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Abstract

Background: A better understanding of the mechanisms of an enzyme's functionality and stability,
as well as knowledge and impact of mutations is crucial for researchers working with enzymes.
Though, several of the enzymes' databases are currently available, scientific literature still remains
at large for up-to-date source of learning the effects of a mutation on an enzyme. However, going
through vast amounts of scientific documents to extract the information on desired mutation has
always been a time consuming process. In this paper, therefore, we describe an unique method,
termed as EnzyMiner, which automatically identifies the PubMed abstracts that contain information
on the impact of a protein level mutation on the stability and/or the activity of a given enzyme.

Results: We present an automated system which identifies the abstracts that contain an amino-
acid-level mutation and then classifies them according to the mutation's effect on the enzyme. In
the case of mutation identification, MuGeX, an automated mutation-gene extraction system has an
accuracy of 93.1% with a 91.5 F-measure. For impact analysis, document classification is performed
to identify the abstracts that contain a change in enzyme's stability or activity resulting from the
mutation. The system was trained on lipases and tested on amylases with an accuracy of 85%.

Conclusion: EnzyMiner identifies the abstracts that contain a protein mutation for a given enzyme
and checks whether the abstract is related to a disease with the help of information extraction and
machine learning techniques. For disease related abstracts, the mutation list and direct links to the
abstracts are retrieved from the system and displayed on the Web. For those abstracts that are
related to non-diseases, in addition to having the mutation list, the abstracts are also categorized
into two groups. These two groups determine whether the mutation has an effect on the enzyme's
stability or functionality followed by displaying these on the web.

Background ism. Enzymes are made of amino acids whose unique
Enzymes are mostly protein based biomolecules that  characteristic composition enables them to have different
accelerate the rate of chemical reactions in a living organ-  functionalities and also making them work efficiently at
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stable conditions, such as optimum temperature and pH.
Thus, any mutation that occurs in this amino acid
sequence may change the enzyme's 3D-structure, catalytic
activity or stability, or even making the enzyme com-
pletely non-functional. Therefore, the knowledge of
mutations and their impacts are of crucial importance in
order to completely understand mechanisms of enzymes'
functionality, and stability.

Many experimental studies have focused on finding the
effects of mutations on enzymes. For example, many stud-
ies have aimed to create enzymes with novel properties
such as designing hyperthermophilic enzymes [1] or
expanding the substrate specificity of an enzyme [2]. The
published results of these projects provide scientific infor-
mation for researchers who are engaged in finding an
impact of mutation on an enzyme. Though many data-
bases are available on the nomenclature of enzymes [3,4]
or structure and function [5-11], to our knowledge only
BRENDA (BRaunschweig ENzyme Database) [12,13], the
largest manually curated enzyme-specific information sys-
tem, contains an information on engineered enzymes and
their effects on the enzyme's catalytic activity while
directly referring to scientific literature. Manually curated
databases are both slow and expensive for extracting
information from scientific literature. There is a need for
an efficient automatic extraction method that allows
accessing relevant information rapidly with great effi-
ciency, and possibly at any time.

With the latest developments in information extraction,
biomedical term recognition has become an important
area for researchers. Dictionary-based, rule-based, and
machine learning-based approaches are used to extract
names of genes, proteins and other cellular substances
[14-16]. Several systems have already been developed for
automatic extractions of mutations from biomedical liter-
ature. MuteXt, for example, developed by Horn et al. [17]
is one of the initial works that focused on extracting single
point mutations from scientific literature. Moreover, a
gold standard data set [18] is created for comparing the
performance of mutation extraction systems and system-
atic evaluations [18,19] for these systems are developed
with a precise definition of evaluation metrics. The next
step in mutation informatics is finding relation of muta-
tions to other biological entities such as genes or proteins.

Rebholz-Schuhmann et al. [20] developed MEMA, which
extracts disease-related mutation-gene pairs from Medline
abstracts. In MEMA, identification of both gene names
and mutations are based on regular expressions compiled
into two different finite state automations. If the abstract
or the sentence that the mutation is extracted from con-
tains only one gene name, the detected mutation is asso-
ciated to that particular gene. However, if there is more
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than one gene name, the MEMA uses syntactical rules and
proximity parameters as a criterion for decision. MuGeX
(Mutation Gene eXtractor) uses a similar approach devel-
oped by Erdogmus et al. [21] in order to extract disease
related protein mutations. MuGeX makes use of regular
expressions in identifying possible mutations. However, it
also handles ambiguous mutation citations by using
machine learning techniques. For gene name identifica-
tion, it uses a dictionary-based approach and then associ-
ates the extracted entities according to proximity
measures.

