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Abstract
Background: Considerable efforts have been made to extract protein-protein interactions from
the biological literature, but little work has been done on the extraction of interaction detection
methods. It is crucial to annotate the detection methods in the literature, since different detection
methods shed different degrees of reliability on the reported interactions. However, the diversity
of method mentions in the literature makes the automatic extraction quite challenging.

Results: In this article, we develop a generative topic model, the Correlated Method-Word model
(CMW model) to extract the detection methods from the literature. In the CMW model, we
formulate the correlation between the different methods and related words in a probabilistic
framework in order to infer the potential methods from the given document. By applying the model
on a corpus of 5319 full text documents annotated by the MINT and IntAct databases, we observe
promising results, which outperform the best result reported in the BioCreative II challenge
evaluation.

Conclusion: From the promising experiment results, we can see that the CMW model overcomes
the issues caused by the diversity in the method mentions and properly captures the in-depth
correlations between the detection methods and related words. The performance outperforming
the baseline methods confirms that the dependence assumptions of the model are reasonable and
the model is competent for the practical processing.

Background
Interaction detection method extraction
The study of protein interactions is one of the most press-
ing biological problems. In the literature mining commu-
nity, considerable efforts have been made to
automatically extract the protein-protein interactions

(PPI) from the literature [1-3] and some practical systems
have been put into use [4,5].

Nevertheless, little work has been done to automatically
extract the interaction detection methods from the litera-
ture. The detection methods available to identify protein
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interactions vary in their level of resolution and the confi-
dence of reliability. Therefore, it is important to identify
such detection methods in order to validate the reported
interactions. Some interaction databases, such as MINT
[6] and IntAct [7], require the interaction entries to be
experimentally confirmed. However, manually annotat-
ing the detection methods in the literature is time-con-
suming: on average, the curation of a manuscript takes up
2–3 hours of an expert curator [8]. Therefore, there is great
practical demand of automatically extracting the detec-
tion methods from the literature.

The first critical assessment of detection method extrac-
tion was carried out by the BioCreative II challenge evalu-
ation [9]. But only two groups (out of sixteen) submitted
their results.

The diversity of method mentions in the literature is the
major obstacle precluding the automatic extraction. In the
real situation, different authors prefer different words and
phrases to describe the same methods. For example, the
detection method "two hybrid" (MI:0018) has 7 related
synonyms, e.g. "2-hybrid", "2 H ", "2 h", "classical two
hybrid", "Gal4 transcription regeneration", "two-hybrid",
"yeast two hybrid", and one exact synonym, e.g. "2 hybrid",
in the MI ontology [10] definition (it includes the terms
describing the interaction detection methods). Although
the ontology has already included so many different
descriptions, biologists would just mention "yeast 2-h",
which is not included in the ontology, in their manu-
scripts.

To validate the diversity, we apply a string matching algo-
rithm with all the names/synonyms from the MI ontology
on a set of 740 documents, annotated with 96 methods
and provided by the BioCreative II challenge evaluation.
The matching performance is demonstrated in Table 1.

As Table 1 illustrates, the poor recall performance con-
firms the serious diversity, and the inferior precision
stems from the simple matching algorithm, which does
not take the context into consideration, since most of the
matched names are not the exact methods applied in the
document but the background knowledge. In this sense,
the rigid dictionary-based matching strategy fails to
address the practical problem.

Another straightforward solution is to treat the extraction
issue as a classification problem – for each detection
method in the ontology definition, a set of binary classifi-
ers are built to make yes/no decisions [11,12]. But the tra-
ditional discriminative classifiers make little attempt to
uncover the probabilistic structure and the correlation
within both input and output spaces. In the biological
domain, ignoring the correlation within both methods
and words would hinder the performance since there are
intrinsic relations.

In another point of view, from the perspective of involve-
ment of domain experts, some approaches achieved
acceptable results on the small data set. In Rinaldi's work
[13], they invited the biologists to summarize the key-
words and patterns for the extraction task and manually
refined the patterns according to the performance. Obvi-
ously, this manner is not suitable for the large-scale data
processing and its flexibility is not desirable.

