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Abstract
Background: One of the most challenging problems in mining gene expression data is to identify
how the expression of any particular gene affects the expression of other genes. To elucidate the
relationships between genes, an association rule mining (ARM) method has been applied to
microarray gene expression data. However, a conventional ARM method has a limit on extracting
temporal dependencies between gene expressions, though the temporal information is
indispensable to discover underlying regulation mechanisms in biological pathways. In this paper,
we propose a novel method, referred to as temporal association rule mining (TARM), which can
extract temporal dependencies among related genes. A temporal association rule has the form
[gene A↑, gene B↓] → (7 min) [gene C↑], which represents that high expression level of gene A and
significant repression of gene B followed by significant expression of gene C after 7 minutes. The
proposed TARM method is tested with Saccharomyces cerevisiae cell cycle time-series microarray
gene expression data set.

Results: In the parameter fitting phase of TARM, the fitted parameter set [threshold = ± 0.8,
support ≥ 3 transactions, confidence ≥ 90%] with the best precision score for KEGG cell cycle
pathway has been chosen for rule mining phase. With the fitted parameter set, numbers of
temporal association rules with five transcriptional time delays (0, 7, 14, 21, 28 minutes) are
extracted from gene expression data of 799 genes, which are pre-identified cell cycle relevant
genes. From the extracted temporal association rules, associated genes, which play same role of
biological processes within short transcriptional time delay and some temporal dependencies
between genes with specific biological processes are identified.

Conclusion: In this work, we proposed TARM, which is an applied form of conventional ARM.
TARM showed higher precision score than Dynamic Bayesian network and Bayesian network.
Advantages of TARM are that it tells us the size of transcriptional time delay between associated
genes, activation and inhibition relationship between genes, and sets of co-regulators.
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Background
The genome of an organism plays a central role in the con-
trol of cellular processes such as genetic regulation, meta-
bolic pathway, and signal transduction. Because these
processes are very complex and comprised of many
genetic interacting elements, it is hard to discover those
interacting elements in the complex biological regula-
tions. Since microarray technique allows researchers to
simultaneously observe the expression levels of thou-
sands of genes in a single experiment, there have been
many studies to discover global genetic regulation from
microarray gene expression data by using various compu-
tational methods to uncover the hidden roles of genetic
elements, such as clustering techniques to identify clusters
of co-expressed genes [1-3], network inference techniques
to construct the genome-wide regulatory network models
[4-9].

One of the most challenging problems in analyzing gene
expression data is to determine how the expression of any
particular gene might affect the expression of other genes.
To find the relationships among different genes, an asso-
ciation rule mining (ARM) method has been applied to
gene expression data set because the method can identify
associations among genes even when the genes are not co-
expressed [10-14]. An association rule has the form LHS
(Left Hand Side) → RHS (Right Hand Side), where LHS
and RHS are sets of items, and it represents that the RHS
set being likely to occur whenever the LHS set occurs. In
case of analyzing gene expression data, the items in an
association rules are represented as genes, which are
highly expressed or highly repressed. An example of an
association rule from gene expression data might be [gene
A↑, gene B↓] → [gene C↑], which represents that when gene
A is measured as highly expressed and gene B is highly
repressed then it is also likely to observe and gene C is
highly expressed. From the result of the ARM method, it is
possible to discover interactions between correlated
expressions of genes in microarray experiments. Despite
of the usefulness of ARM [12], the time dependency
between associated genes cannot be extracted by using the
conventional ARM method even though the temporal
information is indispensable to discover regulation mech-
anisms.

Previous studies, which identify time-dependent regula-
tory relations among genes can be grouped into two gen-
eral categories. The first approach constructs cellular
dynamic models to observe the response of cells by using
dynamic Bayesian network (DBN) [15-18] and ordinary
differential equation (ODE). However, these approaches
have fundamental problems: They need a huge amount of
computational time to infer the temporal dependency
among genes and show relatively low accuracies analyzing
in microarray gene expression data [16,18]. These draw-

