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Abstract
Background: Single nucleotide polymorphisms (SNPs) are the most frequent type of sequence
variation between individuals, and represent a promising tool for finding genetic determinants of
complex diseases and understanding the differences in drug response. In this regard, it is of particular
interest to study the effect of non-synonymous SNPs in the context of biological networks such as
cell signalling pathways. UniProt provides curated information about the functional and phenotypic
effects of sequence variation, including SNPs, as well as on mutations of protein sequences. However,
no strategy has been developed to integrate this information with biological networks, with the
ultimate goal of studying the impact of the functional effect of SNPs in the structure and dynamics of
biological networks.

Results: First, we identified the different challenges posed by the integration of the phenotypic effect
of sequence variants and mutations with biological networks. Second, we developed a strategy for the
combination of data extracted from public resources, such as UniProt, NCBI dbSNP, Reactome and
BioModels. We generated attribute files containing phenotypic and genotypic annotations to the
nodes of biological networks, which can be imported into network visualization tools such as
Cytoscape. These resources allow the mapping and visualization of mutations and natural variations
of human proteins and their phenotypic effect on biological networks (e.g. signalling pathways,
protein-protein interaction networks, dynamic models). Finally, an example on the use of the
sequence variation data in the dynamics of a network model is presented.

Conclusion: In this paper we present a general strategy for the integration of pathway and sequence
variation data for visualization, analysis and modelling purposes, including the study of the functional
impact of protein sequence variations on the dynamics of signalling pathways. This is of particular
interest when the SNP or mutation is known to be associated to disease. We expect that this
approach will help in the study of the functional impact of disease-associated SNPs on the behaviour
of cell signalling pathways, which ultimately will lead to a better understanding of the mechanisms
underlying complex diseases.
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Background
Single nucleotide polymorphisms (SNPs), among other
types of short range sequence variants (see Additional File
1 for definitions of terms), represent the most frequent
type of genomic variation between individuals (0.1% of
sequence variation in a diploid genome [1]). Moreover,
their widespread distribution in the genome and their low
mutation rate, have enabled the use of SNPs as genetic
markers of phenotypic traits, including diseases. SNPs are
currently used in candidate gene association studies,
genome wide association studies and in pharmacogenom-
ics studies. Once the SNPs associated with the disease phe-
notype are identified, the elucidation of the functional
effect of predisposing SNP is a key factor for understand-
ing the mechanisms underlying the disease.

Several publications and tools have approached the study
of the functional effect of SNPs by assessing their effect on
the protein structure or their impact on functional sites at
the protein or DNA level [2-6]. All these approaches,
although valuable, consider the effect at the single mole-
cule level. It is a well established concept in systems biol-
ogy that the function of proteins has to be understood
through learning how the pathways in which the proteins
participate work [7]. In this context, the functional conse-
quences of SNPs are better appreciated if the evaluation is
performed at the biological system level, for instance by
determining their effect on the dynamics of signalling
pathways. In consequence, it is important to consider the
effect of SNPs, in particular those having an impact at the
protein level (non synonymous SNPs, nsSNPs), in the
context of biological networks. Although synonymous
SNPs and SNPs located in regions that modulate gene
expression (e.g. promoters, introns, splice sites, transcrip-
tion factor binding sites) can also alter gene or protein
function and as a consequence lead to disease [8-11], in
this study we focus on nsSNPs as they have a more evident
effect on the protein function in the biological processes,
and are more prevalent in databases and literature.

The study of the functional consequences of nsSNPs in
relation to the molecular basis of diseases requires the
integration and aggregation of several pieces of heteroge-
neous information such as protein sequence and its natu-
ral variations, experimental perturbations on protein
function, the networks of reactions between proteins, and
the phenotypes that are affected by the alterations on the
protein function. Several resources collect information
about SNPs [12,13] and their association with diseases
[2,14] as well as mutations of clinical relevance [15]. The
study of protein function is usually assessed by experi-
ments aimed at disrupting the activity of the protein, for
instance by means of altering the protein sequence at res-
idues suspected to be critical for the function (e.g. in vitro
mutagenesis experiments). This information is docu-

mented in the biomedical literature, and it has already
been recognized that text mining techniques are required
to harvest it from free text. Nevertheless, much of this
information is already collected in curated databases. One
example is the UniProt database [16], which, along with
information about protein sequence, structure, and func-
tion, records information about the functional effect and
the association to disease phenotypes of nsSNPs, referred
to as "natural variants" by UniProt. Thus, UniProt pro-
vides information about the functional effect of SNPs as
well as on the effect of experimental mutation of specific
protein residues. This information is recorded as sequence
features in each protein entry (see for example http://
www.uniprot.org/uniprot/P00533#section_features, for
the entry P00533, in the "Sequence features" section,
under "Natural variations" and "Experimental info"). This
knowledge is extracted from the biomedical literature by
UniProt curators and assigned to the corresponding pro-
tein entry [17,18]. Therefore, it represents a reliable source
of information about the natural variations of a protein
and their associated phenotypes, and on the functional
effect of mutations (obtained by experimental mutagene-
sis of protein residues) on the protein function.