For mutation-protein associations, Lee et al. [22] devel-
oped Mutation GraB, which identifies mutations using
regular expressions, similar to the previous methods
[20,21]. Protein identification is also performed with reg-
ular expressions, which search for a dictionary of protein
names and synonyms. Lastly, Mutation GraB uses graphs
in which shortest-distance search and word bigram analy-
sis are used in order to find the associations between
mutations and proteins. MutationMiner which is devel-
oped by Baker et al. [23,24] follows a different approach
than the previous systems. It mainly focuses on associa-
tions between mutations and protein structure visualiza-
tions using NLP techniques. The system identifies the
proteins and mutations in the form of name entities and
if cited in the same sentence, the MutationMiner associ-
ates them to one another. Moreover, this system has been
improved of late with the support of biological ontologies
which make mutation annotations available in a semanti-
cally consistent format, and with the OWL ontology
which enables the automated means of accessing knowl-
edge possible [25,26].

The above information extraction techniques became nec-
essary because of the increased number of electronic doc-
uments. At the same time, however, the task to classify
these documents based on their contents makes docu-
ment classification an important field for researchers.
Especially after integrating machine learning techniques
to document classification, its accuracy has now became
comparable to the less than 100% accuracy of human
expertise [27,28]. Therefore, because of growing interest
and high accuracy rates, document classification has been
used in different applications such as document organiza-
tion [27,29], word sense disambiguation [30] or web doc-
ument classification [31,32].

Although the above works make it possible to associate
mutations to other biological entities, the experimental
results documented in scientific literature cannot be
extracted with the techniques discussed above. Therefore,
in case of mutation informatics, the next step is to extract
information describing the effects of the mutations
[17,19,33]. The writers of this paper developed EnzyM-
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iner, which is capable of automatically extracting protein
mutations from PubMed [34] abstracts for a given enzyme
and classifying their impact on the enzyme's functionality
and stability. In the case of mutation identification, the
information extraction and document classification meth-
ods are used. For impact analysis, document classification
techniques are again used for identifying the abstracts that
contain a change in the stability conditions or catalytic
activity of an enzyme resulted from a mutation.

Methods

Algorithm

Mutation extraction

In this work, we focus on amino acid level protein muta-
tions. In order to extract this kind of mutation from
PubMed abstracts, we used MuGeX [21]'s Mutation
Extraction and Disambiguation Modules which are based
on regular expressions and machine learning techniques.
A set of 20 patterns was formed using phrases that contain
protein mutations for regular expression matching in
MuGeX. Next, pattern matching was applied to each sen-
tence of the abstracts in order to identify mutations.

One major drawback of using regular expressions is that
they are too general to be able to capture only the protein
level mutations. A nucleotide mutation such as G32A, or
the name of a strain or a cell line, such as H4S may easily
be misinterpreted as a protein mutation. In order to elim-
inate such ambiguities, MuGeX makes use of machine
learning techniques. Document classification on topic
and content sections of these abstracts identifies them as
to whether or not a protein mutation is present.

Seperating disease related abstracts

Enzymes are essential for a number of functions in the
cell; therefore, any malfunctioning of an enzyme caused
by a mutation may be found in relation to a disease. Thus,
many research projects are conducted to find the relation
between enzyme mutations and diseases. Since,
MEDLINE is the largest component of PubMed, all the
abstracts of these medical projects are included in the
PubMed database. Therefore, when we download all the
abstracts that contain the term "mutation" and a specific
enzyme name, the medical abstracts are also accompanied
in the downloaded information. However, these abstracts
contains the general focus on the mutations' effects on the
disease development, but not on the functionality or the
stability of enzymes. For instance, lipoprotein lipase
hydrolyzes lipids in lipoproteins. Mutations in the gene
encoding for lipoprotein lipase can lead to lipoprotein
lipase deficiency that in turn leads to an increase in the
levels of triglycerides in the bloodstream. Therefore, many
abstracts that contain both the words "mutation" and
"lipase" are about research aiming to find the specific
mutations that cause this disease. Similarly, the disease
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related abstracts do not contain the information on direct
impact of the mutation on the enzyme functionality or
stability. For that reason, including these abstracts into
our classification will mislead our results. In order to pre-
vent corruption of the data, we initially classify the
abstracts into two groups: (a) disease related abstracts and
(b) non-disease related abstracts. Dictionary based
approaches [35] that make use of Medical Subject Head-
ings (MeSH) or Unified Medical Language System
(UMLS) are previously used for identifying disease related
abstracts. On the other hand, various document classifica-
tion algorithms are also employed for clinical text classifi-
cation between disease related documents such as clinical
patient records [36]. In EnzyMiner, we used document
classification approach for grouping our abstracts into dis-
ease related or non-disease related abstracts. Therefore,
user is giving the option of choosing disease related or
non-disease related abstracts, and base of their selection a
list of mutations and their impacts on the enzyme are dis-
played on the web with direct references to the relevant
scientific literature.