Generative topic model
Nowadays, in the machine learning community, the gen-
erative topic model is receiving more and more attentions.
Latent Dirichlet Allocation (LDA) [14] is one of the most
typical models. LDA reduces the complex process of pro-
ducing a document into a small number of simple proba-
bilistic steps and thus specifies a probability distribution
over all possible documents. Using standard statistical
techniques, one can invert the process and infer the set of
latent topics responsible for generating a given set of doc-
uments [15].

LDA-like topic models are rapidly developed into quite
different domains. Xing Wei [16] introduced the LDA
model into information retrieval system and improved
the retrieval performance; David Mimno [17] proposed
the Author-Persona-Topic model to formulate the exper-
tise of authors based on their publications; Fei-Fei Li [18]
advanced a hierarchical generative model to classify natu-
ral scene in an unsupervised manner.

The advantages of the generative topic models are: 1) it
would be easy to postulate complex latent structures
responsible for a set of observations; 2) the correlation
between different factors could be easily exploited by
introducing the latent topic variables.

In this article, in order to extract the detection methods
from the biological literature, we propose to formulate the
correlation between the detection methods and related
word occurrences in a probabilistic framework. In partic-
ular, we assume the applied methods are governed by a set
of latent topics and the corresponding word descriptions
are also influenced by the same topic factors, which char-
acterize the correlation between the methods and related

Table 1: String matching performance. 

Precision Recall F-Score

740 Full Texts 0.090 0.107 0.098

We apply a string matching algorithm with all the names/synonyms 
from the MI ontology on a set of 740 documents, annotated with 96 
methods and provided by the BioCreative II challenge evaluation.
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words. Under this setting, we appeal to the generative
topic model to capture such latent correlations and infer
the potential methods from the observed words by the
statistic inference technique.

The intuitive notion behind the proposed model is that:
different documents contain informative commonality in
the descriptions of the same methods, therefore we pro-
pose to discover the common usage patterns for the
desired methods from the latent correlations between the
methods and related words. This manner is somehow
analogous to the idea that to extract templates from the
overlapping of different method descriptions. But the
diversity in the method mentions brings the traditional
template generation algorithms with low support and low
confidence problems. Furthermore, when there are multi-
ple methods in one document, the traditional approach
would fail to figure out the latent correlations. In contrast,
the generative model deals naturally with the missing data
and provides a more feasible and theoretical framework.

The paper is organized as follows: in the Methods section,
we present detailed descriptions about the proposed
model and discuss the inference and parameter estima-
tion procedures for the model; in the Results section, we
perform extensive experiments to validate the proposed
model; and in the Conclusions section, we would con-
clude the work and demonstrate our contributions in this
paper.

Methods
Correlated Method-Word model
We present the Correlated Method-Word model (CMW
model) to extract the detection methods from the biolog-
ical literature. The CMW model is depicted in Figure 1
with graphical representation. In the standard graphical
model formalism [19]: nodes represent the random varia-
bles and edges indicate the possible dependence. The
joint probability can be obtained from the graph by taking
the product of the conditional distribution of nodes given
their parents, see Eq(1).

The model can be viewed in the terms of generative proc-
ess that, the author should first select a set of topics for
his/her manuscripts (e.g. physical protein-protein interac-
tions); under different kind of topics, there are different
choices of detection methods to confirm the findings (e.g.
pull down to confirm protein interactions); the selected
methods are represented by the particular word occur-
rences (e.g. descriptions of the experiment conditions,
properties and materials), which are also governed by the
selected topics. Therefore, the correlations between the
detection methods and related words are characterized by
the latent topic factors; and from the observed words, we

are able to infer the potential methods in the given docu-
ment according to such correlations.

