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Abstract
Background: The genome aliquoting probem is, given an observed genome A with n copies of each
gene, presumed to descend from an n-way polyploidization event from an ordinary diploid genome
B, followed by a history of chromosomal rearrangements, to reconstruct the identity of the original
genome B'. The idea is to construct B', containing exactly one copy of each gene, so as to minimize
the number of rearrangements d(A, B'  B'  ...  B') necessary to convert the observed genome
B'  B'  ...  B' into A.

Results: In this paper we make the first attempt to define and solve the genome aliquoting
problem. We present a heuristic algorithm for the problem as well the data from our experiments
demonstrating its validity.

Conclusion: The heuristic performs well, consistently giving a non-trivial result. The question as
to the existence or non-existence of an exact solution to this problem remains open.

Background
Occasionally, during evolution, a genome B will convert
into an n-fold replicate of itself, creating a polyploid B  B
 ...  B, containing n identical copies of every gene and
every chromosome. Over time, through genome rear-
rangements, the sets of chromosomes are intermingled
and the identity of the original genome is lost. Thus, brew-
ers' yeast descends from an ancient tetraploid and wheat
from an ancient hexaploid. Then the genome aliquoting
probem is, given an observed genome A with n copies of
each gene, to reconstruct the identity of the original
genome B'.

The aliquoting problem is a generalization from the
genome halving problem [1,2], just as polyploidization is a

more general process than tetraploidization. High-order
polyploids are particularly prevalent in plants. We will
illustrate with a data set on hexaploid wheat n = 3.

The genome halving problem has been solved several times.
The first solution to this problem was published in [1],
which solved this problem with respect to inversion and
translocation distance. [3] corrected a small problem in
[1] with respect to unichromosomal genomes. In [2] the
problem was solved with respect to the inversion, translo-
cation and block interchange distance; an approach that
was later refined in [4]. All of these algorithms are linear
time and very efficient and proven to return the most par-
simonious solution.
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Until now, there have not been any algorithms to solve
the more general genome aliquoting problem. Our algo-
rithm for the genome aliquoting problem is an extension
of the genome halving algorithms, primarily the algo-
rithm from [2], to handle polyploids with three or more
copies of every gene.

Notation
In this section we introduce our notation for genomes. A
gene a represents an oriented sequence of DNA whose two

extremities are its tail  and its head . The adjacency of
two consecutive genes a and b is denoted by an unordered

set, either ,
depending on the order and orientation of a and b.

An extremity that is not adjacent to any other extremity is

called a telomere and is represented by a singleton set { }

or { }. A genome is represented by an unordered set of
adjacencies and telomeres such that the head and tail of
each gene appear exactly once.

A duplicated genome is a genome with two or more copies
of each gene such that the head and the tail of every gene
appear exactly p  2 times. To differentiate the genes we
arbitrarily assign each gene a subscript. Thus, we say that
gene a is a unique gene with paralogs a1,a2, ... ap with corre-

sponding paralogous extremities  and

.

Without a loss of generality, we say that two adjacencies
{a, b} and {c, d} are compatible if both a is paralogous with
c and b is paralogous with d or if neither a nor b is paralo-

gous with either of c or d. For example,  and

 are compatible but neither is compatible with

 but all three are compatible with . Any
two telomeres are always compatible. A telomere and an
adjacency are compatible if the telomere's extremity is not
paralogous with either of the extremities in the adjacency.
We say that a set of adjacencies and telomeres is compati-
ble if no two elements of the set are incompatible.

Definition 1 Let A be a duplicated genome. A is valid if and
only if:

• If there exists an x and there exists a y such that {ux, vy}  A
and uxis not paralogous with vythen for all 1  x  p there exists
a y such that{ux, vy}  A

• If there exists an x such that {ux}  A then for all 1  x  p
{ux}  A.

A duplicated genome that is valid is a perfectly duplicated
genome (see Figure 1b for an example). Similarly, an
invalid duplicated genome is called a rearranged duplicated
genome (see Figure 1a for an example).

