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Abstract
Background: Transcriptional regulation is a fundamental process in biological systems, where
transcription factors (TFs) have been revealed to play crucial roles. In recent years, in addition to
TFs, an increasing number of non-coding RNAs (ncRNAs) have been shown to mediate post-
transcriptional processes and regulate many critical pathways in both prokaryotes and eukaryotes.
On the other hand, with more and more high-throughput biological data becoming available, it is
possible and imperative to quantitatively study gene regulation in a systematic and detailed manner.

Results: Most existing studies for inferring transcriptional regulatory interactions and the activity
of TFs ignore the possible post-transcriptional effects of ncRNAs. In this work, we propose a novel
framework to infer the activity of regulators including both TFs and ncRNAs by exploring the
expression profiles of target genes and (post)transcriptional regulatory relationships. We model
the integrated regulatory system by a set of biochemical reactions which lead to a log-bilinear
problem. The inference process is achieved by an iterative algorithm, in which two linear
programming models are efficiently solved. In contrast to available related studies, the effects of
ncRNAs on transcription process are considered in this work, and thus more reasonable and
accurate reconstruction can be expected. In addition, the approach is suitable for large-scale
problems from the viewpoint of computation. Experiments on two synthesized data sets and a
model system of Escherichia coli (E. coli) carbon source transition from glucose to acetate illustrate
the effectiveness of our model and algorithm.

Conclusion: Our results show that incorporating the post-transcriptional regulation of ncRNAs
into system model can mine the hidden effects from the regulation activity of TFs in transcription
processes and thus can uncover the biological mechanisms in gene regulation in a more accurate
manner. The software for the algorithm in this paper is available upon request.
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Background
Transcription regulation of gene expression is one of the
most important processes in molecular biology. It trans-
mits static information encoded in the DNA sequence
into functional protein molecules which in turn control
most of the cellular processes. It is some DNA-binding
proteins known as transcription factors (TFs) that achieve
the transcriptional regulation of genes. TFs usually attach
to specific DNA promoter regions to exert their effects
positively or negatively on binding of RNA polymerase to
the promoter region of a gene. The process of gene expres-
sion involves a series of complex biochemical events such
as transcription, cooperativity and competition of multi-
ple TFs, intron splicing, translation, post-translational
modification, degradation and other mechanisms. So far,
there have been great efforts contributed to identify tran-
scription factors and generate binding data for many
organisms [1,2]. Another equally important problem is to
synthesize and analyze transcriptional regulatory net-
works from ChIP-chip data and gene expression profiles
[3-5]. More detailed surveys about these topics can be
found in [6,7].

Generally, the ability of a TF in regulating a target gene is
determined by its activity, i.e. the active concentration
after various post-translational modifications. Under-
standing the activity of TFs is fundamental to elucidate the
underlying mechanism in transcription regulation. How-
ever, although many routine techniques are available to
measure the expression profiles of thousands of genes
simultaneously, there is currently no a reliable experiment
technology to routinely measure the activities of regula-
tors due to the complexity of post-translational process.
The expression of a gene encoding a TF provides only lim-
ited information about activity, since various post-transla-
tional modifications heavily affect the protein
concentration [8]. On the other hand, since the expression
profiles of target genes represent the regulation results of
their regulators, a lot of computational works have been
made to infer TF activity from their target gene expression
profiles and TF-gene regulatory relationships. Liao et al.
and Kao et al. made the first attempt to infer regulator
activities by combining gene expression data of target
genes and ChIP-chip data [9,10]. They developed a matrix
decomposition method called network component analy-
sis (NCA) to determine transcription regulator activity.
This method was further extended as partial least squares
(PLS) based network component analysis by Boulesteix
and Strimmer [11] which offers an efficient and sound
way to infer regulator activity for any given connectivity
matrix without much restriction like NCA. Tran et al.
derive a generalized form of NCA called gNCA which
expands the capability of transcriptional network analysis
by incorporating regulatory signal constraints arising
from genetic knockouts [12]. Based on a same system

model, a mixed integer linear programming approach is
developed to infer transcription factor activity in [13]
which can easily integrate prior knowledge about regula-
tory relationships. In addition, Nguyen and D'haeseleer
[14] developed a matrix factorization method to decom-
pose gene expression matrix which can obtain motif
strength and TF activity profiles simultaneously. Pournara
and Wernisch [15] studied five factor analysis methods for
predicting protein activities of TFs. Other related work can
be found in [6,16].