Formally, we define a corpus consists of D documents, E
methods and V words, and a given document consists of
N methods and M words. To simplify the model, we have
assumed the topic size k is known and fixed on the whole
corpus. In the given document d, we denote θ as the doc-
ument-specific topic distribution; z = {z1, z2, z3,..., zN} as
the particular discrete topic assignments for each method;
y = {y1, y2, y3,..., yM} as the indexing variables to indicate
which topic factor generates the corresponding word and
as the method distribution under the topics. These are the
latent variables. e = {e1, e2, e3,..., eN} and w = {w1, w2, w3,...,
wM} are the observed methods and words in document d.
Besides, α and η are the parameters of k-dimensional and
E-dimensional Dirichlet distributions that postulate the
topic and method prior distributions on the corpus and β
is a k × V matrix, which represents the word distribution
under topics. These are the model parameters.

Conditioned on the model parameters (α, β, η), the CMW
model assumes the following generative process of the
methods and related words in one document:

1. Sample topic proportion θ from the Dirichlet distri-
bution: θ ~Dir(α)

2. For each method en, n ∈ {1, 2, 3,..., N}:

a. Sample topic factor zn from the multinomial dis-
tribution : zn ~Mul(θ)

b. Sample method en from the multinomial distri-
bution conditioned on zn : en ~p(en|, zn)

3. For each related word wm, m ∈ {1, 2, 3,..., M}:

Graphical model representation of the CMW modelFigure 1
Graphical model representation of the CMW model. 
Following the standard graphical model formalism [19]: 
nodes represent the random variables and edges indicate the 
possible dependence. The joint probability can be obtained 
from the graph by taking the product of the conditional dis-
tribution of nodes given their parents.
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a. Sample indexing variable ym from the Uniform
distribution conditioned on N: ym ~Unif (1, 2, 3,...,
N)

b. Sample word wm from the multinomial distribu-

tion conditioned on : wm ~p(wm|β, )

Our basic notion about each component of this model is
that, the discrete occurrences of detection methods and
related words in the given document are governed by the
topic-specific distributions (e.g. matrix  and β) respec-
tively. We use such conditional distribution to bridge the
correlation between the methods and word occurrences:
under different topics, there are different choices of detec-
tion methods and the corresponding word descriptions.
To formulate this notion in a probabilistic framework, we
follow the general settings in the LDA model that we
assume the document-specific topic proportion θ is drawn
from the k-dimensional Dirichlet distribution Dir(α),
which determines the topic mixture proportion. Espe-
cially, we treat the parameter of method's multinomial
distribution  as a k × E matrix (one row represents for each
mixture component), and, to avoid over-fitting caused by
the unbalanced and sparse method occurrences, we
assume that each row of  is independently drawn from the
E-dimensional Dirichlet distribution: i ~Dir(η), which
smooths the method distribution under each topic. Each
row of matrix β represents the particular word distribution
under the topics. Besides, since the correlation between
the methods and word occurrences is underlying (a docu-
ment usually associates with multiple detection meth-
ods), we use the indexing variable y to indicate such latent
structure between them.

Thus, the joint probability on the observed methods,
words and latent variables in one document is given as
follows:

An intuitive comparison between the traditional
approach (e.g. discriminative classification and template
matching method) and the proposed CMW model is illus-
trated in Figure 2.

The traditional approach (the left panel of Figure 2) sim-
ply assumes the relation between the detection methods
and related words is determined by the direct mapping.
On the contrary, the CMW model (the right panel of Fig-
ure 2) formulates the relationship within a more through-
out consideration: via the latent topic factors, word
occurrences are formulated as a finite mixture under par-
ticular methods, so that they are not restricted to any

methods and multiple words could contribute to the same
method. This framework is more suitable and robust to
deal with the diversity in the method descriptions. Fur-
thermore, the discriminative classification algorithms
assume the methods are independent in prior and the
words are also independent when observing the given
methods. Thus they would neglect the latent patterns
within both methods and words. But in the CMW model,
different topics govern dissimilar methods and words
occurrences, embedding the correlation not only between
different methods but also within the related words (see
the Correlation between methods and words section and
the Methods correlation analysis section for the detailed
experiment results).