We can now define the problem:

Definition 2 The genome aliquoting problem is defined as
follows: given a rearranged duplicated genome A find a per-
fectly duplicated genome B such that the distance between A
and B is minimal with respect to some distance metric.

In this paper, the distance metric we will use is the double
cut and join distance. The distance between two genomes is
the shortest sequence of rearrangement operations
needed to transform a genome A into a genome B. With
double cut and join, the set of rearrangement operations
used to compute the distance includes translocations,
fusions, fissions, inversions and block interchanges (an
approximation of a transposition). Double cut and join
was introduced in [5] and refined later in [6]. It is the later
paper from which we draw the following formal defini-
tion of double cut and join:

Definition 3 The double cut and join operation acts on two
adjacencies or telomeres u and v of a genome in one of the fol-
lowing three ways:

• If both u = {p, q}and v = {r, s}are adjacencies, these are
replaced by the two adjacencies {p, r}and {s, q}or by the two
adjacencies {p, s}and {q, r}.

• If u = {p, q}is an adjacency and v = {r}is a telomere, these
are replaced by {p, r}and {q}or by {q, r}and {p}.

• If both u = {q}and v = {r}are telomeres, these are replaced
by {q, r}.

In addition, as an inverse of the last case, a single adjacency {q,
r}can be replaced by two telomeres {q}and {r}.

Methods
The pseudocode for the algorithm is given in Figure 2. In
following sections we breakdown and explain the various
steps of the algorithm in detail as well as our implemen-
tation of the algorithm.

a
>−

a
→

{ , },( { , }),{ , },{ , },{ , }a b a a a b a b a b
→ >− >− → → → >− >− >− →

=

a
→

a
>−

a a ap1 2

→ → →
, , ...,

{ , }a b1 3

>− →

{ , }a b2 2

>− →

{ , }d b4 1

>− →
{ , }c d2 4

→ >−
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Generate natural graphs
Like when solving the genome halving problem, the first
step for the genome aliquoting heuristic is construct a nat-
ural graph according to the definition below.

Definition 4 Let A be a duplicated genome. A natural graph
NG(V, E) is a graph whose vertices V are the adjacencies and
telomeres of A and each extremity is connected to all of its par-
alogous extremties by an edge in the set E.

Observe that, with this definition, the vertices have a
degree of either p - 1 or 2 (p - 1) where p is the ploidy of
the genome. Thus, for the interesting case of p  3, every
vertex has a degree of at least two (see Figure 3 for an
example). However, essential to genome halving is that
every vertex in the natural graph have a degree of at most
two.

A graph with a degree of at most two is important for two
reasons. Firstly, it allows for the maximum cardinality set
of compatible adjacencies and telomeres of the natural
graph to be easily computed, as in [2], or for the double
cut and join operation to be applied directly on the graph,
as in [4]. Secondly, it allows for the cycles and paths of the
natural graph to be trivially computed.

Since the heuristic must handle graphs with vertices of
degree three or more, it must find this information
through some other means. Hence, while the natural
graph is still the base of the solution, a great deal of addi-
tional work is needed to extract the relevant information
from it.

Generate modified clique graphs
While many useful properties of the natural graph are
obfuscated when the ploidy of the graph is increased to
three or more, one property is still very clear: the graph's
cliques. Every extremity of the genome corresponds to one
clique in the natural graph. Thus, to capitalize on this, we
create a clique graph from the natural graph according to
the following definition.

Duplicated genomesFigure 1
Duplicated genomes. Two different genomes both with three chromosomes, four unique genes each with three paralogs. 
(a) The rearranged duplicated genome represented by the unordered set 

. (b) The perfectly duplicated genome represented by the unor-

dered set .
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b3 d3
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(b)
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AlgorthimFigure 2
Algorthim. A pseudocode description of the genome aliq-
uoting algorithm.