In addition to coding genes and TFs, in recent years, the
biological roles of non-coding RNAs (ncRNAs) that are
transcribed from DNA but not translated into proteins
have been widely studied [17,18]. Especially, small non-
coding RNAs (sRNAs) have been demonstrated to play
critical roles in regulating gene expression [19]. MicroRNA
(miRNA), a family of sRNAs with a single-stranded RNA
molecule of about 18–24 nucleotides in length, was ini-
tially discovered as small temporal RNAs that regulate
developmental transitions in C. elegans, and now found to
have diverse expression patterns and probably regulate
many aspects of development and physiology [18]. miR-
NAs are predicted to regulate the expression of approxi-
mately one-third of all human genes and play important
roles in coordinating many cellular processes, particularly
those involved in development and disease including var-
ious cancers, acting either as oncogenes or tumor suppres-
sor genes [20-22]. Many computational methods
available for predicting the mRNA targets of miRNAs indi-
cate that an miRNA could target tens to hundreds of genes
[23,24]. Although the detailed regulation mechanisms of
sRNAs are largely unknown, some of them already have
characterized targets and have been recognized to nega-
tively regulate the expression of target genes at the post-
transcriptional level by base pairing with mRNAs through
binding to mRNA targets, leading to target degradation or
inhibition of translation [19,25-27].

With an increasing number of ncRNAs being shown to
mediate post-transcriptional processes and regulate criti-
cal pathways in prokaryotes and eukaryotes, quantita-
tively characterizing their regulation roles in gene
expression is a new and important task [28-30]. For exam-
ple, Shimoni et al. used dynamical simulations to charac-
terize the regulation modes of sRNAs and compared them
with the transcriptional regulation mediated by TFs and
post-translational regulation achieved by protein interac-
tions [28]. Levine et al. adopted a quantitative approach
to study bacterial sRNAs in E. coli and found that the
mode of gene regulation of sRNAs is distinct from that of
TF regulation [29]. Mehta et al. quantitatively compared
sRNAs with conventional TFs by calculating the steady-
state behavior, noise properties, amplification, and
dynamical response to large input signals of both forms of
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regulation [30]. Aguda et al. studied a feedback loop
involving a miRNA cluster and two TFs and showed the
oncogenic and tumor suppressor properties of miR-17–92
[31]. Khanin et al. developed a kinetic model of post-tran-
scriptional regulation of miRNAs and focused on studying
the miRNAs' effect on mRNAs degradation rates by infer-
ring kinetic parameters using a temporal microarray data-
set [32]. Although there are many efforts for exploring the
regulation properties of individual miRNAs and compar-
ing them with TF regulation from a dynamic view, few
work is developed on integrating the post-transcriptional
regulation of sRNAs into TF regulation and creating a
comprehensive regulatory network to investigate gene reg-
ulation in an overall manner.

In light of existing work for studying transcriptional regu-
lation and regulator activities that ignores the possible
post-transcriptional effects of sRNAs on mRNA level, in
this paper, we propose a novel approach to infer the activ-
ity of regulators including TFs and sRNAs. The new frame-
work explores target gene expression profiles and
integrated two-level (transcription and post-transcrip-
tion) regulatory relationships, and thus can incorporate
the regulatory effects of sRNAs into the inference process,
making the reconstructed network more biologically rea-
sonable and meaningful. We model the integrated regula-
tory system by a set of biochemical reactions which lead
to a log-bilinear problem. Then an iterative algorithm is
developed to address the system model, in which two lin-
ear programming (LP) problems are effectively solved,
making the framework suitable for large-scale instances.
Since the regulatory role of sRNAs in bacteria has actually
been a subject of active research for the last several dec-
ades, we test our model and algorithm by using E. coli data
and available information from previous research studies.
Experiments on two synthesized data sets and a real data
set about a model system of E. coli carbon source transi-
tion from glucose to acetate illustrate the effectiveness of
our model and algorithm.

Results
As mentioned in the last section, the activity of regulators
(the active concentration of regulators) determines their
ability in regulation of target genes. On the other hand,
the expression profiles of target genes represent the regu-
lation results of regulators. Therefore, the regulator activi-
ties can be retrieved from the expression profiles of their
target genes and the corresponding regulatory relation-
ships. In this work, we collect the regulatory interactions
between TFs, ncRNAs and target genes and aim to infer the
concentrations of TF and ncRNAs from the mRNA levels
of target genes and regulatory network structure. Figure 1
illustrates the main step of the procedure. Clearly from the
biological viewpoint, it is reasonable and biologically
meaningful to incorporate the regulation effects of post-

transcription on mRNAs when inferring regulator activi-
ties since many ncRNAs are found to downregulate target
genes.