Impacts of mutation

Enzymatic reaction rates depend on physico-chemical
conditions, such as pH and temperature. When these con-
ditions are optimum, the enzyme attains its maximal
activity. However, at high temperatures or extreme pH
changes, the enzyme may become inactive as a result of
denaturation. Stability is the condition in which an
enzyme can maintain its structural conformation and
activity, yet, a mutation may cause changes in these con-
ditions. For instance, a mutation that decreases the molec-
ular flexibility of an enzyme sometimes may lead to
higher thermostability, or a mutation that replaces Gly-
cine with a basic or acidic residue may cause significant
changes in the enzyme's optimum pH. Therefore, to
understand the governing rules of protein structure stabil-
ity, researchers carry out mutation studies and check the
impact on stability at different temperatures and pH.

Likewise, an enzyme's functionality is also affected by
mutations. Unlike most of the chemical Ccatalysts,
enzymes are highly selective to their substrates and this
specificity is mainly determined by three dimensional
coordinates of the active site. Therefore, a mutation that
modifies the conformation of an enzyme, especially the
catalytic site, may cease its function. A mutation that
changes the spatial coordinates of the active site can
change enzyme specificity for a specific molecule. On the
other hand, all the mutations may not necessarily have a
significant effect on the enzyme's stability conditions or
catalytic functions. There are experimental results, for
example, which show that some mutations have no
impact. The abstracts that include only these kinds of
mutations have to be filtered out since our main purpose

Page 3 of 10

(page number not for citation purposes)



BMC Bioinformatics 2009, 10(Suppl 8):S2

is to find the abstracts that contain impacts of mutations
on enzymes. We represented this challenge as a classifica-
tion problem and removed the abstracts that are classified
as no change abstracts from our data set.

System architecture

The system architecture of EnzyMiner is shown in Figure
1. Our system is composed of three stages: (a) Preprocess-
ing, (b) Mutation Extraction and (c) Impact Analysis. In
this work, we focused on the abstracts from PubMed.
Abstracts published after January 1, 2000, which contain
an enzyme and the possible variations of the term "muta-
tion" are downloaded. In order to include possible varia-
tions of "mutation" into our search query, a truncated
form of word "mutation" was used. In the case of
enzymes, we only used the trivial names in our search
queries that supposedly used by all researchers. Further,
including EC numbers to our search seems unnecessary
since in the abstracts EC numbers are rarely used as the
extra information near the enzymes' common names.
Since our initial aim was to identify PubMed articles that
are focused on a specific enzyme and possible protein
mutations, we performed our search restricted to only the
'title' and the 'abstract' sections. If the searched words are

Training PubMed Training
Corpus Abstracts Corpus
|
Parser
Tokenization & Sentence Splitting
PRE-PROCESSING |
Mutation Extraction
Classification
l Model

Disambiguation +—m7mo—— |
e

MUTATION EXTRACTION | |

e
Disease vs. Non-Disease Classification <+

— ]

Classificats
2ssMCBHON L, Change vs. No Change Classification |+ DB
Models

!

Stability vs. Catalytic Classification <+

MPACTANALYSIS

Figure |
A schematic illustration of the EnzyMiner system.
DB: database.
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not found in the abstract but found in the other fields,
such PubMed entry was not downloaded.

While in the Preprocessing stage, the downloaded
PubMed abstracts are first parsed, and then tokenization
followed by sentence splitting operations were performed
on these parsed abstracts for the successive stages.