Algorithm:Genome Aliquoting Heuristic
Data: Rearranged duplicated genome A
Result: Perfectly duplicated genome B
NG(V,E) = GenerateNaturalGraph(A);
CG(V ′, E′) =
GenerateModifiedCliqueGraph(NG);
M = MaximumWeightMatching(E’);
foreach e ∈ M do

Weight(e) = Ploidy(A)− Weight(e);
end
C = FindCycles(E’);
P = FindPaths(E’);
B = CreateGenome(A, M, C, P);
return B;
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Definition 5 Let NG(V, E) be a natural graph constructed
from a genome A. A clique graph CG(V', E') is a graph whose
vertices V' are the extremities of A and there exists an edge {u,
v} in the set E' if there exists an adjacency {ux, vy} in A where
1  x, y  p and p is the ploidy of A.

Observant readers may notice that, in order to compute
the clique graph, the natural graph is not needed. It is
included in the pseudocode and the above section to help
stress the link between the genome aliquoting heuristic
and genome halving algorithm and to better explain the
origin of the clique graphs, but it is not necessary in an
actual implementation.

The clique graph as defined above is not sufficient for our
purposes. It is missing the data concerning the telomeres
contained in the natural graph. To solve this problem, the
algorithm must modify the clique graph by creating null
vertices, one for each vertex of the clique graph, and con-

necting each null vertex to its corresponding non-null ver-
tex by an edge (see Figure 4).

Now, after modifying the clique graph, each edge corre-
sponds to either an adjacency or telomere in the genome.
However, it would be useful to know how many adjacen-
cies and telomeres correspond to each edge. The solution
is to weight the edges. If the edge corresponds to an adja-
cency, assign it a weight equal to the number of adjacen-
cies to which it corresponds. If the edge corresponds to a
telomere, assign it a weight equal to half the number of
telomeres to which it corresponds (see Figure 4). The rea-
son why telomeres are weighted half as much as adjacen-
cies is because telomeres are weighted half as much as
adjacencies when computing the double cut and join dis-
tance. Since the objective is compute double cut and join
distance directly from the clique graph, it is important to
capture this detail.

Even with all the additional information added to the
clique graph some information is still missing. In particu-
lar, adjacencies of the form {u, u} are not considered in
this graph. This is intentional. Such information doesn't
help in the aliquoting of the graph so the algorithm sim-
ply ignores it.

Compute maximum weight matching
The process of aliquoting a genome is in theory quite sim-
ple. For each extremity simply select one adjacency or tel-
omere from the rearranged duplicated genome and add it

Natural graphFigure 3
Natural graph. A natural graph describing the genome 
depicted in Figure 1a. Observe that the genome has a ploidy 
of 3 and every vertex in the natural graph has a degree of 
either 2 or 4.
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Modified clique graphFigure 4
Modified clique graph. A modified clique graph describing 
the natural graph depicted in Figure 3. The five bold edges 
represent all the edges that belong to the maximum weight 
matching of this graph.
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to the perfectly duplicated genome, copying it as many
times as needed to get the necessary ploidy. The difficulty
of finding a parsimonious perfectly duplicated genome
lies in the copies. If the copies are not compatible with the
selected adjacency or telomere then the distance between
the original genome and the constructed genome
increases. Thus, any algorithm that endeavors to construct
the most parsimonious perfectly duplicated genome must
maximize the number of compatible adjacencies and tel-
omeres. Thus, as in the genome halving problem, one
important objective of the genome aliquoting problem is
to find the maximum cardinality set of compatible adja-
cencies and telomeres. Using the modified clique graph, it
is now possible to do just that.

Observe that a pair of adjacencies and/or telomeres is
compatible if their corresponding edges in the modified
clique graph do not share a vertex in common (we say the
edges are independent) or if they are represented by the
same edge. Thus, to find the maximum cardinality set of
compatible adjacencies and telomeres the algorithm must
find a set of independent edges with maximum weight.
Consider the following well-known graph problem:

Definition 6 The maximum weighted matching problem
is defined as follows: find a set of independent edges such that
the sum of the weights of the edges is maximum.

The maximum weighted matching problems was
famously solved by Edmonds in polynomial time [7].
Thus, it is possible to compute the maximum set of com-
patible adjacencies and telomeres in polynomial time.
Hence, the algorithm has recovered the first piece of data
that was obfuscated when the transition to genome with
ploidy of three or greater was made (see Figure 4 for an
example).