backs are mainly caused by the fact that the currently
available time-series microarray data is not suited for such
complex models of genetic regulation. Most of microarray
gene expression data sets have relatively small number of
experiments compared to the number of genes and they
have relatively large regular time intervals between exper-
iment time points. The second approach identifies pair-
wise temporal dependency between genes by clustering
with local patterns of gene expression [19], by measuring
the Pearson correlation coefficient of two genes, by detect-
ing the major changes in expression level [20], by scoring
the expression patterns with several defined events [21],
and by matching the expression patterns with shifted pat-
terns [2,3]. Although such methods can identify pair-wise
temporal relations, it cannot identify combinatorial tem-
poral relations which are regarded an important character-
istic of regulation [22,23]. For example, the meaning of
[gene A, gene B] → (7 min) [gene C], and [gene A] → (7
min) [gene C] 'AND' [gene B] → (7 min) [gene C] is com-
pletely different: In the case of [gene A, gene B] → (7 min)
[gene C], gene A and gene B play a role as combinatorial
regulators in a single regulation. On the other hand, [gene
A] → (7 min) [gene C] AND [gene B] → (7 min) [gene C],
gene A and gene B are independent regulators.

Even though there are some previous studies related to
extraction of association rules from time series data in
other application domains [24,25], they do not provide
temporal dependencies among items within different
time (e.g. time shifted, time delayed). To address the
problem, we propose a new mining method for gene
expression data sets, which can extract temporal depend-
ency among genes by applying temporal association rule
mining (TARM) method. The temporal association rules
represent various transcriptional time delays between
associated genes. An example of a temporal association
rule is [gene A↑, gene B↓] → (7 min) [gene C↑], which rep-
resents that high expression level of gene A and significant
repression of gene B followed by significant expression of
gene C after 7 minutes. Hence, the temporal association
rule can tell us the size of transcriptional time delay (7
minutes) between associated genes (gene A, gene B and
gene C), activation and inhibition relationship (gene A↑ →
gene C↑), and sets of co-regulators (gene A↑, gene B↓).

The overall process of the proposed method is depicted in
Figure 1. The proposed method consists of two main
phases. First, temporal association rule mining phase.
With an obtained fitted parameter set, the steps of tempo-
ral association mining method is applied to time-series
gene expression data: (i) converting gene expression val-
ues into discrete values, (ii) generating temporal transac-
tion sets with various sizes of transcriptional time delay Δ,
(iii) generating temporal frequent item sets, (iv) and
finally, extracting temporal association rules. The pro-
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posed method is tested with public microarray experi-
ments of Saccharomyces cerevisiae cell cycle alpha factor
arrest synchronization data set. Second, parameters fitting
phase. In this phase, external known regulation informa-
tion (KEGG cell cycle regulation information) is used to
choose the best parameter set from all possible combina-
tions of parameter sets. Three parameters are selected for
the proposed temporal association rule mining (TARM)
method. Among every possible combination of three
parameter values, the best parameter set that has the high-
est overlap degree with previously known biological regu-
lation relationships is selected as the fitted parameter set.

Methods
Conventional association rule mining (Apriori algorithm)
To explain the basic concepts of association rule mining,
we use the definitions and the examples of supermarket
data shown in [26]. Consider a small store that sells the
following set of items: [Bagels, Bread, Butter, Cereal, Juice,
Milk]. List of items bought by six hypothetical customers

are shown in Table 1. This table will be used to illustrate
the concepts presented in this section.

Definition 1
(1) An association rule is a pair of disjoint item sets. If
LHS (Left Hand Side) and RHS (Right Hand Side) denote
the two disjoint item sets, the association rule is written as
LHS → RHS.

Table 1: List of items bought by six customers. Each row of the 
table is referred to as a transaction.

No. Item purchased

1 Bread, Butter, Cereal, Juice, Milk
2 Cereal, Juice, Milk
3 Bagels, Butter, Cereal, Juice, Milk
4 Bread, Cereal, Jelly, Juice, Milk
5 Bagels, Jelly, Juice, Milk
6 Jelly, Juice, Milk

Method overviewFigure 1
Method overview. (a) The overall phase of proposed method. (b) Parameter fitting phase.

Parameter Fitting

(i) Convert  gene expression  values 
into discrete values

[Used parameter: threshold value] 

(ii) Generate temporal transaction 
sets with association interval Δ

(iii) Find temporal frequent item sets
[Used parameter:   Support]

(iv) Find temporal association rules 
[Used parameter:   Confidence ]

g
Extract temporal 
association rules with 
all combinations of 
parameters

Validate extracted 
rules with known 
regulation information

Find the best 
parameter set

KEGG cell cycle
regulation pathway

A fitted parameter set
1.Binning threshold value
2.support 
3.Confidence

Temporal Association Rules
(e.g.) gene 1 � ( 7 minutes) gene 2

Time-series gene 
expression
(yeast cell cycle)

755 genes
19 time points
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(2) The support of the association rule LHS → RHS with
respect to a transaction set T is the support of the item set
LHS ∪ RHS with respect to T.