As for as the mutation extraction stage is concerned, we
used MuGeX [21] which is developed by our group to
extract disease related mutation-gene pairs. MuGeX con-
sists of two stages and each stage has several modules.
Since this work requires us to identify only protein muta-
tions, we therefore used Mutation Extraction and Disam-
biguation Modules of MuGeX. Mutation Extraction
Module makes use of pattern matching with regular
expressions to find the possible protein mutations from
the text. All of the regular expressions are based on one
pattern that starts with an amino acid as the one letter
code followed by a number, and ends with another amino
acid as another one letter code (e.g. W16A). By making
modification to this pattern, a set of 20 patterns was
formed in order to find remaining mutation patterns.

Regular expressions are able to identify protein mutations.
However, as indicated previously, the main challenge in
amino-acid-level mutation extraction is to distinguish
actual protein mutations from nucleotide mutations, or
mutation like terms such as the name of a strain or a cell
line. Disambiguation Module of MuGeX eliminates these
kinds of ambiguities by using document classification as a
word sense disambiguation application. This module uses
Rainbow [37], one of the front ends of the Bow library
designed for document classification, so as to decide the
abstracts that contain potentially ambiguous mutations. A
training benchmark that consists of 3,600 randomly
selected Medline abstracts is formed and all of these
abstracts were labeled by experts. Out of these, a total of
2771 abstracts contained protein mutations while the
remaining abstracts contain either nucleotide mutations
or biological entities that are cited with mutation-like
terms. Using these labeled abstracts, the Disambiguation
Module trains a model for classification while processing
the abstracts by performing stemming, alphanumeric
tokenization and considering word bigrams.

After the preprocessing stage, EnzyMiner identifies all pos-
sible protein mutations in the downloaded abstracts using
the Mutation Extraction Module. Then the ambiguous
abstracts are queried to the Disambiguation Module
where they are classified using Naive Bayes algorithm,
which is trained with the above model. At the end of this
stage, abstracts that contain protein mutations are queried
to the classification modules of the Impact Analysis Stage
for further classification.
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Impact Analysis Stage consists of three classification mod-
ules. Firstly, the Disease vs. Non-Disease Classification
Module separates abstracts into two groups. If the user is
interested only in disease related abstracts, the abstracts
that are classified as disease related are displayed on the
web with a list of protein mutations. On the other hand,
non-disease related abstracts are queried to Change vs. No
Change Classification Module and the ones that do not
contain any change in an enzyme's functionality or stabil-
ity are eliminated. Lastly, in the Stability vs. Catalytic Clas-
sification Module, the remaining abstracts were sub-
classified into two groups: ones that contain a change in
stability of the protein structure, for those involved in cat-
alytic activity as shown in Figure 2 and 3.

In all the classification modules of the Impact Analysis
Stage, Rainbow was used as a document classifier. It
assigns a document to the class with the highest score.
However, the scores of the other classes are also given in
the results. In the classification modules such as Disease
vs. Not Disease Classification and Change vs. No Change,
the abstracts in the test set are assigned to the class with
the highest classification score. On the other hand, for the
Stability vs. Catalytic Classification Module, before
assigning an abstract to one of the classes, the difference
between the scores of the two classes was checked. If the
difference is less than 0.05, such abstract was assigned to
both classes, because an abstract may contain a change in
both the stability as well as the catalytic activity. Further-
more, it is to be noted that in the classification modules,
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all possible words from the vocabulary are adapted as a
feature during the classification.

Implementation

All the steps at the Preprocessing Stage are developed
using Flex [38] and Bison [39]. In the Mutation Extraction
Module, all regular expressions were compiled with the
help of a C++ regular expression library. The Disambigua-
tion Module makes use of Rainbow [37] in order to iden-
tify the abstracts that contain potentially ambiguous
mutations. Similarly, Rainbow was used as a document
classifier in all the classification modules of the Impact
Analysis Stage.

During the steps shown in the Figure 1, all necessary infor-
mation for the downloaded abstracts are inserted into a
database. Whenever an user queries to find impacts of
mutations on an enzyme's stability and functionality,
information relevant to that specific enzyme can be
retrieved from the system and displayed on the Web (Fig-
ure 2, 3).