Quantitative reconstruction of regulatory activities needs
a biologically meaningful mathematical model to
describe the relationships between the activities of regula-
tors (especially ncRNAs here), target gene expression lev-
els, and regulatory network structure. Since transcription
and post-transcription are achieved by a series of bio-
chemical reactions with TFs, ncRNAs, mRNAs and pro-
teins as reactants, we can construct a model from the set
of involved biochemical reactions. Then, based on differ-
ent kinetics such as Michaelis-Menten kinetics and mass
action kinetics, we can obtain mathematical models at dif-
ferent levels. In this paper, we adopt the widely used mass
action kinetics to mathematically formulate the integrated
regulatory system.

Integrated system model
Transcriptional regulation and post-transcriptional regu-
lation on gene expression can be modeled as a closed
reacting system, in which proteins, DNA, mRNAs, ncRNAs
and other intermediate species are components of the bio-
chemical system. In transcription process, independent
TFs or interacting TFs bind to DNA sequences so as to
recruit RNA polymerase II (RPII) onto promoter region of
DNA through a set of reversible reactions. Although the
species involving in transcription regulation may also take
part in other independent reactions, these reactions are
usually much faster compared with those in transcription
[4]. We can assume that they reach equilibrium, i.e. the
amounts of atomic species are conserved in this closed
system. Therefore, an overall chemical reaction of tran-
scription initiation can be given by

Scheme of inferring post-transcription regulation activityFigure 1
Scheme of inferring post-transcription regulation 
activity.
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where there are totally c TFs regulating gene i, the stoichi-
ometric coefficient Jij, j = 1, 2, �, c represents the effective

abundance of TFj involved in the regulation of gene i, and

DNAi is the sequence of gene i. k1 and k-1 are the rate con-

stants of forward reaction and reverse reaction respec-

tively.  denotes the

immobilized compound formed by DNA, TFs and RNA
polymerase II. After transcription initiation, mRNAs of
gene i are synthesized through the following irreversible
reaction

where k2 is the rate constant of the reaction.

If no post-transcriptional events exert effects on the degra-
dation of mRNAs or the inhibition of translation, or if we
do not consider the effects of post-transcriptional events,
we can directly establish a mathematical model describing
the concentration changes of mRNAs according to above
reactions. Now, we stress the regulatory roles of ncRNAs
in post-transcriptional process. As existing literature
stated, many ncRNAs have characterized targets and nega-
tively regulate mRNAs by binding to the target mRNAs
and destabilizing them in a process mediated by the RNA
chaperone Hfq (Sm-like host factor I) [29]. After binding,
both sRNAs and mRNAs are degraded by pairing Hfq at a
rate that depends on the sRNA-mRNA regulation strength
[19,33], Therefore, we model the regulation effects of
ncRNAs on mRNAs in the post-transcription process by
the following biochemical reaction

where Mis, s = 1, 2, �, k in the above reaction is the stoi-
chiometric coefficient and k3 is the rate constant of the
reaction. Though the formation of sRNA-mRNA complex
is irreversible and may be noncatalytic, we use the above
equation to represent the regulation effects of ncRNAs
which are viewed as a kind of degradation of mRNAs.

Mass action law means that the rate of any given elemen-
tary reaction is proportional to the product of the concen-
trations of the reactants. According to mass action law, the
concentration changes of mRNAs and

 can be described as the fol-

lowing equations

where [·] represents the concentration of the correspond-

ing species, and  = k1 [DNAi] [RPII]. In the second term

of equation (4),  is exactly like the degrada-

tion factor in the regulation model used in [12], in which
degradation factors are discarded. By assuming that the
closed reaction system attains equilibrium (or considering
a time scale in which quasi-steady state approximation is
valid) and that there are sufficient RPII in cells so that
[RPII] = 1 (i.e. the normalized concentration) and [DNAi]

remains constant, we have the following equation accord-
ing to the equilibrium form of (4)–(5)

