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Abstract
Background: Reconstructing complete ancestral genomes (at least in terms of their gene
inventory and arrangement) is attracting much interest due to the rapidly increasing availability of
whole genome sequences. While modest successes have been reported for mammalian and even
vertebrate genomes, more divergent groups continue to pose a stiff challenge, mostly because
current models of genomic evolution support too many choices.

Results: We describe a novel type of genomic signature based on rearrangements that
characterizes evolutionary changes that must be common to all minimal rearrangement scenarios;
by focusing on global patterns of rearrangements, such signatures bypass individual variations and
sharply restrict the search space. We present the results of extensive simulation studies
demonstrating that these signatures can be used to reconstruct accurate ancestral genomes and
phylogenies even for widely divergent collections.

Conclusion: Focusing on genome triples rather than genomes pairs unleashes the full power of
evolutionary analysis. Our genomic signature captures shared evolutionary events and thus can
form the basis of a robust analysis and reconstruction of evolutionary history.

Background
Introduction
The study of evolution is a study of patterns of change, but
also of conservation, the latter being typically easier to
detect and characterize. Moreover, elements conserved
across many species were probably present in their last
common ancestor and preserved through selection pres-
sures, so that these conserved elements probably play a
major role in the fitness of the organisms. Biologists have
long studied patterns of conservation in DNA sequences:

first pairwise sequence similarity in large databases (as in
the widely used FASTA [1] and BLAST [2]), then multiple
sequence alignments and phylogenetic reconstruction,
and finally the reconstruction of ancestral sequences, an
avenue of enquiry that has seen much activity of late (see,
e.g., [3]). Recently, researchers have also started to look
for characteristic patterns of change across a collection of
species–an example being the discriminating subsequences
of Angelov et al. [4].
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All of these efforts aim at recovering what one could term
genomic signatures–subsequences that best characterize the
evolutionary history of the given group of organisms. The
original use of the term "genomic signature" referred to
the spectrum of dinucleotide frequencies gathered from
the entire genome of organelles and of some prokaryotes
[5,6]. Since then, it has been used for genome-wide gene
expression data [7,8], protein-based (or gene-family-
based) comparisons [9], genome-wide localization of
transcription factors (so-called genomic signature tags)
[10], and many other variations. These uses all share a
genome-wide scope and a particular technique for captur-
ing conservation and/or divergence in the genome. Recov-
ering such signatures would enhance our understanding
of genomic evolution as well as provide an important tool
in biomedical research.

The focus to date in evolutionary genomics has been on
DNA sequence evolution, in part because of the nature of
the available data (collections of gene sequences form the
overwhelming majority of biomolecular data) and in part
because of their relative simplicity. The assumed model of
evolution has been a simple process of point mutation
and gap-forming indels. However, other processes affect
the evolution of a genome, including large-scale events
that rearrange genes along the chromosomes, introduce
new genes, or remove existing ones. Rearrangements, in
particular, interfere with our ability to align sequences: for
instance, a single inversion (in which a segment of genes is
reversed in place) can make two sequences unalignable
under the mutation and indels model.

As more and more genomes are fully sequenced, interest
in reconstructing complete ancestral genomes has grown;
Pevzner's group, for instance, has published extensively
on the topic in the context of vertebrate genomes (see,
e.g., [11,12]), as has a group headed by Haussler and
Miller [13]. However, while rearrangements such as inver-
sions, transpositions, translocations, and others are com-
plex and powerful operations, our models for them
remain poorly parameterized, often reduced to the sim-
plest case of uniform distributions. Under such models,
reconstruction of ancestral genomes for organisms that
exhibit significant divergence (in contrast to mammals or
even vertebrates) remains poor, mostly due to the enor-
mous number of equally "good" evolutionary scenarios
[14]. It is therefore natural to turn once again to genomic
signatures, this time formulated in terms of a rearrange-
ment (rather than a sequence evolution) model.