Efficient dimensional decomposition is explicitly imple-
mented: V-dimensional word space and E-dimensional
method space are mapped into the k-dimensional topic
space, in which it will be easier for us to reveal the latent
correlations between the detection methods and the vari-
ant word occurrences.

Inference and parameter estimation
Variational inference
In order to utilize the CMW model, we need to compute
the posterior distribution of the methods in a given docu-
ment, that is:

Unfortunately, this posterior distribution is intractable:
the couples between the continuous variable θ and dis-
crete variable β,  induce a combinatorial number of terms,
making it impossible to efficiently get the exact inference
result.

Although the exact inference is intractable, there are a
wide variety of approximate inference algorithms can
serve for the propose, including: expectation propagation
[20], variational inference [21] and Markov chain Monte
Carlo (MCMC) [22] etc. For computational efficiency, we
develop a variational inference procedure to approximate
the lower bound of the desired posterior distribution of
methods in a given document.

In particular, we define the following fully factorized dis-
tribution on the latent variables:

where the Dirichlet parameters γ, σ and the Multinomial
parameters ϕ, λ are free variational parameters.
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The meaning of the above variational distribution is that:
we discard the dependence among the latent variables by
assuming they are independently drawn from the respec-
tive distributions. In that case, the aim of the variational
inference is to find the optimal variational parameters
which could minimize the Kullback-Leibler (KL) diver-
gence between the variational distribution and the true
posterior distribution.

Following the general recipe for the variational approxi-
mation, we take derivatives with respect to the variational
parameters and obtain the following coordinate ascent
algorithm:

1. Dirichlet parameter γ:

2. Multinomial parameter ϕ:

where  means the mth word in the document is the sth

one in the vocabulary, and  means the nth method in

the document is the jth method in the list.

3. Multinomial parameter λ:

4. Dirichlet parameter σ:

These update equations are invoked repeatedly until the
relative change in KL is small (< 0.0001%).

When we have achieved the approximate posterior proba-
bility, we could handle the conditional distribution of
interest – p(e|w α, β, η) to infer the potential methods in
a given document as follows:
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Comparison between the traditional approach and the CMW modelFigure 2
Comparison between the traditional approach and the CMW model. In the this representation, e denotes the detec-
tion methods associating with the document, w denotes the observed words and t in the right panel denotes the latent topic 
factors in the CMW model.
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Parameter estimation
Following the similar procedure in the variational infer-
ence, in this section, we utilize an empirical Bayesian
method to estimate the parameters of the CMW model.
This time, we are looking for the optimal model parame-
ters to tighten the lower bound of likelihood and obtain
the following update equations:

1. Update the Dirichlet parameter α by the Newton-Raph-
son algorithm:

where δ (i, j) = 1 when j = k, otherwise 0.

2. Update the Dirichlet parameter η by the Newton-Raph-
son algorithm:

3. Update the Multinomial parameter β:

These update equations correspond to find the maximum
likelihood estimation with the expected sufficient statis-
tics for each document taken under the variational poste-
rior.

We develop an alternating EM procedure to find the opti-
mal parameters as follows:

1. (E-Step) For each document in the training corpus, opti-
mizing the variational parameters (γ, ϕ, λ, σ) according to
equations (3) – (6);

2. (M-Step) Maximizing the resulting lower bound on the
variational likelihood on the whole corpus with respect to
the model parameters (α, β, η) according to equations (8)
– (12).

The E-Step and M-Step are repeated until the bound on the
likelihood converges (relative change in likelihood is less
than 0.001%). The convergency rate of the process
depends on the size of parameters in the model, (e.g.
number of words, methods and topics). In our experi-
ments (3000 words, 115 methods and up to 500 topics),
the algorithm terminates in less than 30 iterations in all
the cases.

Results and discussion
We collect 5319 full-text documents from PubMed [23]
with method annotations from another two public
curated interaction databases: MINT and IntAct. We per-
form the following pre-processions on the data set: 1)
parsing the HTML file; 2) converting the words into lower
cases; 3) removing a standard list of 400 stop words,
punctuations, and the terms occur less than 50 times; 4)
stemming the words to its root by Porter Stemming [24].
We utilize the macro-precision, macro-recall and macro-
Fscore [25] to evaluate the performance in average.