After introducing the status of t = 0 as a reference sample,
we obtain the following log-bilinear model

where xi(t) = [mRNAi](t), Aj(t) = [TFj](t), Rs(t) =
[ncRNAs](t). It can be formulated as the following bilinear
model in a matrix form through log transformation

where Xm × n is an m × n matrix with element log(xi(t)/
xi(0)) for i = 1, �, m, t = 1, �, n; J is an m × c matrix with
element Jij for i = 1, �, m, j = 1, �, c; M is an m × k matrix
with element Mis for i = 1, �, m, s = 1, �, k; A is a c × n
matrix with element log(Aj(t)/Aj(0)) for j = 1, �, c, t = 1,
�, n; R is a k × n matrix with element log(Rs(t)/Rs(0)) for
s = 1, �, k, t = 1, �, n. Generally, most non-zero entries of
M are positive because ncRNAs usually negatively regulate
the expression of mRNAs. Equation (6) is a model with m
genes (mRNAs), k ncRNAs, c TFs, and their concentrations
with n time points.

In this model, [J -M] represents a two-level regulatory net-
work involving both transcription (mediated by TFs) and
post-transcription (mediated by ncRNAs), with each row
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corresponding to a target gene and each column corre-
sponding to a regulator. In this work, the two-level regu-
latory network is partially known, i.e. the topological
structure can be accessed from databases, but the numeri-
cal regulation strength is to be inferred by the model. Our
goal is mainly to reconstruct the activities of regulators A
and R from the expression profiles of target genes X. The
reconstruction process is formulated into an optimization
problem and solved by a proposed iterative algorithm
(see Methods).

Illustration of the model by a hypothetical network
We first use a hypothetical network to illustrate our model
and motivation of incorporating sRNAs. The simple net-
work is given in Figure 2, which consists of three TFs (c =
3), and one miRNA (k = 1) regulating seven genes (m = 7).
From a set of preassigned regulation strengths of regula-
tors and their regulation activities with six time samples (n
= 6), the expression profiles of target genes (the matrix X)
are generated numerically with a Gaussian white noise
N(0,0.05) that simulates experimental microarray gene
expression data. With the synthesized expression profiles
of target genes and regulatory network structure, we
reconstruct the regulator activities (the matrices A and R).
The synthesized data can be found in Additional file 1. To
mimic the fact that ChIP-chip data can only provide rough
regulation strength by giving p-values of TF-gene bindings,
we use the original regulation strengths with a large ran-
dom noise of uniform distribution (15%) to construct an
initial regulation matrix for the matrices J and M. To illus-
trate the effects of the miRNA on reconstruction accuracy,
we first assume that only three TFs are known to regulate
the genes without the knowledge of the post-transcrip-
tional regulation effects of the miRNA. And then, we
examine the case that considers the regulation of miRNA.
After constructing the system model (6), we use the itera-
tive algorithm to solve the model (Methods). The param-
eter λ in this small example is simply set as 1. Since the
iterative algorithm starts from random initial matrices, we
rerun the algorithm for five times, and both mean values

and standard variation of the reconstruction results are
summarized in Figure 3. We can see that although we add
noises into target expression profiles and use largely per-
turbed regulation matrices as initial solutions, the recon-
structed regulator activities have a good agreement with
the true values. However, if we ignore the regulation
effects of miRNA, the inference accuracies are heavily
weakened. An observable consequence is that the TF activ-
ities are underestimated if miRNA regulation is ignored,
which can be confirmed in the following real data in E.
coli. Here the simple network only contains a single
miRNA. In real networks, if many ncRNAs have post-tran-
scriptional regulation effects on target genes, not only the
amplitudes of reconstructed TF activities but also the
whole dynamics will be changed without incorporating
post-transcriptional events.

Reconstruction of absorbance spectra of hemoglobin 
solutions
In this section, we use a network of seven hemoglobin
solutions (denoted by M1, M2 �, M7) and their absorb-
ance spectra which were measured in Liao et al. [9] to eval-
uate our method. This data set has been widely used to test
matrix factorization methods [12,15]. Each of these seven
solutions contains a combination of three components:
oxyhemoglobin, methemoglobin and cyano-methemo-
globin. The absorbance spectra were taken between 380
and 700 nm with 1-nm increments. According to Beer-
Lambert law, the absorbance spectra of the mixture can be
described as a linear combination of the composition pro-
portions of three components and the absorbance spectra
of each pure solution according to a certain mixing dia-
gram [9]. The mixing diagram represents the composi-
tions of pure components, which serves as the regulatory
network. The absorbance spectra of seven mixed hemo-
globin solutions serve as the expression profiles of targets,
and the three pure components serve as regulators. Now
we test if or not our iteration algorithm can correctly infer
the absorbance spectra of each pure solution (serving as
the activities of regulators) by using those of mixed solu-
tions and their mixing diagram.