Find cycle and paths
Typically, a single double cut and join operation reduces
the distance by one. However, occasionally a double cut
and join operation reduces the distance by two instead. In
the genome halving problem, it was possible to detect the
double cut and join operations that would reduce the dis-
tance by two by detecting the even cycles (even in terms of
number of edges) and odd paths in the natural graph.
Since the vertices of the clique graph are the edges of the
natural graph and the edges of the clique graph are the ver-
tices of the natural graph, an even length cycle in the
clique graph corresponds to an even length cycle in the
natural graph but an even length path in the clique graph
corresponds to an odd length path in the natural graph.
Thus, the genome aliquoting heuristic must find even
length cycles and even length paths in the clique graph in
order to detect the double cut and join operations that
reduce the distance by two.

When detecting cycles and paths for the genome aliquot-
ing problem there is are two additional details that must
be considered over the detecting cycles and path for the
genome halving problem. First, unlike the genome halv-
ing problem, not every cycle and path is a component of
the natural graph. For cycles, this doesn't change any-
thing. But for paths, this means that there is an additional
detail that must be considered. For the purposes of the
genome aliquoting problem, a path is any path between
two telomeres in the natural graph meaning that it is
between two null vertices in the modified clique graph
(see Figure 5).

Secondly, an edge in the clique graph may correspond to
several edges in the natural graph. In the clique graph this
is represented by the weights of the edges. Thus, it is
important to account for the weights when detecting
cycles and paths.

Because the task has changed from finding the matching
to finding the cycles and paths the weights of the clique
graph need to be modified slightly as well. In order to
understand why and how to modify the edges, it is impor-
tant to understand what both the matching and the cycles
and paths represent.

Re-weighted modified clique graphFigure 5
Re-weighted modified clique graph. A modified clique 
graph depicted in Figure 4, after it has been re-weighted for 
cycle and path detection. Red edges and vertices represent 
the edges and vertices along an even length alternating path. 
Blue edges and vertices represent the edges and vertices 
along an even length alternating cycle. As can be seen from 
the figure, this graph has exactly one even alternating cycle 
and exactly one even alternating path each with a flow of 1.
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In the genome aliquoting problem, the goal is to construct
another genome that minimizes the distance. Thus, the
algorithm must build a genome in such a way that the
fewest number of double cut and join operations need to
be performed. Another way of looking at it is that we are
"pre-performing" double cut and join operations; any
double cut and join operation that the algorithm can
legally perform at this stage is one fewer double cut and
join operation that it must perform later. The edges of the
matching, and their corresponding edge weights, indicate
the double cut and join operations that can be legally per-
formed during the creation of the genome, i.e. they indi-
cate the double cut and join operations that need not be
performed when computing the distance.

When computing the cycles and paths, the algorithm is no
longer "pre-performing" double cut and join operations.
Rather, the algorithm is attempting to predict the double
cut and join operations that will be performed when com-
puting the distance between the original genome and the
constructed genome. Thus, while the weights of
unmatched edges are still correct as the extremities repre-
sented by those edge will need to be moved when the dis-
tance is computed, the weights of the matched edges are
not correct as the double cut and join operation indicated
by those weights will have already have been performed.

Therefore, the algorithm must change the weights of the
matched edges to reflect the situation during the calcula-
tion of the distance.

So what, if anything, do the matched edges represent
while the distance is being computed? The matched edges
represent the final state of two extremities; the extremities
that correspond to the vertices that the edge connects. The
current weight of the matched edge indicates how many
of the pairs of extremities have reached that final state.
Therefore, the complement of that weight indicates how
many pairs of extremities have not yet reached that final
state. Hence, if p is the ploidy of the graph and w(e) is the
weight of a matched edge e, then w(e) = p - w(e).

Unfortunately, there is a complication when it comes to
re-weighting the graph. In the original weighting scheme,
the weights of edges connected to a null vertex where
weighted half as much as those connect to two non-null
vertices. The algorithm needs to re-weight the edges to be
on par with the others. Hence, if e is a matched edge
connected to a null vertex then its weight should be w(e)
= p - 2·w(e) and if e is an unmatched edge connected to a
null vertex then its weight should be w(e) = 2·w(e). See
Figure 5 for an example on how to re-weight the graph.