Test corpora
The whole corpus consists of 115 unique method annota-
tions, and each document associates with 1.99 different
methods in average. Unfortunately, the standard devia-
tion of the method frequency is so large that the corpus is
heavily unbalanced: the most popular method "pull down"
(MI:0096) occurs 2040 times while there are 57 methods
(49.6% of all) occurs less than 10 times. Figure 3 demon-
strates the unbalanced method distribution on the whole
corpus.

We can discover from Figure 3: 1) the 5 dominate detec-
tion methods, i.e. pull down (MI:0096), 2 hybrid
(MI:0018), coip (MI:0019), anti tag coip (MI:0007) and
anti bait coip (MI:0006), take up nearly 59.3% occurrences
in the whole corpus; 2) 86.1% (99 out of 115) methods
occur in less than 10% documents. In this case, smooth-
ing the estimated parameters is essential to achieve better
performance.

Feature selection
The CMW model is proposed to capture the correlation
between methods and the "related" words. However, no
curations explicitly annotate which words or sentences are
related to the curated methods. So we employ χ2 statistic
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[26] to select the most relevant feature words from the
whole text.

Word t's χ2 value associating with the method e is calcu-
lated according to the following equation:

where A is the number of times t co-occurs with e, B is the
number of times t occurs without e, C is the number of
times e occurs without t, D is the number of times neither
e or t occurs, and N is the total number of documents.

By χ2 statistic, we approximate the dependence between
word t and method e, so that we can preserve the words,
which are the most relevant to the method descriptions,
by the following formulation:

where p(ei) is the prior probability of method ei.

In the following experiments, we select the top 3000
terms to build up the feature set according to Eq(13).

Effect of topic factors
We first use the perplexity as the criterion to evaluate the
effect of the number of topic factors, which is the only
arbitrary parameter in the CMW model. The perplexity on
a set of testing documents is calculated as follows:
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Statistics of the corpusFigure 3
Statistics of the corpus. In the whole corpus, 5 dominate detection methods take up nearly 59.3% occurrences and 86.1% 
(99 out of 115) methods occur in less than 10% documents.
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where D is the set of testing documents and Nd is the
number of methods in the document d.

Better generalization capability is indicated by a lower
perplexity over the held-out testing samples. We held out
20% of collection for the testing purpose and used the
remaining 80% to train the model, in accordance with 5-
fold cross-validation.

Figure 4 demonstrates that the generalization power of
the CMW model gets improved with more topic factors.
Since with more topic factors the documents could be par-
titioned into finer segments, more precise correlations
between the methods and words could be captured. But as
the number of topics exceeds a limit, the model becomes
too specific (higher perplexity). Therefore we could con-
clude that the topic factors could be treated as the discrim-
inate granularity of the model, that is it operates as a
tradeoff between the generality and specificity. Besides, as
the number of topic factors increase, there will be more
parameters to be estimated (linearly increase with the
number of topics), so that more training data is needed to
obtain the reliable parameters. In this sense, when the
number of topic factors exceeds a limit, the quality of the
estimated parameters decreases and hampers the predic-
tion power.

Besides understanding the impact of the number of topic
factors on the generalization capability, we would be
more interested in their explicit effect on the extraction
performance. Here, we evaluate the precision and recall
performance of the model under different number of

topic factors. We use the same data set partition as in Fig-
ure 4.

We could discover from Figure 5 that the extraction per-
formance peaks close to the place where the perplexity
reaches the minimum. This is consistent with the forego-
ing perplexity result. These results give us insight about
determining the proper size of topics for the CMW model.

Extraction performance
Since there is few work to compare with, we employ the
well studied Naïve Bayes, KNN and SVM as the baseline
methods to evaluate the capability of the proposed CMW
model. We choose Naïve Bayes because it is the simplest
generative model with complete independence assump-
tions, and KNN model could exploit the heterogeneity
among the similar documents. These are the two basic
notions in the CMW model. Besides, SVM model is the
most powerful discriminative model for the classification
task with decent performance [11]. All the baseline mod-
els are operating on the same feature set as the CMW
model employs.