Since the iteration algorithm starts from random initial
matrices, the convergence results may be different upon
different implementations. We solve this problem by
rerunning the algorithm for certain times and then averag-
ing the results. To evaluate the performance of the
method, we compared it with those from Network Com-
ponent Analysis (NCA), Principle Component analysis
(PCA), Independent Component Analysis (ICA). The
comparison results on this dataset are summarized in Fig-
ure 4, where IA denotes our iteration algorithm. Clearly,
the results in Figure 4 show that both our algorithm and
NCA can well retrieve the regulatory signals (pure compo-
nent spectra) since they agree well with the true spectra

A simple transcriptional regulatory network with three TFs, one miRNA and seven target genesFigure 2
A simple transcriptional regulatory network with 
three TFs, one miRNA and seven target genes.
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obtained from independent measurements of pure com-
ponents. In contrast, PCA or ICA cannot reconstruct the
pure component spectra with a good accuracy. The results
confirm the effectiveness of our iteration algorithm. Com-
pared with NCA, the peak regions of the spectra for oxyhe-
moglobin and methemoglobin solutions reconstructed
by our method are slight lower. However, our algorithm
has no any restrictions on data matrix X and factorized
matrices J, A. In contrast, there are several restriction con-
ditions to make NCA feasible [9]. If these conditions are
not satisfied, the connection matrix J must be reduced,
which restricts the ability of NCA in applying to arbitrary
datasets in practice.

Inference of regulator activities in E. coli carbon source 
transition
Finally, we applied our model and method to infer the
regulator activities in E. coli carbon source transition from
glucose to acetate. We first assemble a two-level network
including both transcriptional regulation and post-tran-
scriptional regulation from available data sources. Regu-

lonDB is a database storing the transcription information
of E. coli K12 [34]. In this database, there are 160 tran-
scription factors and 3154 TF-gene interactions (transcrip-
tional regulatory relationships). The ncRNA-protein
interaction database (NPInter) is a database storing
ncRNA-protein interactions which cover eight category
functional interactions in six model organisms [35],
among which 'the ncRNA regulates the mRNA' and 'the
ncRNA is regulated by the protein' are interactions involv-
ing in transcriptional process and post-transcriptional
process. TF-gene interactions and ncRNA-mRNA interac-
tions can be combined into a two-level regulatory net-
work with common targets as connectors. There are 47
ncRNA-mRNA interactions and 22 regulator-ncRNA
interactions for E. coli in NPInter. These numbers are
much larger than those from other five organisms. The
ncRNA-mRNA interactions in [28] that are not covered by
NPInter are also incorporated into our research. We use
the gene expression data of E. coli carbon source transition
from glucose to acetate [10] which have 10 time points to
infer the activities of the regulators (TFs and ncRNAs) in

Comparison of the inferred regulatory activities with/without incorporating the regulation of miRNA with the true valuesFigure 3
Comparison of the inferred regulatory activities with/without incorporating the regulation of miRNA with the 
true values. The squares with solid line are the true values. The line -. with error bars corresponds to the reconstructed reg-
ulator activities without considering miRNA. The dashed line with error bars corresponds to the reconstructed regulator 
activities without considering miRNA.
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this biological process. Among the genes involving in E.
coli transcriptional regulatory networks, 296 of them were
shown to be perturbed during transition from glucose to
acetate growth [10]. According to the collected ncRNAs,
TFs and theirs targets, we further reduce the targets as a set
of 150 genes. Finally, a test data set with 38 regulators (22
TFs and 16 ncRNAs) and 150 target genes is collected. The
assembled two-level regulatory network is illustrated in
Figure 5, where the target genes that are regulated by a sin-
gle TF are not shown due to the largeness of the network.
The whole two-level regulatory network can be found in
Additional file 2. The regulatory interactions that we col-
lected are from manually curated databases [34,35]. They
are observed in biological experiments and have high con-
fidences, so we do not need to make the assembled two-

level regulatory network sparser. Therefore, here we just
set λ as 0. If predicted regulatory interactions are used (e.g.
predicted miRNA targets), we use λ to control the sparse-
ness of network structure. Since no routine biological
techniques are available for measuring regulator activities,
there is no gold standard to evaluate the inferred results.
Instead, we conducted biological analysis by comparing
the results based solely on transcriptional events in [10]
and [12]. Such an evaluation scheme is effective because
identical experimental gene expression data and transcrip-
tional regulatory network are used. The only difference is
that we additionally consider the regulation effects of
sRNAs.