In this paper we introduce a measure of similarity defined
between two genomes with respect to a third. The key idea
is the introduction of the third genome, which allows us
to take into consideration the evolutionary paths from the
two genomes under study to the third, thus basing our

measure of similarity on the evolutionary history of the
two genomes rather than just on their current configura-
tion. Naturally, these evolutionary paths are not unique
under current models and thus a number of ancestral
states can be reached on the way from the two genomes
under study to the third genome. We call these states rear-
rangement signatures and further distinguish those that are
farthest from the third genome (the most recent, as
viewed from the perspective of our two genomes under
study) as maximum rearrangement signatures. Although the
concepts introduced here apply to any rearrangement
operation, we study these signatures under the operation
of inversion, the most commonly used rearrangement
operation in work to date [15]. We show that maximum
signatures carry much information about ancestral
genomes and that they can often be computed within a
reasonable amount of time in spite of the very large search
space. We use simulations under a wide variety of condi-
tions to show that the maximum signatures pinpoint the
true ancestral genome, either recovering it outright or pro-
ducing one very close to it, and to show that these signa-
tures can be used to reconstruct reliable phylogenies, all
using a polynomial-time heuristic that runs much faster
than a full exhaustive search.

Notation and definitions

As is usual in the study of rearrangements, we represent a
chromosome of n genes by a signed permutation on the

elements {1, 2, ..., n}. Given a signed permutation π, an

inversion r(i, j) is a permutation that, when applied to π,

reverses the order and the sign of a segment of π that
begins at the ith gene and ends at the jth one. Thus, if we
write the identity permutation as 1, ..., i - 1, i, i + 1, ..., j -
1, j, j + 1, ..., n, then r(i, j) becomes 1, ..., i - 1, -j, -(j - 1),

..., -(i + 1), -i, j + 1, ..., n. r π denotes the application of

inversion r to permutation π. For signed permutations π
and π', the (inversion) edit distance d (π, π') is the mini-

mum number of inversions needed to transform π into π'.

We say that a sequence of permutations π0, π1, ..., πd forms

an edit path if for all πi, 0 ≤ i <d, we have d(πi, πi + 1) = 1;

each inversion applied along this path is then deemed an

edit inversion. Taking each πi to be a vertex and linking two

vertices with an edge whenever the corresponding permu-
tations occur consecutively on an edit path creates an edit
path graph. The relation "is on the edit path from" thus
induces a partial order, the edit partial order, or EPO. We

denote the EPO between π0 and πd as  (πd) or

 (π0). So if we have π3 = 2 -1 -3 and π0 = 1 2 3 then

an edit path between them might visit permutations π2 =

EPOπ 0

EPO
dπ
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-2 -1 -3 and π1 = -2 -1 3 before reaching π0. Figure 1 shows

the EPOs for 2 -1 -3 and -2 3 1.

We are interested in the intersection of EPOs, which will
yield the desired inversion signatures. For a set of k + 1
permutations, one of which is the reference permutation
called the locus, an inversion signature is the permutation
corresponding to a vertex in the intersection of the k EPOs
from each of the other k permutations to the locus.

Definition 1 The set of all inversion signatures for permuta-

tions π1, ..., πkwith locus πL is

, where V(G) denotes the set of vertices of graph G.

Whenever the context is unambiguous, we shall simply

write  for  (π1, ..., πk). Similarly, the signature graph

on π1, ..., πk with respect to πL is the graph

. An inver-

sion signature πs ∈  is thus a permutation that embod-

ies some of the commonality between the k other

permutations with respect to πL, in the sense that they all

possess an edit path to πL that passes through πs. A maxi-

mum signature is a signature in  that is as far away from

πL (and thus as close to the k other permutations) as pos-

sible.

Definition 2 The set of all maximum signatures is

.

A maximum inversion signature is thus a permutation
that represents the "maximum commonality" between
the k permutations: it is as close to these k permutations
as possible while still being part of all edit paths to πL.
From a biological perspective, this edit path from πL to the
signature can be thought of as the evolution that hap-
pened before speciation, or the pattern of change that the
k sequences have in common.

As with the special case for Steiner points called the
median [16], we find it helpful to name the case with k + 1

= 3. For this case we have two permutations πA and πB and

an ancestor locus πL and we call  (πA, πB) the pairwise

maximum signature.

In Figure 1 we have πA = 2 -1 -3, πB = -2 3 1, and πL = 1 2 3
(the identity permutation of length 3). The signature graph
is outlined in bold. The signatures in this case are -2 -1 -3
-2 -1 3, 1 2 -3, and the trivial signature πL = 1 2 3. The only
maximum signature is also the only maximal signature -2
-1 -3.

