. Process in parallel the chain manipulation messages.
This can be done using two scans of distributed tuple
array.

6. Re-sort the graph and chain tuples to maintain sorted
order.

7. If some reduction in the graph has occurred, continue
with Step 1.

Run-time analysis

Steps 1, 2, 3, and 4 take O () local computation, where

n is the number of nodes in the graph, and a constant
number of communication rounds. Steps 5 and 6 take O

() local computation and a constant number of com-

munication rounds with O () communication volume,

where g is the size of genome. Because in practice the size
the graph is much less than the size of the genome the

running time of each iteration is O (), the communica-

tion volume is O (), and the number of communication

rounds is O(1).

Because the time taken for Step 6 dominates the runtime
and is independent of the number of chains being proc-
essed, we see benefit in trying to limit the number of iter-
ations. Still, we use a heuristic rule to find an independent
set of reduction nodes that works well in practice, and
empirically we observe the number of iterations to be on
the order of log(n). More importantly, the resulting pro-
gram was able to process large inputs in a matter of sec-
onds using this rule. Whether using the parallel
randomized algorithm [18] to find a maximal independ-

n
p

g
p

g
p

g
p

g
p

Page 9 of 12
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S14 http://www.biomedcentral.com/1471-2105/10/S1/S14
ent set significantly reduces the number of iterations and
improves the runtime is an open question.

Writing the contigs
Once we have constructed the graph, compacted the
chains, and finished graph reduction, we can output the
contigs by traversing the final chains. The starting point
for traversal will dictate which of the two strands of DNA
will be written. From each chain in the graph, we can out-
put a strand of DNA with (l + k - 1) nucleotides, where l is
the length of the chain (See Fig. 1). This is because the
strand of DNA read when traversing one strand is offset
(k-1) positions from the strand read from reading in the
other direction. This means that after reading l nucleotides
from the chain in the one direction as s, and reading (k -
1) nucleotides in the opposite direction as e, the full
sequence read can be written as se', where e' is the comple-
mentary strand of e.

Results and Discussion
Synthetic data
The Illumina sequencing machine currently reports 36
length reads with the ability to report 50 length reads cur-
rently in testing. We analyzed data from a single Illumina
run from the Michael Smith Genome Sciences Center to
produce a model for the generation of vast amounts of
synthetic data. The Illumina quality file consists of a vec-
tor �QA, QC, QG, QT�, where QN is the quality score for call-
ing the nucleotide N, calculated using the following
formula, where p is the probability of the nucleotide being
N:

The Q values are integers in the range [-40, 40], with Q =
-40 ↔ p = 0, Q = 0 ↔ p = .5 and Q = 40 ↔ p = 1. To meas-
ure the goodness of a base call, we look at the difference
between the highest Q value and the second highest Q
value. We want this difference to be significant to consider
the call to be valid. For our analysis we chose to consider
a difference greater than 10 between the maximum Q
value and second highest Q value to be significant. This
corresponds to an underlying probability difference of
between .4 and .5.

To adequately generate synthetic data, we are interested in
three questions about the Illumina sequence quality: 1)
What is the probability that the base call is bad at a partic-
ular position (between 1 and 36)? 2) What is the proba-
bility that a base call is bad at a particular position, given
no bad base calls in a previous position? 3) What is the
probability that a base call is bad at a particular position,
given some bad base call in a previous position?

As can be seen in Fig. 4, the conditional probability that a
base is bad if we have previously seen a bad base is high
in Illumina data. Conversely, the probability that a base is
bad given that all previous bases are good remains low
across all positions. From this data, we can infer that once
a bad base call is made, whatever condition caused this
state remains in effect for the remainder of the base calls,
causing the rest of the sequence to be unreliable. At the
same time, the sequence before this switchover point is of
high quality. For this reason, it seems reasonable to model
properly trimmed Illumina sequences as nearly perfect
sequences, and we do so by randomly selecting read
lengths between 30 and 50.

We generated synthetic data from the genic regions of
maize, predicted using FGENESH v.2.6 (using the mono-

Q =
−

⎛

⎝
⎜

⎞

⎠
⎟10

110log
p
p

Error analysis of Illumina dataFigure 4
Error analysis of Illumina data. Error Analysis of Illumina Data by position. We analyzed the percentage of bad bases
(center line), the percentage of bad bases, given some bad base in a previous position (top line), and the percentage of bad
bases, given no bad base in a previous position (bottom line).
Page 10 of 12
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S14 http://www.biomedcentral.com/1471-2105/10/S1/S14
cots matrix) on the previously assembled maize genomic
islands [1]. We used 61,428 gene structures to generate
simulated high coverage transcriptome data. Each gene
was sampled at a random coverage between 50× and
1000× using read lengths of 30 to 50 base pairs, resulting
in a data set of 925 million reads and 40 billion bases. As
discussed in the results section, we assume an adequate
preprocessing of the sequences will remove nearly all
errors.