Validation of our method using absorbance spectra of hemoglobin solutionsFigure 4
Validation of our method using absorbance spectra of hemoglobin solutions. where OxyHb, oxyhemoglobin; 
MetHb, methemoglobin; CyanoHb, cyano-methemoglobin; IA: our iterative algorithm.
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Figure 6 lists the reconstructed activity dynamics of two
transcription factors CRP and Rpos during glucose to ace-
tate transition, along with those inferred by considering
only transcriptional events. CRP is an E.coli transcription
factor which has 64 target genes involving in the carbon
source transition. It requires the binding of the signal
metabolite cAMP for activation [36]. The transcription
activity profile of CRP actually represents that of the CRP-
cAMP complex which obviously cannot be approximated
by the gene expression profile of CRP. We retrieved the
activity of CRP by the expression profiles of its target

genes. From Figure 6, we can see that CRP has very similar
dynamics under two situations. This is mainly because
CRP has too many target genes, only one of its targets is
also regulated by sRNAs. Therefore, the effect of post-tran-
scriptional events is not significant. As another example,

 RpoS is a TF with 13 target genes involving in the carbon
source transition, where 2 of them are also regulated by
sRNAs. From Figure 6, we can see that the activity dynam-
ics of RpoS are different at two situations. Its activity
quantity under consideration of the effects of sRNAs is

The assembled two-level regulatory networks during glucose to acetate transition in E. coliFigure 5
The assembled two-level regulatory networks during glucose to acetate transition in E. coli. The solid lines 
denote transcriptional regulation, and the dashed lines represent post-transcriptional regulation. The octagons denote tran-
scription factors, the hexagons represent ncRNAs and the rectangles are target genes. The sharp arrows denote activation and 
the blunt arrows denote inhibition.
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greater than original activity. This is mainly because the
negative regulation effect of sRNAs is hidden into that of
TFs if we only consider transcriptional events with the
post-transcriptional effect ignored. Another reason is that
RpoS is positively regulated by two sRNAs DsrA and RprA.
Since we consider their regulation effects in our model,
the activity of RpoS is naturally higher than originally
reconstructed one.

Some transcription factors in our work are not covered by
[10], so we compare the reconstructed activities of these
TFs with the results in [12], where for the purpose of com-
parison, the same time spans are used. The activity
dynamics of TFs, without and with considering post-tran-
scription, are listed in Figure 7. In E. coli, FHS is a major
regulator controlling the physiological switch between
aerobic and anaerobic growth conditions [37]. We can see
that the activity dynamics of FHS is different at two situa-
tions. The activity quantity under consideration of the
effects of sRNAs is much greater than original activity.
Looking at the assembled two-level regulatory network,
we see that FHS has at least four target genes that are also
regulated by the sRNA Ryhb. Lrp is a global regulator of
metabolism in E. coli that helps cells respond to changes
in environmental conditions. In our reconstruction, the
activity dynamics of Lrp under consideration of the effects
of sRNAs is almost identical to the original activity.
Although Lrp has several target genes that are regulated by
sRNAs, these target genes have many other regulators. For

example, the target gene ompc totally has 9 regulators,
and ompf has 6 regulator. Therefore, the reconstructed
activity of Lrp does not change much after considering
post-transcription. ArcA is a global regulatory gene in E.
coli which mediates the repression of enzymes in aerobic
pathways. There is also an evidence that ArcA functions in
redox regulation in E. coli under microaerobic but not
anaerobic or aerobic conditions [38]. In our result, ArcA
has similar activity dynamics under consideration or no
consideration of the effects of sRNAs, i.e. within the first
hour, the activity is increasing, then an hour later, the
activity begins to decrease. However, the amplitudes of
the activity curves are different. The reconstructed activity
dynamics of IHF is slightly different at two situations
within the first two hours, indicating the regulation effects
of the sRNAs mainly exert in the beginning phase of glu-

The activity dynamics of CRP and Rpos during glucose to acetate transition in E. coliFigure 6
The activity dynamics of CRP and Rpos during glu-
cose to acetate transition in E. coli. Left: without consid-
ering post-transcriptional events; Right: with considering 
post-transcriptional events.