Methods
We begin with an investigation of rearrangement-based
genomic signatures as defined above, then give proce-
dures for signature-based phylogenetic and ancestral
reconstruction.

Computing signatures
Definition 1 can be restated inductively in terms of edit
paths that move from the locus πL towards the other per-
mutations π1, ..., πk. We say that some permutation π has
a common edit inversion r with respect to π1, ..., πk if we
observe d(πL, πi) - d(πL, rπi) = 1 for 1 ≤ i ≤ k.

Definition 3 The locus πLis an inversion signature for permu-
tations π1, ..., πk. If permutation π is an inversion signature and
r is a common edit inversion with respect to π1, ..., πk, then rπ
is also an inversion signature.

Thus, starting at the locus (which is the smallest possible
signature), one can enumerate all signatures by repeatedly
applying every possible common edit inversion to the cur-
rent collection of signatures; maximal signatures are those
signatures for which no common edit inversion exists and
maximum signatures are the largest of these maximal sig-
natures (i.e., the farthest away from the locus). Common
edit inversions form the basis for the MGR algorithm of
Bourque and Pevzner [12], who used a greedy algorithm
that picks a single path by always choosing the common
edit inversion that provides the largest number of com-
mon edit inversions at the next step.

S V EPO EPO EPO
L L L Lk kπ π π ππ π π π π( ,..., ) ( ) ( ) ( )1 1 2= ∩ ∩ ∩( )

S
Lπ S

Lπ

EPO EPO EPO
L L L kπ π ππ π π( ) ( ) ( )1 2∩ ∩ ∩

S
Lπ

S
Lπ

S S for all S d d
L L Ls s L s L sπ π ππ π π π π π∗ = ∈ ′ ∈ ≥ ′{ | , ( , ) ( , )}  

S
Lπ

∗

The union of the inversion lattices for πA = {-2 3 1, πB = 2 -1 -3}, and πL = 1 2 3Figure 1
The union of the inversion lattices for πA = {-2 3 1, πB = 2 -1 -
3}, and πL = 1 2 3. The signature graph is highlighted in bold.
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The signature space is of course very large. In particular, if
the two permutations of interest are just one inversion
apart, then the space of all signatures can be roughly the
same size as the inversion EPO between one of the permu-
tations and the locus–and that is, in expectation, expo-
nentially large in the pairwise distance. (However, the
complexity of finding a maximal signature is unknown at
this time.) We use the greedy heuristic of MGR to con-
struct maximal signatures and show that it often returns
the maximum signature. It is not optimal, however: con-
sider the permutations πA = -4 1 -5 2 -6 3, πB = 4 1 6 2 -5
3, and πL = 1 2 3 4 5 6. In the signature graph of Figure 2,
vertices that can be produced by the greedy heuristic are
highlighted, none of which are a maximum signature.

Noninterfering independent sets
We say that a set of edit inversions on a permutation π
commutes iff applying every inversion in the set always
yields the same permutation τ, regardless of the order in
which the inversions are applied. (Trivially, inversions
that operate on disjoint intervals commute.)

Definition 4 A set of n inversions on π with respect to τ is
noninterfering if and only if it commutes and applying these
inversions in any order reduces by n the inversion distance
between π and τ.

Commuting and noninterfering inversions offer a way to
reduce the search space in computing a median or in
examining all sorting paths: for a set of size n, it is enough
to look at a single ordering of its inversions rather than at
all n! possible orderings [17].

The concept of noninterfering inversions extends natu-
rally to our framework with a defined ancestor.

Definition 5 A set of inversions R is mutually noninterfer-
ing for πA and πB with locus πL if it is noninterfering for πL with
respect to πA and also for πL with respect to πB.

Such mutually noninterfering sets form the basis for
another greedy algorithm: we repeatedly find and apply to
πL sets of mutually noninterfering inversions until there
are none left. Mutually noninterfering sets can be found
very quickly, so a greedy algorithm based on this
approach runs very fast. We use this particular greedy heu-
ristic in our experiments.

Signature-based tree reconstruction
Since signatures are just nodes along evolutionary paths,
they can be used as internal nodes in a process of phylo-
genetic reconstruction. We begin with a naïve algorithm
to illustrate the basic approach.