Once the algorithm has updated the weights to reflect the
change in objective how do the weights factor into the

detection of cycles and paths? It is easy to see that each
weight represents an upper bound on some kind of
resource. The matched edges represent an upper bound on
the double cut and join operations used in computing the
distance and the unmatched edges represent an upper
bound on the resources available to the double cut and
join operations, i.e. the extremities. Thus, matched and
unmatched edges, each in a different way, represent an
upper bound on the number of double cut and join
operations.

In the genome halving problem, any sequence of double
cut and join operations that form an even cycle or an even
path produces an extra double cut and join operation. It is
the same for the genome aliquoting problem except that a
cycle or path may represent multiple sequence of double
cut and join operations and, hence, multiple extra double
cut and join operations. As each edge represents an upper
bound on the number of double cut and join operations
that can act on that edge, the number of sequences of dou-
ble cut and join operations is the smallest edge weight on
the even cycle or even path. Therefore, it is the flow of the
even cycle or even path that the algorithm must compute.

There is another factor that the algorithm must account
for when choosing cycles and paths: they must alternate
between matched and unmatched edges. As mentioned
before, matched edges represent the double cut and join
operations and unmatched edges represent the extremities
used in those double cut and join operations, thus, both
are needed. By alternating between matched and
unmatched edges, we learn which extremities must be
matched to which double cut and join operations in order
to produce an extra double cut and join operation.

The authors of this paper make no assertion about the best
method to determine the cycles and paths other than that
any implementation of this algorithm should make an
effort to maximize the number of cycles, and their flow,
and the number of paths and their flow. Ideally this
should be done in one step, but, as this is a heuristic,
doing it in two steps (finding cycles followed by path or
visa versa) is possible but with a potential lose in accuracy.
Unfortunately, because of the simplicity of the later
method, it is the method that we use in our implementa-
tion (see section Implementation below).

Create genome

At this stage it is now possible to construct a perfectly
duplicated genome. As both the genome and the maxi-
mum cardinality set of compatible adjacencies and telom-
eres are sets of adjacencies and telomeres, the maximum
cardinality set of compatible adjacencies and telomeres
Page 6 of 11
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can be used to immediately create part of the perfectly
duplicated genome as depicted in Figure 6.

For the remaining adjacencies and telomeres of the per-
fectly duplicated genome, the matched edges that are con-
nected to two non-null vertices indicate the adjacencies
and those that are connected to only one non-null vertex
indicate the telomeres. However, pairing these extremities
alone does not guarantee a good aliquoting. In some cases
it is important to know the subscripts of the extremities to
be paired.

To get this additional information, the algorithm must
join along the cycles and paths that it detected (see Figure
7). To do this, take the two adjacencies represented by two
unmatched edges along a cycle or path (one adjacency
from each unmatched edge) and use their adjacent
matched edge as a template to join them. For example,
assume without a loss of generality let {a, b} be a matched
edge along one of the detected cycles. This edge will be
adjacent to two unmatched edges. Each unmatched edge
will represent some adjacencies in the original genome,
say {cx, ay} and {bz, dw}. To join along the cycle the algo-
rithm adds the overlap between the matched edge and its

adjacent unmatched edges to the constructed genome,
hence it adds {ay, bz}.

When it comes to paths there are two exceptions to the
above rule as there will be two edges in the path that are
connected to a null vertex, one matched edge and one
unmatched edge. Recall that null vertices correspond to
telomeres. Consider the unmatched edge a telomere for
the purpose of joining along the path. Since it will overlap
with its neighboring matched genome, there is no other
difference. As for the matched edge, the algorithm should
simply ignore it.

After joining along the cycles and paths, it is possible to
combine that result with the maximum cardinality set of
adjacencies and telomeres to create the genome. Figure 8
is an example of this. However, while creating the genome
there may be some ambiguity. For example, if a cycle or
path has a flow of two then there will be two possible
extremities that could be joined at each edge. Another
common occurrence of ambiguity is the case where some
extremities are neither part of the maximum cardinality
set of adjacencies and telomeres nor are they identified
while joining along the cycles and paths.