(3) The confidence of the rule LHS → RHS with respect to
a transaction set T is the ratio support (LHS → RHS)/sup-
port(LHS).

Example
Consider the item sets A1 = [Juice, Milk] and A2 = [Cereal].
Since A1 and A2 are disjoint, A1 → A2 (or equivalently,
[Juice, Milk] → [Cereal]) is an association rule. Let R1
denote this association rule. The support of R1 is the sup-
port of the item set [Juice, Milk, Cereal]. From Table 1, it
can be seen that this support value is 4. Also from Table 1,
the support of the item set [Juice, Milk] is 6. Therefore, the
confidence of Rule R1 is 4/6 or 66.67%.

Temporal association rule mining (TARM)
In this work, we propose a temporal association rule min-
ing (TARM) method, which is based on Apriori algorithm.
Following two sub-sections will explain the detailed
methodology of temporal association rule mining phase
(Figure 1(b)), and parameter fitting phase (Figure 1(a)).

To explain the concept of the proposed TARM method, we
first define new terminologies.

Definition 2
(1) A temporal item is an item, which has a time stamp.

(2) A temporal item set Ï is a non-empty set of temporal
items.

(3) Given a temporal item set Ï, a set T of transactions on
Ï, and a positive integer α, Ï is a temporal frequent item set
with respect to T and α if support T (Ï) > = α. (α is the sup-
port threshold.)

(4) A temporal association rule is a pair of disjoint tem-
poral item sets. If LHS and RHS denote the left and right
temporal item sets respectively, then the time stamp of
each temporal item in LHS is ahead of those of all tempo-
ral items in RHS. A temporal association rule is written as
LHS > (Δ) RHS, where Δ is the interval of different two
time stamps.

Figure 2 shows an illustration of temporal association rule
mining process. First, continuous gene expression values
are converted into discrete values (up, down, and none)
(Figure 2(a)). Second, to find temporally associated
genes, we first assume that all related genes may have var-
ious sizes of transcriptional time delay. Therefore, our
method searches associated genes in all possible sets of
different time point experiments where the time interval

is from 0 to n (Figure 2(b)). In this illustration, Δ is 2. For
example, Temporal transaction set t0 + t2 = [g1L↑, g2L↓,
g1R↑, g2R↑, g3R↓] consists of up or down regulated genes at
time stamps t0 and t2 with the size of transcriptional time
delay Δ = 2. Note that, for g1, it is up regulated in both
cases of t0 and t2, but we marked them as two different
genes like g1L (g1 in Left hand side) and g1R (g1 in Right
hand side). Third, Figure 2(c) indicates the extracted tem-
poral frequent item sets with support threshold 50%. And
finally, two temporal association rules are discovered with
confidence threshold 50% as shown in Figure 2(d). In this
manner, TARM can find (1) various sizes of transcrip-
tional time delay between associated genes, (2) activation
and inhibition relationship, (3) sets of co-regulators for
the target genes.

Parameter extraction
This section shows the phase for obtaining three different
parameters which are necessary when mining temporal
association rules: (1) a cutoff value for binning transcrip-
tional expression values, (2) a support value for mining
temporal frequent item sets, and (3) a confidence value
for extracting temporal association rules. Since the per-
formance of the proposed method is dependent on the
parameter set, the parameter set should be chosen very
carefully. If the ground truths of cell cycle regulation are
known, the regulation information can be used to fit the

An illustration of temporal association rule mining processFigure 2
An illustration of temporal association rule mining 
process. An illustration of temporal association rule mining 
process with transcriptional time delay Δ = 2, support ≥ 50%, 
confidence ≥ 50%.

t0 t1 t2 t3 t4 t5 t6
g1 - - - -

g2 -

g3 - - - -
(a) Binned time-series data, with 3 genes and 6 time points

(b) Temporal transaction sets, transcriptional time delay Δ = 2

(c) Temporal frequent item sets, support = 50%

(d) Temporal association rules, confidence = 50%

t0+t2 = {g1L , g2L , g1R , g2R , g3R }
t1+t3 = {g2L , g2R , g3R }
t2+t4 = {g1L , g2L , g3L , g1R , g2R }
t3+t5 = {g2L , g3L , g3R }
t4+t6 = {g1L , g2L , g2R }