Testing

In order to measure the performance of EnzyMiner, the
system was employed with the query enzymes "lipase"
and "amylase". These two enzymes perform essential roles
in human digestion system, and deficiency of these
enzymes may lead to disorders in human body. Moreover,
they have many applications in chemical and food indus-
try. Therefore, it is easy to find both disease related and

# |Mutation | Year Put;gmed Topic
[ ¥ e Role of Phe283 in enzymatic reaction of cyclodextrin glycosyltransferase from alkalophilic
ol e cdadl o 14739329 Bacillus sp.1011: Substrate binding and arrangement of the catalytic site.
=5 % g Role of Phe283 in enzymatic reaction of cyclodextrin glycosyltransferase from alkalophilic
o [ (= 12723329 Bacillus sp.1011: Substrate binding and arrangement of the catalytic site.
3 |H-214-N |2007 17630303 Changes in. the catalytic propelftieg of Pyrococcus furiosus thermostable amylase by
=——————— mutagenesis of the substrate binding sites.
4 |G-a15-E 2007 17630303 Changes in.the catalytic properltie; of Pyrococcus furiosus thermostable amylase by
——————— |mutagenesis of the substrate binding sites.
5 ly-18-L |2008 19052787 A single l_'esidue mutation abolishes attachment of the CBM26 starch-binding domain from
==———— |Lactobacillus amylovorus alpha-amylase.
6 Iv-20-L |2008 19052787 [P single residue mutation abolishes attachment of the CBM26 starch-binding domain from
==——=—— |Lactobacillus amylovorus alpha-amylase.
7 |w-32-L |2008 10052787 A single _residue mutation abolishes attachment of the CBM26 starch-binding domain from
Lactobacillus amylovorus alpha-amylase.
8 |w-203-A 2008 18951906 Prqbing the role of aron'!atic residues at the s_econdary sat_:cha_ridu_e-binding sites of human
salivary alpha-amylase in substrate hydrolysis and bacterial binding.
9 |y-276-A 2008 18951906 Probing the role of aromatic residues at the secondary saccharide-binding sites of human
=== |salivary alpha-amylase in substrate hydrolysis and bacterial binding.
10 lw-284-4 2008 13951906 Prqbing the role of aromatic residues at the s_econdary sar_:charidn_e-binding sites of human
salivary alpha-amylase in substrate hydrolysis and bacterial binding.
Figure 2

Abstracts that contain a change in the catalytic activity of amylase resulted from a protein mutation.
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Pubmed

# |

Mutation | Year D Topic

1 IN-190-F 12000 10966804 Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-
= |amylase.

[?lc—uss—s [2002 11994016 IPyrococcus furiosus alpha-amylase is stabilized by calcium and zinc.

3 |y-164-E |2004 15449941 Engineering of the pH optimum of Bacillus cereus beta-amylase: conversion of the pH optimum
=———— |from a bacterial type to a higher-plant type.

4 |y-164-F 2004 15445941 [ENgineering of the pH optimum of Bacillus cereus beta-amylase: conversion of the pH optimum
=————— |from a bacterial type to a higher-plant type.

5 |y-164-H 2004 15449041 Engineering of the pH optimum of Bacillus cereus beta-amylase: conversion of the pH optimum

from a bacterial type to a higher-plant type.

o]

Y-164-Q |2004

Engineering of the pH optimum of Bacillus cereus beta-amylase: conversion of the pH optimum
15449941 3 3
=————— |from a bacterial type to a higher-plant type.

N

N-147-D |2006 shuffling.

16857016 Enhancing thermostability of maltogenic amylase from Bacillus thermoalkalophilus ET2 by DNA

@]

F-195-L (2006

shuffling.

16857016 Enhancing thermostability of maltogenic amylase from Bacillus thermoalkalophilus ET2 by DNA

9 |N-293-5 |2006

shuffling.

16857016 Enhancing thermostability of maltogenic amylase from Bacillus thermoalkalophilus ET2 by DNA

Figure 3

Abstracts that contain a change in the stability of amylase resulted from a protein mutation.

non-disease related abstracts that contain one of queried
enzymes. As indicated before, possible variations of the
term "mutation” was included into our search query while
developing the EnzyMiner system. However, in the evalu-
ation step, only the PubMed abstracts that contain the
terms "mutation” or "mutations", and either one of the
queried enzymes were downloaded. As a result, our exper-
imental dataset showed 393 abstracts that contain the
term "lipase" and 126 abstracts showed the term "amy-
lase". All of the abstracts are manually curated by the
experts for three classification schemes.