Performance results
We completed performance scalability testing using p = 64
to p = 1024 and k = 30 on a 1024 node Blue Gene/L super-
computer. We timed each stage of the algorithm individ-
ually and present the results in Table 1.

As can be seen in the table, stages that are not I/O bound
achieved a respectable 6:63X speedup when increasing the
number of processors from 64 to 512. The reduction in
incremental performance towards higher values of p is a
natural reflection of the problem size becoming smaller
per processor. The poor I/O performance is due to the lack
of a parallel I/O interconnect on the system tested. As the
number of processors increases, the serial interconnect
becomes saturated as more processors concurrently read
from disk. Disregarding I/O, the assembly of 40 billion
bases finished in about 40 seconds using 1024 nodes.
Even including serial I/O, the assembly ran in a few min-
utes.

Validation and analysis
We analyzed the effect of varying k on the resulting com-
pacted graph size and hence the quality of the resulting
contigs, as shown in Table 2. As we increase k, we see a sig-
nificant reduction in the number of final contigs pro-
duced by our algorithm, from 338,000 for k = 20 to
114,000 for k = 30. While the relative difference in the

number of unique k-mers does not change much while
varying k, the absolute difference in the number of unique
k-mers is similar to the absolute difference in the output
size, which is significant.

For k = 30 there were approximately two contigs per refer-
ence gene. For validation, we used the BLAST tool to align
the assembled contigs to the reference. We post-processed
the BLAST results to verify that each contig fully aligned to
some predicted gene in the reference. Our analysis
showed that 92% of the contigs correctly aligned back to
the reference. The remaining contigs are mostly the result
of over-collapsing edges during graph manipulation.
Improving this result is an area of ongoing research.

We also measured how well contigs of length 500 or
greater covered the reference sequence. This measure is
similar to the n50 measure usually used for assessing the
quality of a genome assembly, however in our case only a
subset of the reference genes will have lengths greater than
n. We found that approximately 38% of the applicable ref-
erence was covered by contigs with length greater than
500. The maximum length contig was 4017. The maxi-
mum length contig in the reference was 5704.

Conclusion
We presented a parallel method for the assembly of
unpaired short reads, using a distributed bidirected string
graph. In doing so, we address the challenge of effectively
manipulating large distributed graphs on parallel com-
puters. We also present a method for making use of varia-
ble coverage to resolve conflicts that arise due to repeats.
We produce a de novo assembly of the Zea mays transcrip-
tome, using synthetically generated sequences derived
from it. Our method is very fast, producing an assembly
of 925 million reads (40 billion nucleotides) in a few
minutes. Our final assembly consists of an average of two

Table 2: Effect of k on graph size. Effect of varying k on graph size.

K Unique k-mers Num Edges Compacted Edges Reduced Edges

20 20,537,274 20,658,206 451,718 338,121
25 20,717,553 20,741,818 205,858 149,018
30 20,758,869 20,764,256 154,965 114,028

Table 1: Performance results. Runtime in seconds for the transcriptome data set with approximately 40 billion bases. p indicates the
number of processors. The last column is the total runtime of all phases, not including file input.

P Read Data Construct Graph Compact Graph Reduce Graph Total

64 516.47 73.06 81.17 256.8 411.03
128 364.20 40.70 43.17 107.68 191.55
256 189.94 22.63 24.17 59.27 106.07
512 195.04 13.37 15.42 33.23 62.02

1024 168.26 8.08 11.64 20.13 39.85
Page 11 of 12
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S14 http://www.biomedcentral.com/1471-2105/10/S1/S14
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

contigs per predicted gene for this complex plant genome.
De novo assembly of a genome using short reads will
almost certainly require the integration of clone pairs into
the proposed method. We are currently working on devel-
oping a parallel method for de novo genome assembly
incorporating clone pair information.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
BJ developed the algorithmic solutions, implemented the
software, and drafted the manuscript. PS provided
domain expertise, contributed to understanding the prob-
lem and the experimental processes, and provided ongo-
ing feedback. SA conceived the problem, critiqued the
solution, and assisted in the development and revision of
the manuscript.

Acknowledgements
We thank Chad Brewbaker, Scott Emrich, Xiao Yang, and Jaroslaw Zola for
their input and feedback. This project was supported in part by the National
Science Foundation under CNS-0521568, DBI-0527192, and CCF-
0431140, and by the Plant Sciences Institute Innovative Research Grants
program. This article was invited to be published as part of the supplemen-
tal issue of the 2009 Asia Pacific Bioinformatics Conference.