{g1L } , {g2L }, {g2R }, {g3R }
{g1L , g2R },  {g2L , g3R }

g1 � (2) g2
g2 � (2) g3
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parameters. However, absence of such kinds of informa-
tion, alternative information source is used. In this study,
we utilize KEGG cell cycle regulation path as known infor-
mation set to find the best parameter set which can extract
the most number of accurate temporal association rules.
The KEGG cell cycle regulation path is a collection of
manually drawn pathway maps representing the regula-
tion knowledge on the molecular interaction, and the
pathway contains interaction information which are rele-
vant to cell cycle of yeast [27,28].

The KEGG regulation information is used for a measure of
correctness of the extracted candidate rules with various
combinations of parameters. If an extracted temporal
association rule is matched with KEGG regulation infor-
mation, then we regard the rule as a correctly extracted
rule. Namely, the validation score is calculated by the fol-
lowing equation:

To select a fitted parameter set among the various combi-
nations, we select a parameter set which shows the highest
validation score.

Results and discussion
Data sets
To check the performance of the proposed method, we
used S. cerevisiae cell cycle alpha factor arrest synchroniza-
tion microarray data set [29]. This time-series microarray
data set has 18 time points with relatively small regular
time intervals (7 minutes) between every sampling time
point.

Fitted parameters
In the parameter fitting phase, combination sets of param-
eters are generated within binning cutoff values from 0.2
to 1.4, support cutoff values from 2 to 6 transaction, and
confidence cutoff values from 80 to 100%. With these
parameter sets, TARM method is applied on cell cycle
expression data of 57 genes, which are nodes of KEGG

yeast cell cycle regulation pathway. Extracted temporal
association rules with every parameter set are validated
with KEGG cell cycle regulation information. The preci-
sion scores of parameter sets are summarized in Table 2.
To determine the best parameter set, extracted rules with
several sets of parameters, which show relatively high pre-
cision scores are examined (precision scores with 0.25,
0.28, and 0.38). The temporal association rules extracted
with three selected parameter sets are listed in Figure 3.
Finally, [threshold = ± 0.8, support ≥ 3, confidence ≥ 90%]
set is selected as the fitted parameter set which shows the
highest precision score (0.38). Although the precision
score of the fitted parameter set seems not significant, the
score is satisfactory in the case of microarray analysis.
Because it is reported that when inferring linkages of reg-
ulatory proteins in KEGG pathway only from microarray
gene expression data set, the accuracy of inferred results
were not high owing to the property of microarray itself
[30]. Furthermore, we compared the results with Dynamic
Bayesian Network (DBN) and Bayesian Network (BN)
inference methods. We used the 'G1DBN' package imple-
mented in R for DBN, and we used the 'deal' package
implemented in R for BN inference. The result of DBN is
optimized for the precision score after exploring possible
combinations of parameters. The precision and recall
scores of BN are obtained after model averaging. The
results of proposed method, DBN, and BN are summa-
rized in Table 3. When comparing precision scores, the
proposed method achieved the best performance. How-
ever, the proposed method still shows poor recall score
like recall scores from two previous methods.

precision
of matched rules
of  extracted rules

= (#
(# )

 )
(1)

Table 3: A summary of precision and recall scores of three 
methods.

TARM DBN BN

Precision 7/18 = 0.38 3/66 = 0.045 8/50 = 0.16
Recall 7/99 = 0.070 3/99 = 0.030 8/99 = 0.080

Table 2: A summary of precision scores of 70 different parameter sets.