The Impact Analysis Stage of EnzyMiner consists of 3 clas-
sification modules: (a) Disease vs. Non-Disease Classifica-
tion, (b) Change vs. No Change Classification, and (c)
Stability vs. Catalytic Classification Modules. Before
detailing the experiments performed at this stage, stating
the classification algorithms and evaluation metrics used
in these modules will provide better understanding of the
evaluation.

Classification algorithms and processing options

In the classification stages of EnzyMiner, Rainbow [37]
was used for document classification. It provides several
classification algorithms and processing options. In order
to decide which classification algorithm was more suita-
ble, the classification performances of four algorithms
(Naive Bayes, SVM, Probabilistic Indexing and Rocchio
with TF-IDF weighting) were investigated. Moreover, since
some of these algorithms adopt the bag-of-words
approach, eight different processing models were built to
observe the impact of tokenization, stemming, and the

use of n-grams. In these eight models, the effect of stem-
ming, removing commonly observed morphological and
inflectional suffixes from words, and the effect of using
unigrams and bigrams were tested. In addition, to observe
the effect of tokenization, two types of procedures were
used, these are, white space tokenizer and alphanumeric
tokenizer. The white space tokenizer delimits the tokens
by a whitespace only, while the alphanumeric tokenizer
delimits the tokens by only nonalphanumeric characters
[37].

Evaluation in the classification modules

As stated before, systematic evaluations for mutation
extraction systems are developed with a precise definition
of evaluation metrics. Although not many systems still
analyze the impact of mutations, evaluation metrics for
such systems were also defined. Since, the general idea for
impact analysis is to perform information extraction, the
standard precision, recall and F-measure are ideal param-
eters for evaluation [19]. We decided to use also the accu-
racy measure in our evaluations because we approached
to this problem as a document classification problem.

Furthermore, in order to test the effectiveness of the clas-
sification modules, we followed the train-and-test and k-
fold cross validation approaches together. For each classi-
fication module, 20% of the abstracts were chosen as a test
set. The remaining abstracts were used as a training set and
the models are trained only with these abstracts. First of
all, using only the training set, 3 fold classification was
performed fifty times and the average accuracy was repre-
sented as the training set accuracy. This step was repeated
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Table I: Experimental results of Disease vs. Non-Disease Classification Module

Disease vs. Non-Disease Classification

# of Abstracts Precision Recall F-measure Accuracy
Train Set 155 97.5% 93.1% 95.2 95%
Test Set 39 100% 100% 100 100%

for all four classification algorithms and eight models.
The classification algorithm with the highest accuracy
model was used in the test step, where the abstracts from
the test set were queried for classification. The overall
accuracy of this step was represented as the test set accu-

racy.

Results

Mutation extraction stage

In order to measure the performance of Mutation Extrac-
tion Stage, all of the downloaded abstracts that contained
the enzyme "lipase” or "amylase" were queried to Muta-
tion Extraction and Disambiguation Modules of MuGeX.
Out of 519 abstracts, 194 were identified to have contain-
ing the amino-acid-level mutation with 95.6% precision,
87.8% recall, 91.5 F-measure and 93.1% accuracy. These
194 abstracts were then used to evaluate the Impact Anal-
ysis Stage, where 80% of them were used as training set
and the remaining as the test set. The number of abstracts
in the training and test set for each classification module
can be found in Tables 1, 2, 3.

Impact analysis stage

As indicated previously, performances of Naive Bayes,
SVM, Probabilistic Indexing and Rocchio with TF-IDF
weighting classification algorithms were investigated. The
experimental runs showed that, out of four classification
algorithms, Probabilistic Indexing always performed bet-
ter than the other three algorithms. As shown in Figure 4,
the accuracy measures of the four algorithms were com-
pared with respect to the training set accuracies of Stability
vs. Catalytic Classification Module. Probabilistic Indexing
outperformed the other algorithms, while Rocchio with
TE-IDF weighting performs moderately better than Naive
Bayes. Although SVM is one of the best classification algo-
rithms in document classification, its' performance is
dependent on the context of the document [27]. In this

application context, out of the four classification algo-
rithms, SVM was the one with the worst performance
measure. The same order was observed in the other classi-
fication modules and therefore, Probabilistic Indexing
was chosen for all of the classification tasks performed in
the Impact Analysis Stage.