The idea is to overlay the EPOs from each of the leaves π1,

..., πk to the locus πL and construct a tree representative of

the resulting structure. Consider the set of these EPOs, O

= { (πi)| 1 ≤ i ≤ k}; our algorithm constructs a tree

from the current version of O, iteratively choosing a node
from pairwise intersections of graphs in O and updating
O to reflect this choice. Specifically, at iteration i,

1. select from O a vertex πs that maximizes d (πL, πs);

EPO
Lπ

The signature graph for πA = -4, 1, -5,2, -6, 3, πB = -4, 1, 6, 2, -5, 3, and πL = 1, 2, 3, 4, 5, 6Figure 2
The signature graph for πA = -4, 1, -5,2, -6, 3, πB = -4, 1, 6, 2, -5, 3, and πL = 1, 2, 3, 4, 5, 6.
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2. if the vertex selected in the previous step belongs to the
intersections of PA, PB ∈ O, then create a node in the tree
to be the parent of the subtrees represented by PA and PB;

3. in O replace  (πA) and  (πB) with their

intersection.

This algorithm yields a tree without internal node labels,
because EPOs are not closed under intersection, so that a
node in the tree may represent two graphs from O that no
longer have a least upper bound.

Our second algorithm overcomes this problem; in addi-
tion, it yields implicit edit paths from the leaves to the
root that join at the internal nodes. In this improved ver-
sion, we maintain the invariant that elements of O are
always EPOs. Thus only the third step of the iteration is
affected, and replaced by the following:

• in O replace  (πA) and  (πB) with 

(πs).

Step 1 in each iteration is obviously the computationally
intensive one; our implementation for this step uses the
MGR heuristic.

Distance-based bound on signature size
We develop an upper bound based on pairwise distances
to help us evaluate our greedy signature methods in the

experimental phase. Denote by A, resp. B, the inversion
distance between the locus and πA, resp. πB, and by D the
inversion distance between πA and πB. (Inversions dis-
tances can be computed in linear time [18].) Now con-
sider some arbitrary signature πS for this triple and denote
its size, or distance from the locus, by c; Figure 3 depicts
the situation. As all distances are edit distances, we can
write A - a = B - b and, by the triangle inequality, a + b ≥ D;
combining the two, we get

with the symmetric version for b. Without loss of general-
ity, assume A ≥ B; then we get

the desired upper bound.

Results and discussion
We demonstrate the use of pairwise inversion signatures
for ancestral reconstruction and for phylogenetic recon-
struction through extensive simulations. We first show
that, under certain reasonable conditions, maximum sig-
natures coincide with ancestral genomes most of the time,
then proceed to show that, under more stringent condi-
tions, maximum signatures always coincide with ancestral
genomes. Since no polynomial-time algorithm for com-
puting maximum signatures is known at present, we show
that our heuristics perform well, both in terms of accuracy
and running time, even when applied to larger genomes
(to the size of small prokaryotic genome). Finally, we
show that the signature method use for phylogenetic
reconstruction produces trees comparable in quality to
neighbor-joining while providing ancestral reconstruc-
tions along the way.

Maximum signatures as ancestral genomes
Our experiments for ancestral reconstruction simply use
triplets of genomes generated from an ancestral genome

EPO
Lπ EPO

Lπ

EPO
Lπ EPO

Lπ EPO
Lπ

a
D A B≥ + −

2
,

d c A
D A B

L S( , ) ,π π ≤ − + −⎛
⎝⎜

⎞
⎠⎟2

Table 1: Percentage of the time that the true ancestor is a 
maximum signature, under normally distributed inversion 
lengths on genomes of size n = 30.

% of |P|
# of ops as

% of n
0 ≤ 15% ≤ 20% ≤ 50%

10 97 97 97 100
15 93 93 93 100
20 84 84 93 100
25 78 88 88 100
29 68 83 93 100

The distances around a signature πSFigure 3
The distances around a signature πS.
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by generating three evolutionary paths, using randomly
chosen inversions. The locations of these inversions is dis-
tributed uniformly at random, but their lengths are dis-
tributed according to one of two possible distributions:
uniform and normal. The lengths of the edges from the
ancestor to the three leaves are chosen in both a balanced
manner and several skewed manners. All of our experi-
ments used 1,000 repetitions unless stated otherwise and
the results presented show averages over these 1,000 tests.