Confidence 90%, 100% 80%

Support 2 3 4 5 6 2 3 4 5 6

± 0.2 0.05 0.05 0.06 0.08 0.10 0.05 0.06 0.06 0.07 0.08
± 0.4 0.04 0.06 0.08 0.10 0.15 0.05 0.07 0.08 0.08 0.11
± 0.6 0.05 0.14 0.16 0.17 0.0 0.06 0.14 0.15 0.15 0.13
± 0.8 0.17 0.38 0.25 - - 0.15 0.25 0.23 0.0 -
± 1.0 0.28 0.0 - - - 0.17 0.28 0.0 - -
± 1.2 0.18 0.0 - - - 0.18 0.0 - - -
± 1.4 0.0 - - - - 0.0 - - - -
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Extracted temporal association rules with the selected three parameter setsFigure 3
Extracted temporal association rules with the selected three parameter sets. Best three parameter sets are 
selected to compare results of extracted rules on cell cycle expression data of 57 genes with association delay 0 ~28 minutes. 
Set A = [threshold = ± 0.8, support ≥ 3 transactions, confidence ≥ 80%], set B = [threshold = ± 0.8, support ≥ 3 transactions, 
confidence ≥ 90%], set C = [threshold = ± 1.0, support ≥ 3 transactions, confidence ≥ 80%]. The intersection area of a Venn 
diagram stands for the commonly extracted rules with different parameter sets. Rules written in Italic font denote known reg-
ulation relations in KEGG Cell cycle pathway data.

A

CB

CLB1_d � (0 min)  CLB2_d
CLB2_up � (7 min)  CLN2_d

CLB1_d � (0 min) CDC5_d 
CLN2_d � (0 min) CLB2_up 

CLN2_up � (0 min) CLN1_up
CLB2_up � (7 min) CLB2_up 

CLB1_d � (7 min)  CLB1_d
CLN1_up � (28 min) CDC5_up 
CLN1_up � (28 min) CLB2_up

CDC5_d � (0 min) CLB1_d
SWI4_up � (0 min) CLB6_up
CLN2_up � (0 min) CLN1_up 

CLB2_d � (0 min) CLB1_d

CDC5_up � (7 min) CLB2_up
SWI4_up � (7 min) CLN1_up

CLB1_up � (7min)  CLB2_up
CLB6_up � (7min) CLN1_up

FAR1_up � (14 min) CLN2_up 
FAR1_up � (14 min) CLN1_up

CLN1_d � (14 min)  SWI4_up 
CLN1_d � (14 min) CLB6_up
CDC5_up � (21 min) SIC1_up 
CLN1_d � (21 min) CLN1_up
FAR1_d � (28 min) CLB2_up

CDC5_up � (0 min) CLB2_up
CDC5_d � (7 min) CLB2_d

CDC5_up � (7 min)  CLN2_d

CLN1_up � (0 min ) CLN2_up
CLN1_up � (0 min ) CLB6_up

A B C

Precision
7 / 27 

=  0.25
7 / 18 

=  0.38
2 / 7 

=  0.28

Recall
7/99

=0.070
7/99

=0.070
2/99

=0.020
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Extracted temporal association rules with fitted 
parameters
Using the selected parameter set, we applied TARM
method to 799 genes which are pre-identified as cell cycle
relevant genes in [29] and extracted numbers of temporal
association rules with various sizes of transcriptional time
delay. To test the significance of the temporal association
rules, TARM is also applied to random shuffled cell cycle
expression data of 799 genes. Figure 4 is the comparison
result of both the real cell cycle data set and the shuffled
cell cycle data set. As the Figure shows, the extracted num-
bers of rules from real cell cycle data set and random data
set are comparably different. The results indicate that tem-
poral association rules extracted by our proposed method
are more significant than random rules.

From the extracted temporal association rules, rules with
significant support (S ≥ 5) are chosen for further Gene
Ontology (GO) term [31] analysis and represented in a
directed graph structure (Figure 5). By this analysis, inter-
esting features are found. First, associated genes, which
play same role of biological phase with relatively short
transcriptional time delay are identified. For example,
HTB2, HTA2, HHF1, HHT1, HTB1, HTA1, HHF2, and
HHT2 those who share same annotation term (Organelle
organization and biogenesis, DNA metabolic process) are
complexly associated with one another within 0~7 min-

utes and these associated genes are known as having pro-
tein interactions with each other. HTA1 interacts with
HTA2 [32], HTB1 [33], HTB2 [34,35], HFF1[33], HHT1
[34-36]. HTA2 interacts with HHF1 [37], HHT1[32],
HHT2 [32], HTA1 [32], HHF2 [32]. Second, some tempo-
ral dependencies between genes with specific biological
processes are detected. Like POL30, YLR183C (RNA meta-
bolic process, Transcription, Cell cycle) and HTA1, HTA2,
HTB1, HHF2 (Organelle organization and biogenesis,
DNA metabolic process) have temporal association with
Δ = 14 minutes. PIR1, PIR3 (Cell wall organization and
biogenesis) and HTB2 (Organelle organization and bio-
genesis, DNA metabolic process) are temporally associ-
ated with Δ = 21 minutes.