As in the Disease vs. Non-Disease Classification Module,
downloaded abstracts that contained at least one protein
mutation were classified as disease related or non-disease
related abstracts. In our experimental data, 194 abstracts
that contained amino-acid-level mutation were randomly
divided into training and test sets, and 3 fold classification
was performed fifty times on the training set. As seen in
Figure 5, the highest training set accuracy measure of 95%
was obtained using Model 7 (White space tokenizer, stem-
ming and bigram) with 95.2 F-measure. This high accu-
racy is expected since most of the disease related abstracts
contained words such as "disease", "patient", "deficiency"
or "subject", and increasing the frequency of these words
by performing stemming also increases our accuracy.
Moreover, word pairs such as "binding site" and "sub-
strate specificity" are terms related to the activity of an
enzyme and they were mostly observed in abstracts that
are not disease related. Therefore, using bi-grams also
increased our classification accuracy. After the experi-
ments from the training set, all the abstracts in the test set
were classified using Probabilistic Indexing algorithm
which was trained with the above model. At the end of the
classification, 100% of the abstracts were correctly classi-
fied (Table 1).

After the Disease vs. Non-Disease Classification, if the
user specifically indicates an interest in a disease related
abstract, the abstracts that are assigned to this class are dis-
played on the web with a list of protein mutations they
contain. If we specifically look at the mutation extraction

Table 2: Experimental results of Change vs. No Change Classification Module

Change vs. No Change Classification

# of Abstracts Precision Recall F-measure Accuracy
Train Set 9l 99.1% 91.9% 95.4 91.3%
Test Set 24 100% 91.3% 95.5 91.7%
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Table 3: Experimental results of Stability vs. Catalytic Classification Module

Stability vs. Catalytic Classification

# of Abstracts Precision Recall F-measure Accuracy
Train Set 58 98.4% 94.9% 96.6 94.4%
Test Set 14 100% 100% 100 100%

performance on these abstracts, our accuracy was 92.2%
with 95.2% precision, 86.8% recall and 90.7 F-measure.
On the other hand, if the user is not interested in a disease
related abstract, the abstracts that are assigned to the non-
disease related class were then continued to be processed
in Change vs. No Change Classification Module.

In this module, another classification identifies the
abstracts that do not contain any change in the enzyme's
stability or functionality. As shown in Figure 5, the highest
classification accuracy of the training set was obtained
using Model 3 (White space tokenizer, stemming, uni-
gram) with 91.3% accuracy and 95.4 F-measure, and the
results of this experiment are given in Table 2. Using this
model, 91.7% accuracy and 95.5 F-measure were
obtained in the classification of the test set and at the end
of this step, abstracts that were classified as no change are
eliminated.

96 -
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84

82
80
78
76

7

70

% Accuracy

Models

== NaiveBayes ====SVM Probabilistic Indexing  =ll=Rocchio/TF-IDF

Figure 4

Performances of four classification algorithms at Sta-
bility vs. Catalytic Classification Module. Model I:
White space tokenizer, no stemming, unigram. Model 2:
Alphanumeric tokenizer, no stemming, unigram. Model 3:
White space tokenizer, stemming, unigram. Model 4: White
space tokenizer, no stemming, bigram. Model 5: Alphanu-
meric tokenizer, stemming, unigram. Model 6: Alphanumeric
tokenizer, no stemming, bigram. Model 7: White space
tokenizer, stemming, bigram. Model 8: Alphanumeric token-
izer, stemming, bigram.

In the last step, the remaining abstracts are classified into
two groups, these are, abstracts that contain information
on a change in the enzyme's stability, or abstracts that dis-
cuss the changes in the enzyme's catalytic activity. When
this classification was performed on the training set, the
highest accuracy measure 94.4% and 96.6 F-measure were
observed with Model 5 (Alphanumeric tokenizer, stem-
ming, unigram), and thus a classification was performed
on the test set using this model. At the end, it was
observed that all the abstracts in the test set were correctly
classified. As illustrated in Table 3, the experimental
results of both the training and test sets are shown to be
very high, which is expected since the classification model
successfully identifies the most informative words such as
"thermostability", "pH", "temperature”, "sensitivity" and
"specificity" as well as increase their frequency with stem-
ming.