All cases of ambiguity are resolved in the same manner:
arbitrarily combining the extremities. In experiments arbi-
trarily combining the ambiguous extremities never
increased or decreased the distance. In fact, we conjecture
that it can be proven that it never will.

Compatible setFigure 6
Compatible set. A partially aliquoted genome derive from 
the maximum cardinality set of compatible adjacencies and 
telomeres that was derived from the matching depicted in 
Figure 4.

? ?
a1 b1

?
a2 c2 d1

b2 a3 c3 d2

?
b3

?
d3

Joining along the paths and cyclesFigure 7
Joining along the paths and cycles. A partially aliquoted 
genome derived from the path and cycle depicted in Figure 5.
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a1 c1 d3

?
b1
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Implementation
Our implementation of the heuristic follows the pseudo-
code above fairly closely. Detecting the cycles and paths
are performed independently, with the cycles being
detected first since they are usually a greater contributer to
reducing the distance.

We use an implementation of the Edmonds algorithm to
exactly compute the maximum weight matching problem
[7] as well as a slightly modified implementation of the
Edmonds-Karp maximum flow algorithm [8] to find the
flow of the alternating even paths.

For the alternating even cycles, we use a greedy heuristic
that simply tries to find the smallest cycles (in terms of
number of edges) in hopes that this will produce the least
conflict and therefore the maximum flow. Detecting the
cycles is the only heuristic used in our heuristic but even
if we had used an exact algorithm for this step our algo-
rithm would still only be a heuristic.

Our implementation of the heuristic runs in time polyno-
mial to the number of genes in the genome. It performs
extremely quickly requiring very large genomes to pro-
duce any kind of noticeable slowdown.

Results and Discussion
To test the heuristic, we ran it on some simulated data.
Unfortunately, it is impossible to generate a genome with
a known rearrangement distance. Thus, we generated
genomes that were small enough that we could retrieve
the exact result using a brute force algorithm. We per-
formed tests on seven types of genomes: hexaploids (three
copies of each gene) with two, three and four genes and
octoploids (four copies of each gene) with two and three

genes. We randomly generated 25 examples of each of the
seven types of genomes and ran both our heuristic and a
brute force algorithm and compared the solutions.

We divide the results from our experiment into four cate-
gories: exact, minor inexact, major inexact and error. The
category exact means that our algorithm got the same
result (in terms of distance) as the brute force algorithm.

We can trivially assume that the distance must be less than
or equal to n·(1 - p) where p is the ploidy of the genome
and n is the number of genes. Thus, a minor inexact result
means that our algorithm did better than the trivial case
but worse than the brute force algorithm.

There are two types of major inexact results. The first is the
case where the heuristic produced a distance that was
lower than the lowest possible result (the result of the
brute force algorithm). In Table 1, this type of major inex-
act result is indicated by the number before the slash. The
second is the case where the heuristic produced a distance
that was equal to the trivial case and this was not the best
result (i.e. the brute force algorithm returned a lower
result). In Table 1, this is indicated by the number after the
slash. The heuristic never returned a result that was worse
than the trivial result.

The final category, error, indicates the number of times
that the algorithm returned a genome that was not prop-
erly aliquoted. Any result in this category always occurs in
conjunction with a result from another category. Thus, if
we consider all the error results to be "contaminated" and
unusable, we indicate what the actual result for each of the
other categories would be in parenthesizes.

Since the first test of the heuristic could only be conducted
on smaller genomes, we conducted a second test of the
heuristic on larger genomes but without the brute force
algorithm. We compared the results of this second test
with the trivial case to indicate that our heuristic returns a

A perfectly duplicated genomeFigure 8
A perfectly duplicated genome. A perfectly duplicated 
genome created by combining the partially aliquoted 
genomes in Figures 6 and 7. In this particular case, no ran-
dom joinings were needed to complete the genome.

b1 a1 c1 d3

b3 a2 c2 d1

b2 a3 c3 d2

Table 1: Heuristic/brute force comparison. The results of our 
experiment comparing our heuristic to a brute force algorithm.