Conclusion
We developed the TARM method that can extract tempo-
ral association rules in time-series gene expression data,
and validated the proposed method with yeast cell cycle
gene expression data set. A temporal association rule can
describe how the expression of one gene might be associ-
ated with the expression of other genes with the related
temporal dependency.

In the parameter fitting phase, the best parameter set
(threshold = ± 0.8, support ≥ 3 transactions, confidence ≥
90%), which extracted the most number of correct associ-
ations in KEGG cell cycle pathway among 70 combina-
tions of parameters, has been chosen for rule mining.
Furthermore, when comparing the precision scores
between TARM (0.38), Dynamic Bayesian network
(0.045) and Bayesian network (0.16), TARM method
showed the best performance. With the best parameter
set, numbers of temporal association rules are extracted
among pre-identified 799 cell cycle relevant genes. From
the extracted temporal association rules, temporally asso-
ciated genes, which play same role of biological processes
(Organelle organization and biogenesis, DNA metabolic proc-
ess) with short transcriptional time delay, and some tem-
poral dependencies between genes with specific biological
processes are detected. The strong points of our method
are the detection abilities of (1) various sizes of transcrip-
tional time delay between associated genes, (2) activation
and inhibition relationship, (3) sets of co-regulators for
the target genes.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
HN designed the study, implemented the application,
performed experiments, and wrote the manuscript. KL
participated in the design of the study and performed the
result analysis. DL conceived of the study, and partici-
pated in its design and coordination and helped to draft

The number of extracted temporal association rules from cell cycle data set and random data setFigure 4
The number of extracted temporal association rules 
from cell cycle data set and random data set. The 
graph shows the number of extracted temporal association 
rules in five transcriptional time delays (0, 7, 14, 21, 28 min-
utes) from time-series gene expression of 799 cell cycle rele-
vant genes and random shuffled cell cycle data set [threshold 
= ± 0.8, support ≥ 3 transactions, confidence ≥ 90%]. Black 
bar indicates the number of extracted rules in real data set 
and gray bar stands for the average number of extracted 
rules of 100 times of random tests.
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Validation of the extracted temporal association rulesFigure 5
Validation of the extracted temporal association rules. Extracted temporal association rules with high support (sup-
port ≥ 5) are represented in network structure (upper). A solid pointed arrow edge indicates 'up → up' relation; a solid blunt 
arrow indicates 'down → up'; a dashed pointed arrow indicates 'down → down'; a dashed blunt arrow indicates 'up → down' 
relation. Nodes in grey denote genes whose biological function is known. Nodes in white stand for genes whose biological 
function is not discovered yet. The numeric value on each edge stands for transcriptional time delay (Δ) between genes. Biolog-
ical process annotation terms of genes represented in network are summarized in Table.

Transcriptional
time delay Temporal association rules &  Gene annotation terms

0 minute

HTB2_up HTA1_up � HTB1_up
HTA2_up HTB1_up � HTA1_up
HHT2_up HHF1_up HHT1_up HTA1_up  � HTB1_up 
HHT2_up HHF1_up HHT1_up HTB1_up  � HTA1_up 
HHT2_up HHF1_up HTA1_up HTB1_up  � HHT1_up 
HHT2_up HHT1_up HTA1_up HTB1_up  � HHF1_up 
HHF1_up HHT1_up HTA1_up HTB1_up  � HHT2_up 

• Organelle organization and biogenesis, DNA metabolic process: 
HTA1, HTA2, HTB1, HTB2, HHF1, HHT1, HHT2 

14 minutes

POL30_up YLR183C_up  � HTA2_up 
POL30_up YLR183C_up  � HTA1_up 
POL30_up YLR183C_up  � HHF2_up 
POL30_up YLR183C_up  � HTB1_up 

• RNA metabolic process, Transcription, Cell cycle:
POL30, YLR183C
• Organelle organization and biogenesis, DNA metabolic process: 
HTA1, HTA2, HTB1, HHF2 

21 minutes

PIR3_up PIR1_up � HTB2_up 

• Cell wall organization and biogenesis:
PIR1, PIR3 
•Organelle organization and biogenesis, DNA metabolic process:
HTB2 
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