In the Naïve Bayes model, we estimate the posterior prob-
ability of the methods in a given document by Eq(14). We
use a pre-estimated threshold to retrieval the most proba-
ble methods.

In the KNN model, we make the prediction by ranking the
candidate methods in the union of the unlabeled sample's
k-nearest labeled neighbors, and weight the candidate

p e p w e p en

n

( | ) ( | ) ( )w ∝ ∏ (14)

Performance on the number of topicsFigure 5
Performance on the number of topics. We use the 
same data set partition as in Figure 4 and evaluate the preci-
sion and recall performance of the CMW model.

Methods perplexityFigure 4
Methods perplexity. Lower perplexity on the testing data 
indicates a better generalization capability. Here we held out 
20% of collection for the testing purpose and used the 
remaining 80% to train the model, in accordance with 5-fold 
cross-validation.
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methods by the similarity between the desired unlabeled
sample and its neighbors.

In the SVM model, we follow Boutell's strategy [12] to
train a set of binary classifiers for each method and predict
the unknown methods by the classifiers' output. We use
SV Mlight [27] toolkit to implement a linear kernel SVM
model with the default parameters.

We perform comparisons on different proportions of the
data used for training. In this comparison, we set the size
of topics in the CMW model to be 250 and k in the KNN
model to be 37.

We could discover from Figure 6 that, as the training set
increases, the performance of the CMW model improves
rapidly. The reason for this phenomenon is that in the
CMW model, there are E + k(V + 1) parameters to be esti-
mated, when the training set is not large enough, most of
the parameters cannot be fully estimated, which would
directly hinder the performance of the model.

One thing we should note is that, since the data set is
unbalanced, we should attend the retrieval performance
on the minor methods as well. In the method-level evalu-
ation, the baseline models only retrieve most of the major
methods (e.g. the top 5 methods) but ignoring the other
minor ones, while the CMW model exhibits superior
retrieve power. We demonstrate the coverage performance
of each model on the testing set to compare their retrieval
capability.

Figure 7 demonstrates that the CMW model possesses bet-
ter retrieval capability than all the baseline methods when
the training set is large enough. We contribute the nice
coverage performance to the smoothing factor introduced
to the method distribution. Because the whole corpus is
sparse and unbalanced, the minor methods possess little
proportion in the training set. However, the baseline
models do not take the sparseness into account, so that
they fail to retrieve the minor ones from the testing cases.
In contrast, the CMW model attends the smoothing issue
and overcomes the sparseness.

Rinaldi utilized the expert revised patterns to perform the
extraction and achieved the best performance in the Bio-
Creative II challenge evaluation [13]. To compare with
their approach, we operate the CMW model on the same
testing corpus (300 full text documents) and set the topic
size to be 300 according to the result in the previous sec-
tion. The CMW model achieved competitive results (F-
Score improved 12.4%), illustrated in Table 2.

Here, we briefly conclude the performance of the CMW
model. The extraction performance outperforms the dis-
criminative baseline methods confirms that the depend-
ence assumptions in the proposed CMW model are
reasonable. Besides, the traditional discriminative classifi-
ers fail to model the correlation within either the methods
or the related words, while in the biological domain such
correlations convey important domain dependent infor-
mation. In this sense, the major advantage of the CMW
model is that it properly exploits such informative corre-
lations to reinforce the extraction performance. The
improvements against the manually revised templates
approach validate that the CMW model does exploit more

Comparison with the baseline modelsFigure 6
Comparison with the baseline models. We compare 
the F-score performance of the four models on different pro-
portions of the data used for training. In this comparison, we 
set the size of topics in the CMW model to be 250 and k in 
the KNN model to be 37.

Coverage comparison with the baseline modelsFigure 7
Coverage comparison with the baseline models. We 
compare the coverage performance of the four models on the 
same data set partition as in Figure 4 and we use the same 
model parameter settings.
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precise and general patterns for the desired methods from
the large-scale statistics, confirming the reasonable under-
lying semantic structure from another perspective.