Test Case Exact Minor Inexact Major Inexact Error

Hexaploid
2 genes 19(16) 2 3(0)/1 6
3 genes 9(6) 11(9) 1(0)/4 6
4 genes 5(3) 17(14) 2(0)/1 7

Octaploid
2 genes 14(12) 9(7) 1(0)/1 5
3 genes 6(4) 16(12) 2(0)/1(0) 9
TOTAL 53(41) 55(44) 9(0)/8(7) 33
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non-trivial result. This time, not only did we aliquote hex-
aploids and octaploids, but also larger polyploids, specif-
ically decaploids (five copies of every gene) and
icosaploids (10 copies of every gene). We also studied our
algorithm on genomes with more genes, starting at 40
genes in the smallest case and 100 genes in the largest.
Again we attempted our algorithm on 25 randomly gener-
ated examples of each genome.

For this set of experiments we simple checked to see if the
heuristic returned a distance less than, equal to, or greater
than the trivial case. Additionally, we checked to make
sure that the genome was properly aliquoted. The results
of this experiment are listed in Table 2.

Finally, we decided to test our algorithm on real, rather
than simulated, data. We applied our heuristic to the hex-
aploid wheat that we retrieved from the Gramene data-
base [9]. Note that after p-ploidization, many of the gene
families thus created are reduced by the various processes
of gene loss. Eventually, after a long time has elapsed, very
few of the genes will have retained p copies. Thus, in the
wheat data we could only identify 92 gene families with
three members. On this input, our heuristic returned an
aliquoted genome with a distance of 138 but with one
incorrectly aliquoted chromosome. Correcting that chro-
mosome would produce an aliquoted genome with a dis-
tance of 139, well below the trivial distance of 184. The
corrected result had a total of 45 chromosomes of which
3 were circular.

There are several interesting results from the experiments.
Let's begin by examine the negatives.

21% of the time, the heuristic returned an improperly
aliquoted genome. On the smaller genomes this was
higher (26%) whereas on the larger genomes this was
lower (19%). The reason why the algorithm gives improp-
erly aliquoted genomes goes back the genome halving
papers.

In [1], it was stated that, if C1 and C2 were two identical
chromosomes, then a circular unichromosomal genome
where C1 and C2 are concatenated together at both end
points can be considered an acceptable halving. When
double cut and join was introduced, it was considered
desirable to allow circular chromosomes so an effort was
made to generalize this statement. In the first attempt, in
[2], any concatenation of two halved chromosomes, with
one or both endpoints, in either a unichromosomal or
multi-chromosomal setting was considered acceptable.
[4] modified this definition by adding the restriction that
both endpoints needed to be joined.

In our genome aliquoting heuristic, we used the defini-
tion from [4]. However, even though this definition is
more restrictive than [2], it creates a problem in the gener-
alized aliquoting case (not in the halving case). To see the
problem consider a hexaploid with three aliquoted chro-
mosomes C1, C2 and C3. The problem is that, because we
have more than two parts, it might occur that C1 and C2
concatenate to form C1C2 but C3 does not join that con-
catenation. This is an improperly aliquoted genome, but,
so long as all the chromosomes are circular, it is a proper
aliquoting according the definition of valid. Hence, the
heurisitic accepts it. All the errors listed above are
genomes of this form.

However, this error is not particularly severe as it is easy to
detect and it is easy to correct. For each problem case that
occurs it will take at most two double cut and join opera-
tions to correct so we can simply increase the distance by
that amount. This becomes particularly important when
we consider the second major problem with our algo-
rithm, the "better than optimal" results that where pro-
duced in some cases.

Table 2: Heuristic on large genomes. The results of our 
experiment testing the performance of the heuristic on large 
genomes.