Comparison of the activity dynamics of some TFs during glu-cose to acetate transition in E. coliFigure 7
Comparison of the activity dynamics of some TFs 
during glucose to acetate transition in E. coli. Left: 
without considering post-transcriptional events; Right: with 
considering post-transcriptional events.
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cose to acetate transition. In addition to the TFs that we
analyzed above, there are some other TFs whose activities
are not covered by [10] and [12]. Figure 8 lists the activity
dynamic of such TFs.

Aside from the activities of TFs, the post-transcriptional
regulatory activities (concentrations) of ncRNAs are also
reconstructed. Figure 9 illustrates the activity dynamics of
some ncRNAs. dicF is an E.coli small RNA which blocks
cell division by inhibiting ftsZ translation. Actually, dicF-
like elements similar to transcriptional terminators have
been found in many bacterial genomes [39]. From the
reconstructed dynamics, dicF exerts an inhibition effect
on its target genes in the first three hours. SgrS is a 227-nt
small RNA that is expressed in E.coli during glucose-phos-
phate stress. Under stress conditions, SgrS exerts its post-
transcriptional effects on glucose transporter by negatively
regulating translation and stability of the ptsG mRNA
(encoding the major glucose transporter) through a base
pairing-dependent mechanism [40]. DsrA is an 87-nucle-
otide regulatory RNA of E. coli and has RNA-RNA interac-
tions with two different mRNAs, hns and rpoS. DsrA has
opposite effects on these transcriptional regulators, i.e. it
inhibits hns and activates rpos, which leads to the fact that
hns levels decrease, whereas RpoS levels increase. There
are evidences that DsrA enhances hns mRNA turnover yet
stabilizes rpoS mRNA [41], which is consistent with its
opposite effects. RyhB is a stress-induced Hfq-binding
sRNA of E. coli. It downregulates the expression of target
mRNAs encoding Fe-binding or Fe-storage proteins
through base-pairing. It has been revealed that when Fe is
limiting, RyhB levels rise, and target mRNAs are rapidly
degraded. RyhB turnover is coupled to and dependent on
pairing with the target mRNAs [27]. Most of the other
sRNAs in this study are also inhibitors and negatively reg-
ulate their targets. There are extreme few cases for sRNAs
with positive regulation. DsrA and RprA are among the
members of this class [19].

The reconstructed regulator activities can be used to pre-
dict the rough expression dynamics of some target genes
through the model (6), provided that its regulators and
their regulation nature are partially known. This can be
achieved by using the product of two matrices: one is the
partially known regulation matrix, the other one is the
reconstructed activity matrix. If more accurate predictions
are demanded, the regulation strengths of TFs and
ncRNAs are required, which can be obtained from ChIP-
Chip binding significance data [1].

Conclusion and discussion
The rapid progress of various high-throughput experiment
techniques makes more and more biological data availa-
ble, which makes it possible to quantitatively study regu-
lation mechanisms in a systematic manner. Especially, in

The activity dynamics of some TFs during glucose to acetate transition in E. coliFigure 8
The activity dynamics of some TFs during glucose to 
acetate transition in E. coli.

The activity dynamics of some sRNAs during glucose to ace-tate transition in E. coliFigure 9
The activity dynamics of some sRNAs during glucose 
to acetate transition in E. coli.
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recent years, ncRNAs have been revealed to play impor-
tant regulation roles in many critical pathways. In this
paper, we modeled the regulatory system involving two
levels (transcription and post-transcription) by a set of
closed biochemical reactions. A novel mathematical
model is developed to infer regulator activities by consid-
ering both transcriptional events and post-transcriptional
events and solved by a new iterative algorithm. Experi-
ments on both synthesized data and E. coli biological data
demonstrated the effectiveness of our method.

A limitation in our current approach is that the recon-
structed activities are somewhat dependent on the initial
setting of regulation matrices. Although there is also such
a problem in other similar studies, they usually use some
reduction or other methods to heuristically make the
algorithm converge to a unique solution. We will adopt
the similar strategy by further incorporating biological
constraints [12] in the future research. In addition, with
the fact that most of ncRNAs are inhibitors and extremely
few are activators (still some), more appropriate model in
the future is needed to embody this observation, which
should be different from conventional TF-gene regulation
models. With the increasing knowledge about the regula-
tion mechanism of ncRNAs, the system model can be
modified to be more biologically meaningful. As a future
research topic, we will systematically investigate the post-
transcriptional effects of ncRNAs in regulation mecha-
nisms of E. coli and other organisms.