This article has been published as part of BMC Bioinformatics Volume 10 Sup-
plement 1, 2009: Proceedings of The Seventh Asia Pacific Bioinformatics
Conference (APBC) 2009. The full contents of the supplement are available
online at http://www.biomedcentral.com/1471-2105/10?issue=S1

References
1. Emrich S, Aluru S, Fu Y, Wen T, Narayanan M, Guo L, Ashlock D,

Schnable P: A Strategy for Assembling the Maize (Zea mays
L.) Genome. Bioinformatics 2004, 20:140-147.

2. Pevzner P, Tang H, Waterman M: Fragment assembly with dou-
ble-barreled data. Proceedings of the National Academy of Sciences
2001, 98(17):9748-9753.

3. Myers E: The fragment assembly string graph. Bioinformatics
2005, 21:ii79-ii85.

4. Medvedev P, Brudno M: Ab Initio Whole Genome Shotgun
Assembly with Mated Short Reads. Lecture Notes in Computer
Science 2008, 4955:50-64.

5. Hernandez D, Francois P, Farinelli L, Osteras M, Schrenzel J: De
novo bacterial genome sequencing: Millions of very short
reads assembled on a desktop computer. Genome Research
2008, 18:802-809.

6. Zerbino D, Birney E: Velvet: Algorithms for De Novo Short
Read Assembly Using De Bruijn Graphs. Genome Research
2008.

7. Warren R, Sutton G, Jones S, Holt R: Assembling millions of
short DNA sequences using SSAKE. Bioinformatics 2007,
23:500-501.

8. Dohm J, Lottaz C, Borodina T, Himmelbauer H: SHARCGS, a fast
and highly accurate short-read assembly algorithm for de
novo genomic sequencing. Genome Research 1997, 17:1697-1706.

9. Butler J, MacCallum I, Kleber M, Shlyakhter I, Belmonte M, Lander E,
Nusbaum C, Jaffe D: ALL-PATHS: De novo assembly of whole-
genome shotgun microreads. Genome Research 2008,
18:810-820.

10. Sundquist A, Ronaghi M, Tang H, Pevzner P, Batzoglou S: Whole-
Genome Sequencing and Assembly with High-Throughput,
Short Read Technologies. PLoS ONE 2007, 2:e484.

11. Medvedev P, Georgiou K, Myers G, Brudno M: Computability of
Models for Sequence Assembly. Lecture Notes in Computer Sci-
ence 2007, 4645:289-301.

12. Shankar R, Ranka S: Random Data Accesses on a Coarse-
Grained Parallel Machine. II. One-to-Many and Many-to-One
Mappings. Journal of Parallel and Distributed Computing 1997,
44:24-34.

13. Helman D, Ja'Ja' J, Bader D: A new deterministic parallel sorting
algorithm with an experimental evaluation. Journal of Experi-
mental Algorithms 1998, 3:4.

14. Jackson B, Aluru S: Parallel Construction of Bidirected String
Graphs for Genome Assembly. Proceedings of the International
Conference on Parallel Processsing 2008:346-353.

15. Sibeyn J, Guillaume F, Seidel T: Practical Parallel List Ranking.
Journal of Parallel and Distributed Computing 1999, 56:156-180.

16. Dehne FKHA, Song SW: Randomized Parallel List Ranking for
Distributed Memory Multiprocessors. Asian Computing Science
Conference 1996:1-10.

17. Karp R: Reducibility Among Combinatorial Problems. Com-
plexity and Computer Computations 1972:85-103.

18. Motwani R, Raghavan P: Randomized Algorithms New York, NY, USA:
Cambridge Press; 1995.
Page 12 of 12
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/10?issue=S1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14734303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14734303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16204131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18332092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18332092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18332092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18349386
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18349386
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17158514
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17158514
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18340039
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18340039
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17534434
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17534434
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17534434
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Introduction
	Model of parallel computation
	The bidirected graph model

	Methods
	Parallel graph construction
	Dealing with error

	Parallel identification of unique contigs
	Weighted undirected list ranking problem
	List ranking transformation
	Parallel list ranking
	Run-time analysis
	Compacted graph construction

	Graph reduction
	Rule 1: Y to V reduction
	Rule 2: Loop reduction
	Rule 3: Coverage matching
	Parallel graph reduction
	Run-time analysis

	Writing the contigs

	Results and Discussion
	Synthetic data
	Performance results
	Validation and analysis

	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References