Test Case Less Than Equal To Greater Than Error

Hexaploid
40 genes 25(19) 0 0 6
60 genes 25(18) 0 0 7
80 genes 25(19) 0 0 6
100 genes 25(19) 0 0 6

Octaploid
40 genes 25(19) 0 0 6
60 genes 25(19) 0 0 6
80 genes 25(20) 0 0 5
100 genes 25(22) 0 0 3

Decaploid
40 genes 25(17) 0 0 8
60 genes 25(22) 0 0 3
80 genes 25(20) 0 0 5
100 genes 25(19) 0 0 6

Icosaploid
40 genes 25(22) 0 0 3
60 genes 25(23) 0 0 2
80 genes 25(24) 0 0 1
100 genes 25(23) 0 0 2

TOTAL 400(325) 0 0 75
Page 9 of 11
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As we can see from Table 1, the "better than optimal"
results only occur in conjunction with an invalid aliquot-
ing. The increase in distance that comes from correcting
such an aliquoting will invariably also correct the dis-
tance, although it may not yield the exactly optimal dis-
tance (it might be slightly worse).

However, perhaps the most serious problem is that indi-
cated on Table 1, in the row "Octoploid with 3 genes" and
the column "Major Inexact". The result after the slash
indicates a case where the heuristic produces a trivial
result and an incorrectly aliquoted genome at the same
time. This means that it is possible for the heuristic to pro-
duce an incorrectly aliquoted genome that cannot be
fixed. Fortunately, this seems to be an unlikely occurrence,
especially on larger genomes.

There are, however, many positive attributes of the heuris-
tics as well. As seems to be indicated by the case of icosa-
ploids, the number of incorrect aliquotings seem to go
down on very large genes. This is likely because the heu-
ristic has a bias towards selecting adjacencies in the origi-
nal genome that tend to produce circular chromosomes.
But, with a larger genome the heuristic will select more tel-
omeres and, thus, produce more linear chromosomes.
Even selecting few telomeres in proportion to the number
adjacencies seems to dramatically reduce the number of
circular chromosomes. And, since the improper aliquot-
ing only occurs with circular chromosomes, the chance of
an improper aliquoting occuring is reduced.

Additionally, we can see that, on larger genomes, the heu-
ristic performs better than the trivial case. In these cases
the heuristic tended to give a distance that was about 15%
lower than the trivial case. Finally, at least on the smaller
genomes, we can clearly see that most of the time the heu-
ristic gave a good result. 33% of the results are the correct
answer without any error and another 35% of the results
have a better than trivial answer without any error. We can
also see that in most of the cases where there was an error
it could be corrected for and the result would still be better
than trivial.

Conclusion
From the results we can conclude that the algorithm
seems to perform very well as a heuristic for the genome
aliquoting problem. We have shown that in small cases,
the algorithm performs very close to optimal and, while it
is easy to imagine that the error ratio increases as the
genome gets larger the algorithm never-the-less continues
to perform significantly better than any trivial case.

While the heuristic has been known to occasionally pro-
duce a genome with a "better than optimal" distance, this
is always the product of an improperly aliquoted genome,

and, thus, it is easy to detect and fix. Furthermore, fixing
such a genome will also correct the distance. Thus, users
concerned about such a result can easily implement a
post-processing step that tests for this problem and cor-
rects it when found.

Thus, we conclude that the algorithm produces a reasona-
bly parsimonious solution for any instance of the genome
aliquoting problem.

There are a number of improvements that can be done on
this heuristic. A better method for detecting cycles and
paths and maximizing their flow is needed. Ideally, such
a method should be able to detect both cycles and paths
simultaneously and it should produce an exact result.

Additionally, a better definition of validity is needed.
Because we wanted to include circular chromosomes, the
definiton from [4] was used. However, by allowing certain
types of circular chromosomes the problem of "better
than optimal" solutions was introduced. The El-Mabrouk
and Sankoff definition [1] would eliminate circular chro-
mosomes and, therefore, this problem.

Finally, perhaps the most important objective for future
work is to examine the possible existence of an exact algo-
rithm. Given how close this problem is to the median
problem [10], it may be that his problem is NP-complete
[11]. On the other hand, given how well this heuristic per-
forms it may be that a polynomial time algorithm exists.
We conjecture that if the above improvements to the heu-
ristic can be made and that an algorithm can be found that
finds the maximum weight matching and the cycle flow
and path flow all at the same time then the algorithm will
return an exact solution.
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