We present most of our results in the form of tables.
Tables 1 through 6 group columns by the percentage of
the length of the longest simulated path P in the triplet.
For instance, column two of Table 1 shows the percentage
of true ancestors that are within 0 15 × |P| inversions away
from a maximum signature (in this case, no more than
one inversion away because |P| is no greater than 8 for any
row of column two). The rows in these cases are labeled
by the edge length as a percentage of the genome size.

The first set of tables apply to triplets where all edges have
the same length (that is, the same number of random
inversions). Table 1, for normally distributed inversion
lengths, shows that the simulated ancestor is a maximum
signature most of the time, even when the evolutionary
rates are extremely high. When the rates are already high

10% of the genome size, 97% of the true ancestral
genomes are maximum signatures. The table also shows
that (the last two rows aside) the true ancestor is within 2
inversions from a maximum signature more than 90% of
the time. Table 2 shows similar, but slightly weaker results
for uniformly distributed inversion lengths.

The next set of tables examines the influence of the size of
the genome. Table 3 shows that the accuracy scales well.

In addition, we tested genomes of size 100; the results are
shown in Table 4.

Computing maximal signatures
The exhaustive algorithm rapidly reaches its limits: for
genomes of size 100 with edge lengths of 10, computa-
tions already take on the order of hours instead of min-
utes. Table 4 shows favorable results for exhaustive
computation of maximum signatures on such genomes.
We now proceed to compare these results with those of
our new maximal signature algorithms. Under most cir-
cumstances, the true ancestor is found by such maximal
signature computations. Table 5 shows that the Bourque-
like approach and the approach based on noninterfering
inversions fare well with respect to the exhaustive search,
the latter dropping off first. Table 6 shows results for the
two greedy methods on genomes of size 100. For reason-
able rates of evolution (10% or less per edge), we again
see that the true ancestor is found most of the time.

Finally, we tested on genomes of more realistic sizes, but
of a size usually considered forbidding for ancestral infer-
ence–up to 1,000 genes. With 50 random events per edge
the Bourque-like computations take just under 30 min-
utes, while for 80 random events they take under 2 hours.
The accuracy remains very high: in 99% of the 380 trials
with 50 random events per edge, the signature returned is
within 5 inversions of the true ancestor, while in 66% of
these trials, the signature returned is in fact the true ances-
tor. The approach based on noninterfering inversions is
by far the fastest, taking under a half a minute for each of
these trials, even with 80 random events per edge. Using
50 random inversions per edge, we found that 97% of the
1000 trials gave an ancestor within 5 inversions of the true

Table 4: Percentage of the time the true ancestor is a maximum 
signature, under normally distributed inversion lengths on 
genomes of size n = 100.

% of |P|
# of ops as

% of n
0 ≤ 5% ≤ 10% ≤ 15% ≤ 20% ≤ 50%

5 95 95 95 95 99 100
8 91 91 91 97 99 100
10 90 90 100 100 100 100

Table 2: Percentage of the time that the true ancestor is a 
maximum signature, under uniformly distributed inversion 
lengths on genomes of size n 30.

% of |P|
# of ops as

% of n
0 ≤ 15% ≤ 20% ≤ 50%

10 94 94 94 99
15 87 87 87 100
20 69 69 84 100
25 53 73 73 100
29 36 58 77 100

Table 3: Percentage of the time that the true ancestor is a 
maximum signature as a function of the genome size n for 
simulated edge lengths of n × 0 1.

% of |P|
n 0 ≤ 15% ≤ 20% ≤ 50%

30 97 97 97 100
35 96 96 96 100
40 95 95 95 100
45 95 95 95 100
50 94 94 98 100
55 95 95 98 100
60 91 91 97 100
65 93 93 98 100
70 91 96 96 100
75 86 92 92 100
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ancestor, while 57% gave the true ancestor. With 80
events per edge, 91% gave an ancestor within 8 inversions
of the true ancestor, while 15% gave the true ancestor.