N
n -_./.\\..__,__J\./'

91

% Accuracy
©
@

90

Models

—&—Disease vs. Not Disease ——Change vs. No Change Stability vs. Catalytic

Figure 5

Performance of Probabilistic Indexing with different
processing options. Model |: White space tokenizer, no
stemming, unigram. Model 2: Alphanumeric tokenizer, no
stemming, unigram. Model 3: White space tokenizer, stem-
ming, unigram. Model 4: White space tokenizer, no stem-
ming, bigram. Model 5: Alphanumeric tokenizer, stemming,
unigram. Model 6: Alphanumeric tokenizer, no stemming,
bigram. Model 7: White space tokenizer, stemming, bigram.
Model 8: Alphanumeric tokenizer, stemming, bigram.
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Table 4: Experimental results on Amylases

http://www.biomedcentral.com/1471-2105/10/S8/S2

# of Abstracts # of Correctly Identified Abstracts Accuracy
Mutation Extraction 45 42 93.3%
Disease vs. Non-Disease Classification 45 41 91.1%
Change vs. No Change Classification 43 37 86%
Stability vs. Catalytic Classification 40 34 85%

It has been observed that classification modules respond
to the different processing options in a more or less simi-
lar way. However, highest training set accuracies were
observed in different models for each classification mod-
ule. It shows that processing options have different effects
on the classification of different concept. The only com-
mon part of these three models was stemming, which is
an expected result, since it reduces the dimensionality of
the term space which is a good thing for systems that have
small training sets [27] such as EnzyMiner.

As indicated before, our experimental runs were per-
formed on the abstracts that are obtained using the words
"lipase" and "amylase". All three classification modules
were first trained with abstracts that contain "lipase", and
tested with abstracts that contain "amylase" later. This was
performed in order to prove that the success of EnzyMiner
was not dependent on the inclusion of the query enzyme
abstracts in the training set. In our test set we had 45
abstracts that contain a protein mutation and the term
"amylase". Out of these 45 abstracts, 43 of them were
non-disease related, out of these 43 non-disease related
abstracts, 40 of them contained a change in the enzyme's
stability or functionality. The results of these experiments
as shown in Table 4 indicate that training EnzyMiner on
lipases provided necessary information to correctly clas-
sify the amylases. This proves that training our system
with only one enzyme is sufficient to obtain high classifi-
cation accuracies for the other enzymes, which is the
intended use of EnzyMiner.

Conclusion

In this paper, we described EnzyMiner, an automated sys-
tem designed to identify the PubMed abstracts that con-
tain information on the impact of a protein level
mutation on the stability and the activity of a given
enzyme. To our knowledge, besides the manually curated
enzyme database BRENDA, there is no tool or database
that provides the same information like the EnzyMiner.
Although, we performed our experiments on lipases and
amylases, the EnzyMiner can be applied to other enzymes
without any modification. For mutation extraction, we
used MuGeX which handles ambiguous mutation cita-
tions successfully, and thus has a high accuracy and F-
measure. In the case of impact analysis of mutations,
EnzyMiner uses document classification first to separate

disease related abstracts, then to eliminate abstracts that
do not contain any change in enzyme's stability or cata-
lytic activity, and lastly to classify the remaining abstracts
according to the impact of the mutation on the stability or
on the catalytic activity.

Currently, EnzyMiner does not give any information
about the direction of the impact, whether there is an
increase or decrease in the stability conditions or catalytic
activity. Such a specification cannot be handled as a clas-
sification problem because there are abstracts that contain
several mutations, each effect the stability condition or
catalytic activity of an enzyme in different directions.
Moreover, EnzyMiner does not specify the kind of change
in the stability conditions. It cannot distinguish between
the changes in pH and temperature values. Similarly, in
case of functionality, it cannot differentiate a change in
the enzyme's specificity from a change in the sensitivity.
Another limitation of EnzyMiner is, if an abstract contains
several enzymes and protein mutations, it cannot associ-
ate the enzymes to the corresponding mutations, since
EnzyMiner do not use proximity measures. Therefore, in
the future, natural language processing techniques should
be employed in order to overcome the above limitations
and extract more specific information about the impact of
a mutation on an enzyme.

Availability

The EnzyMiner system and the gold standard corpus for
the Impact Analysis Stage are available under the URL
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