Correlation between methods and words
To demonstrate the correlation between the different
methods and words exploited by the CMW model, we uti-
lize the method-specific distribution over words by the
conditional distribution p(w|e) to retrieval the most rele-
vant terms under each desired method:

where D is the set of documents associating with the
desired method e and Md is the number of words in the
document d.

In Table 3, we collect top 20 terms for 6 different methods
according to Eq(15) from the corpus. We can see from the

table, most of the terms are appropriately gathered to the
given methods. For example, "structure", "crystal", "helix"
are gathered to x-ray, and "yeast", "two-hybrid", "site" are
gathered to two hybrid. These are the informative terms in
the MI ontology definition of these methods. From this
result, we could discover that the CMW model properly
selects suitable "indicators" for the given methods. From
another perspective, since these "indicators" are organized
in a probability framework and accordingly contribute to
the desired methods, the CMW model could better over-
come the issue caused by the diversity in the method men-
tions. The reasonable word distribution under methods
confirms that the CMW model captures the in-depth cor-
relation between the methods and related words from the
literature.

Methods correlation analysis
By the CMW model, we map different methods into the
latent topic space, where we are able to analyze the rela-
tionship between the different methods. Meanwhile,
there are intrinsic inherit relationships between the meth-
ods, defined in the MI ontology and organized as a con-
cept hierarchy.

To represent a given method in the latent topic space, we
re-normalize the topic-specific method distribution
matrix  by column as follows:

where  i is the i th column of  matrix.

s w e
p w ed D
Mdd D

( | )
log ( | )

= ∈∑

∈∑
(15)

r e i

iss
ki( ) =
=∑
†

†1
(16)

Table 3: Top 20 relevant terms for methods. 

Method Terms

x-ray
(MI:0114)

structure, crystal, residue, molecule, model, site, form, interface, chain, contact, bond, hydrogen, helix, pp, record, helical, 
window, surface, linker, segment

two hybrid
(MI:0018)

yeast, two-hybrid, interact, assay, fusion, system, plasmid, clone, cdna, screen, bait, sequence, acid, amino, encode, site, pp, record, 
domain, plant

pull down
(MI:0096)

gst, fusion, glutathione, pull-down, assay, interact, bead, buffer, wash, yeast, scopus, min, incubate, two-hybrid, antibody, pp, 
record, system, plasmid, sequence

anti tag coip
(MI:0007)

record, pp, cite, yeast, antibody, strain, panel, anti-flag, saccharomyces, flag, cerevisia, growth, blot, western, flag-tagg, gene, grow, 
medline, ha, anti-ha

anti bait coip
(MI:0006)

control, buffer, pp, record, isi, bait, cancer, antibody, extract, c-terminus, bead, sirna, tumor, stain, gene, yeast, sds, luciferase, 
embo, cdna

coip
(MI:0019)

antibody, pp, record, extract, yeast, domain, sequence, expression, blot, cdna, clone, activity, luciferase, growth, transfect, acid, 
fusion, sirna, mmedta, link

We collect top 20 terms for 6 different methods according to Eq(15) from the corpus.

Table 2: Comparison with BioCreative II best result. 

Precision Recall F-Score

BioCreative II Best Run 0.506 0.522 0.483

CMW model 0.654 0.545 0.543

improvement +29.2% +4.4% +12.4%

We operate the CMW model on the BioCreative II testing corpus (300 
full text documents) to compare with the best result reported in the 
evaluation. We set the topic size to be 300 according to the result in 
Figure 5. The CMW model achieved competitive results, F-Score 
improved 12.4%.
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Recall that, each row of the multinomial parameter  is the
method distribution under a particular topic, so that each
column of  represents a method in the topic space. By nor-
malizing  by column, we can represent the different meth-
ods over the latent topic factors.