The largest genomes we tested had size 2000 (correspond-
ing to small bacterial genomes, for instance) and 100
operations per edge, and 5000 (corresponding to the
genomes of free-living bacteria such as E. coli) with 250
operations per edge. All trials gave a signature within 10
inversions of the true ancestor, while 90% gave one
within 4 inversions, all running in under 2 minutes per
trial for size 2000 and 4 minutes per trial for size 5000.
These speeds are enormously higher than methods such as
MGR or median-based reconstructions, yet the accuracy is
also much higher. Thus, by focusing on the characteristic
(shared) patterns of inversions, we are able to win on two
fronts at once, mostly because we avoid the confusion and
long explorations associated with multiple reconverging
paths.

Skewed trees
The true ancestor will not always be equidistant from the
leaves and the locus. While large amounts of skew can
sometimes move an ancestor farther from a maximum sig-
nature, the true ancestor usually remains very close to a
maximum signature.

We call the number of random inversions from the locus
to the true ancestor c and the number of random inver-
sions from the true ancestor to each of the leaves a and b.
We fix a to be 10% of the total length and vary c and b
from values equal to a up to 2.5 times a. Table 7 shows
that, for genomes of size 50, the true ancestor is a maxi-
mum signature in most cases and that almost as often it is
a maximal signature found by the Bourque-like greedy
method. Our maximum signature method appears
slightly more robust to skew on one of the child branches
as opposed to skew on the branch to the locus.

Tree reconstruction
We simulated evolution over 300 trees to test our signa-
ture-based tree reconstruction method. We found that our
method (using the Bourque-like signatures for efficiency)
reconstructs the true topology most of the time and that
any error remains very small. The trees were constructed
using the birth-death model and the mean of the nor-
mally distributed edge lengths was varied from 5 to 9
operations with a standard deviation varying from 2 to 3.
The mean of the normally distributed inversion lengths
was varied from 8 to 30 with a standard deviations varying
from 5 to 10. The generated trees have from 5 to 24 taxa
and are distributed as shown in Figure 4.

Two methods were used for choosing a locus. The first
method used the true root of the tree given by the simula-
tion (an ideal method not available in practice, of course),
while the second method used a random leaf as the locus.
With the true root as the locus, we found that 94% of the
trees were reconstructed perfectly, while 16 of the 17

Table 5: Percentage of the time that the true ancestor is a 
maximum (method 1) or maximal (methods 2 and 3) signature, 
under normally distributed inversion lengths on genomes of size 
n = 30. Method 1 finds a maximum signature by exhaustive 
search; method 2 uses the greedy Bourque-like approach; and 
method 3 uses the approach based on maximum sets of 
noninterfering inversions.

% of |P|
# of ops as

% of n
Method 0 ≤ 15% ≤ 20% ≤ 50%

1 97 97 97 100
10 2 97 97 97 100

3 96 96 96 99

1 93 93 93 100
15 2 93 93 93 100

3 89 89 89 100

1 84 84 93 100
20 2 83 83 92 100

3 76 76 85 100

1 78 88 88 100
25 2 76 86 86 100

3 67 77 77 100

1 68 83 93 100
29 2 66 81 89 100

3 57 69 76 100

Table 6: Percentage of the time that the true ancestor is a 
maximal signature, under normally distributed inversion lengths 
on genomes of size n = 30. Method 2 uses the greedy Bourque-
like approach while method 3 uses the approach based on 
maximum sets of noninterfering inversions.

% of |P|
# of ops as

% of n
Method 0 ≤ 5% ≤ 10% ≤ 15% ≤ 20% ≤ 50%

5 2 95 95 95 95 99 100
3 94 94 94 94 98 100

8 2 90 90 90 97 99 100
3 86 86 86 92 94 100

10 2 85 85 94 97 100 100
3 77 77 85 87 98 100

15 2 68 68 92 98 100 100
3 54 54 73 90 98 100

20 2 43 63 89 98 100 100
3 28 41 74 90 98 100
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remaining trees had a Robinson-Foulds error of 2, giving
an average RF error of 0.15. With a random leaf as the
locus, we found that 85% of the trees were reconstructed
perfectly, while 28 of the 45 remaining trees had an RF
error of 2 and 11 of the last 27 had an RF error of 4, giving
an average RF error of 0.5.