Methods
In this work, the regulatory interactions between TFs,
ncRNAs and target genes are modeled by a closed bio-
chemical reaction system. With mass action law kinetics
and quasi-equilibrium assumption, the concentrations of
TFs, mRNAs and ncRNAs and the regulatory relationships
between them form a set of log-bilinear equations, which
in turn can be transformed into a set of bilinear equations
(6). Usually, due to data noise and internal uncertainty,
there is generally no exact solution satisfying this set of
equations, therefore, we formulate an optimization
model to find the solutions with minimum errors
between experimental observations and reconstructed
data. Due to the nonlinearity of the optimization model,
we adopt an iterative strategy to solve it. The optimization
model and the algorithm details are as follows.

Optimization model
Although there is no approximation on the mathematical
manipulation except quasi-equilibrium assumption, the
model that we formulated above is actually a linear form.
Given the expression profiles of target genes, we aim to
reconstruct regulator activities and regulation strength so
as to make the model most consistent, i.e.

Usually some prior knowledge on J and M may be availa-
ble. For example, ChIP-chip data provides the regulatory
relationships between TFs and target genes [34]. The
ncRNA-protein interaction database (NPInter) stores
ncRNA-protein interaction data covering eight category
functional interactions in six model organisms [35]. TF-
gene interactions and ncRNA-mRNA interactions can be
combined into a two-level regulatory network with com-
mon targets as connectors. Such network reflects both
transcriptional events and post-transcriptional events.
However, the prior knowledge on J and M is not sufficient
because it only provides the binary regulatory relation-
ships without concrete regulation strengths. Thus, the
optimization problem formulated above is a nonlinear
optimization problem. We will solve this problem by
employing partial prior knowledge and an iterative
algorithm.

Iterative algorithm
Since the model (7) is nonlinear, conventional algorithms
not only suffer from the computational complexity prob-
lem for large scale networks but also are easily trapped
into local minima. Here, instead of using conventional
optimization techniques, we develop an iterative algo-
rithm efficiently to solve the optimization problem.
Although this algorithm cannot guarantee global optimal
solutions, in each iteration, two linear programming (LP)
models are solved, which is expected to improve the effi-
ciency and accuracy due to polynomial time exact algo-
rithms of linear programming. The steps of such an
iteration procedure are described as follows.

• Step 0: Initialize the matrices J and M using random
matrices with entries between -1 and 1 according to the
prior knowledge on J and M. For example, if we already
know that TFj does not regulate the ith gene, then Jij = 0. If
we know TFj positively regulates the ith gene, then Jij > 0.
There are similar operations on M.

• Step 1: Given X, J and M, the regulation activity matrices
A and R can be obtained by

which is a linear programming problem.

• Step 2: Given X, A and R, the regulation strength matri-
ces J and M can be obtained by

min | | .
, , ,J M A R

X JA MR− +

min | |
,A R

X JA MR− +

min | | (| | | |)
,J M

X JA MR J M− + + +λ
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with the prior knowledge on J and M formulated as linear
constraints. The optimization problem in this step is also
a linear programming.

• Step 3: Repeat Step 1 and Step 2 until convergence con-
dition is met.

In above iterative algorithm, assume the expression
matrix X = [xit]m × n, A = [ajt]c × n, R = [rst]k × n, J = [Jij]m × c and
M = [Mis]m × k, then the optimization model (8) can be
rewritten as

Let

and

where uit ≥ 0, vit ≥ 0, then the optimization model (8) can
be rewritten as a standard linear programming as follows:

where s.t. means "subject to". Similarly, the optimization
model (9) can be rewritten as

Further letting yij + zij = |Jij|, yij - zij = Jij, and ωis + ξis = |Mis|,
ωis - ξis = Mis, then the model (9) becomes a standard linear
programming as follows:

These standard linear programming problems can be
solved efficiently by any LP software such as GLPK linear
programming/MIP solver. When the iterative algorithm
converges, the obtained matrices A and R are the solution,
i.e. the regulation activities of TFs and ncRNAs.
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Additional File 1
Hypothetical network model. This file contains the regulator activities 
and target gene expression profiles used in the hypothetical network 
model.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-S4-S6-S1.xls]

Additional File 2
The whole two-level regulatory network. This file contains all regulatory 
interactions between TFs, mRNAs and ncRNAs in the two-level regulatory 
network used in this work.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-S4-S6-S2.xls]
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