Based on this representation, we employ an accumulative
clustering algorithm to perform the hierarchical clustering
and utilize a visualization tool gCluto [28] to demonstrate
the captured "pedigree" tree. (We only illustrate part of the
clustering result because of the page limit.)

From the clustering result in Figure 8, we can discover that
most of the sibling nodes within the MI ontology are suc-
cessfully clustered with the correct hierarchy (red circles
mean the correct clusters). The promising result confirms
that the CMW model captures the proper correlations not
only between the methods and words but also among the
different methods. The traditional discriminative classifi-
ers are not able to figure out such relationships.

Classify irrelevant documents
Although the CMW model is proposed to address the
extraction problem in documents with at least one detec-
tion method, in most situation, the curators don't know
whether the document is PPI related or experimentally
confirmed beforehand. So it is necessary to evaluate the
model's capability to classify the irrelevant documents.

We randomly select 1000 documents from PubMed, none
of which are annotated by MINT nor IntAct. These docu-
ments are taken as the irrelevant documents. Meanwhile,
we randomly select another 1000 documents from the
evaluation corpus as relevant documents. In Eq (17), we
define the relevance score of each document by the poste-
rior probability of the most potential method in that doc-
ument as follows:

relevance d p e
e

( ) max ( | )= w d (17)

Methods clustering treeFigure 8
Methods clustering tree. We utilize an accumulative clustering algorithm to perform the hierarchical clustering and build up 
the "pedigree" tree of the detection methods. Red circles in the figure mean the correct clusters according to the MI ontology 
definition.
Page 11 of 13
(page number not for citation purposes)



BMC Bioinformatics 2009, 10(Suppl 1):S55 http://www.biomedcentral.com/1471-2105/10/S1/S55
This measurement indicates the maximum probability of
a document containing at least one interaction detection
method.

We arrange the relevance scores in a descending order in
Figure 9, so that it is easy to discover that the relevance
scores in the relevant document set are significantly
greater than those in the irrelevant document set. If we
select the threshold as the green line indicated, we would
achieve a promising classification performance: in terms
of precision 0.745, recall 0.676 and AUC 0.819. The result
indicates that the proposed CMW model possesses the
capability to reject the irrelevant documents before
extracting.

Conclusion
In this paper, we propose a generative probabilistic
model, the Correlated Method-Word model, to automati-
cally extract the interaction detection methods from the
biological literature. This problem is not well studied by
the previous researches. By introducing the latent topic
factors, the proposed model formulates the correlation
between the detection methods and related words in a
probabilistic framework in order to infer the potential
methods from the observed words.

In our experiments, the proposed CMW model achieved
competitive performance against the other well-studied
discriminative classifiers on a corpus of 5319 full text doc-
uments. And it outperforms the best result reported in the

BioCreative II challenge evaluation (F-Score improved
12.4%). From the promising results, we could see that the
proposed CMW model overcomes the diversity in the
method descriptions and appropriately solve the detec-
tion method extraction issue. Furthermore, the model
captures the in-depth relationship not only between the
methods and related words (see the Correlation between
methods and words section), but also among the different
methods (see the Methods correlation analysis section).
Most of the discriminative classifiers fail to exploit such
relations. The competitive performance confirms that the
dependence assumptions in the model are reasonable and
it is necessary to model the correlation between the differ-
ent methods and words in the detection method extrac-
tion issue.

Our contributions in this paper lie in: 1) propose a gener-
ative probabilistic model with proper underlying seman-
tics for the detection method extraction issue, and the
model achieves promising performance; 2) properly
model the correlation between the detection methods and
related words in the biological literature, which captures
the in-depth relationship not only between the methods
and related words but also among the different methods.

The CMW model is now integrating to our ONBIRES sys-
tem [5] to provide on-line service. And in the future work,
we are planning to associate the extracted methods with
the annotated interaction pairs and retrieve the evidence
sentences in the documents, which would provide a more
throughout annotation of the protein interactions in the
biological literature.
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we select the classification threshold as the green line indi-
cates, we would achieve a promising classification perform-
ance: in terms of precision 0.745, recall 0.676 and AUC 
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