Using the true root as the locus demonstrates that the pair-
wise signature contain a great deal of information about
the phylogeny. Using a random leaf as the locus demon-
strates that such information remains recoverable even
when the choice of locus is arbitrary (and usually far from
ideal), justifying our initial claim that comparing two
genomes with respect to a third tremendously enriches

what can be had from a direct pairwise comparison. (As
an example, trees that were not properly reconstructed by
the neighbor-joining method, which uses strictly pairwise
comparisons, were commonly reconstructed correctly by
our signature-based method.) Our tests for phylogenetic
reconstruction are obviously of limited scope, meant to
exemplify the usefulness of the method rather than pro-
vide a full evaluation; and the method itself is subject to
many obvious improvements (better ways to choose a
locus, using k-way signatures rather than pairwise ones to
support a top-down reconstruction method, etc.)

The size of the generated treesFigure 4
The size of the generated trees.

Table 7: Percentage of the time that the true ancestor is a 
maximal signature, under normally distributed inversion lengths 
on genomes of size n = 50. Edge lengths b (to a child) and c (to an 
ancestor) vary from 5 to 2a while a = 5 (number of inversions to 
the other child). Each entry shows the exhaustive method to the 
left of the Bourque-like method.

c
b 5 7 10 12

5 94 94 92 91 87 87 - 82
7 90 90 88 88 82 82 - 79
10 88 88 84 83 80 80 - 73
12 86 86 83 83 - 76 - 66

Table 8: The average difference between the upper bound and 
the computed signatures with normally distributed inversion 
lengths and genomes of size n = 50. Edge lengths b (to a child) 
and c (to an ancestor) vary from 5 to 2a while a = 5 (number of 
inversions to the other child). Each entry shows the exhaustive 
method to the left of the Bourque-like method.

c
b 5 7 10 12

5 0.053 0.053 0.080 0.081 0.138 0.143 - 0.176
7 0.106 0.106 0.114 0.114 0.173 0.173 - 0.224
10 0.097 0.098 0.165 0.167 0.203 0.203 - 0.290
12 0.131 0.132 0.158 0.158 - 0.279 - 0.359
Page 8 of 9
(page number not for citation purposes)



BMC Bioinformatics 2009, 10(Suppl 1):S7 http://www.biomedcentral.com/1471-2105/10/S1/S7
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Tightness of the upper bound
Finally, we present experimental results suggesting that
our upper bound is on average very tight and then use the
bound to show that the greedy signatures, used for ances-
tral reconstruction of genomes too large for the exhaustive
computation, are indeed close to a maximum signature.
Since the computed ancestor is bracketed within this
bound, our results imply that the maximum signature is
very close to the true ancestor with high probability.

The upper bound was computed for each trial in Table 1.
For each of the sets of 1000 trials, the average difference
between the upper bound and the maximum signature
was 0.029, 0.073, 0.176, 0.27, and 0.327 for trials with
10, 15, 20, 25, and 29 percent respectively. For the length-
dependent data from Table 3, the average difference stays
between 0.021 and 0.082. Table 8 indicates similar per-
formance for experiments run on skewed triplets. The tests
from Table 6 give average differences from 0.024 up to
1.375 for the Bourque-like method and differences from
0.048 up to 2.228 for the noninterfering inversions
method. Only one of the tests from genomes of size 1000
did not match the upper bound for the greedy method.

Conclusion
In any study of evolutionary changes, the challenge is to
distinguish global patterns from a background of many
local changes–or, to put it another way, to find common-
alities among many equally plausible evolutionary paths
that lead to the same modern organism. We have pro-
posed an approach to this problem that focuses on inter-
mediate states along such paths in the setting of a
speciation event and seeks to return the last (most recent)
states from which both species of organisms could still
have been derived. This approach offers multiple benefits:
the focus on intermediate states translates readily into one
on ancestral reconstruction; the study of paths going
through a fork (the speciation event) stresses the role of
evolutionary history rather than just final states; and the
search for the most recent states that are part of the fork
naturally separates common evolutionary changes (prior
to the fork) from individual variations (subsequent to the
fork). Although finding such signatures appears hard, we
gave an efficient heuristic that does very well through an
extensive range of simulations. Our signatures are based
on inversions, since inversions are the best studied of the
various genomic rearrangements to date, but the concept
readily extends to any other rearrangement operation or
family of such operations.
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