Regarding the participation of proteins in pathways, sev-
eral databases offer information about models of biologi-
cal networks such as protein-protein interactions and
signalling pathways (for a review on this topic, see [19]).
An exemplary resource is Reactome [20], which contains
manually curated information about pathways and reac-
tions that involve human proteins. In addition, public
repositories of models describing the dynamic behaviour
of cellular pathways are also available (see [21] for an
example).

With the public availability of resources such as pathway
databases and curated datasets on the phenotypic effect of
sequence variants, the study of genetic factors that con-
tribute to complex disease phenotypes in the context of
the structure and dynamics of biological networks should
be feasible. In this regard, there are some reports detailing
the integration of SNP data with protein structural data
and pathways [22-24]. However, most of them focus on
the visualization of nsSNP on the protein structure, and
only provide cross references to pathway databases
[22,24]. For instance, DataBins [23] is a web service for
the retrieval and aggregation of pathway data from KEGG,
and sequence databases such as dbSNP [12] with the aim
of mapping nsSNPs onto the proteins of a pathway. How-
ever, these approaches do not provide any utility for the
visualization of nsSNP data on the pathways, not even for
analysing the functional effect of the nsSNPs in the path-
way context. A different kind of approaches are aimed at
using statistical analyses in finding and prioritising meta-
bolic pathways associated with complex diseases based on
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SNP frequency data (see [25] for an example). However,
the functional effects of SNPs have not been incorporated
in the analysis. To our knowledge, no strategy has
attempted to integrate these sources of information (pro-
teins and their sequence variants such as SNPs, pheno-
typic effect of SNPs and models of biological networks)
with the final goal of assessing the effect of SNPs on the
structure and dynamics of biological networks. In this
paper we first identify the challenges that have to be faced
for performing this integration in an automatic manner.
Then, we present a general strategy for the integration of
pathway and sequence variation data, towards their use
for network visualization and analysis, including the
modelling of signalling pathways.

Results
The goal of this project was to design and implement a
general strategy for the integration of pathway and
sequence variation data towards their use for network vis-
ualization and analysis. In general, in the different models
of cellular networks (e.g. signalling pathways, dynamic
models, protein-protein interaction networks) the pro-
teins are always represented as nodes, and the edges rep-
resent reactions or interactions between proteins. Thus, in
practice, the integration involves the mapping of SNPs
and mutant residues to the protein nodes of a network
and the mapping of their functional effect to the edges of
a network (e.g. reactions or relationships between nodes),
for their use in the visualization and dynamic analysis of
pathways.

In the following sections, we describe and analyse the
challenges and approaches for the integration of the phe-
notypic effect of sequence variations in the context of bio-
logical networks, which are:

- Integration of data coming from diverse and heterogene-
ous sources.

- Visualization of information about sequence variations
in the context of biological pathways.

- Incorporation of the effect of the perturbation caused by
the sequence variation in dynamic models of the path-
ways.

Data integration of the functional effect of SNPs with 
biological networks
The first step to achieve such an integration is to map
SNPs and mutant residues to the protein nodes of a net-
work, and second to map their functional effect to the
edges of the network. As described in the Introduction sec-
tion, UniProt was chosen because it contains manually
curated information about nsSNPs and mutant residues
of proteins. As described in the Methods section, we iden-

tified and extracted human protein entries from UniProt
with annotations on natural variation and mutagenesis
experiments, which are suitable for integration with bio-
logical networks such as protein-protein interaction net-
works, signalling pathways and dynamic models. In this
study we focus on the pathway database Reactome [20]
and the dynamic models repository BioModels [21]. The
data of these resources are available in standard formats:
Reactome reactions and pathways are published in the
data exchange format for biological pathway BioPAX [26]
(level 2), and dynamic models in the BioModels reposi-
tory are made available in the SBML standard [27]. As
mentioned above, the integration process between the
UniProt derived data and the network representations can
be considered at two levels. The first level involves the
mapping of proteins for which there are natural variation/
mutagenesis annotations in UniProt to proteins in biolog-
ical network models (e.g. signalling pathways, dynamic
models, protein-protein interaction networks). This is the
simplest task, and was performed by matching the Uni-
Prot identifiers from both data sources. In this regard, it is
important to note that the different states of a protein
such as its level of phosphorylation or its cellular location
appear as different entities in a pathway exchange format
such as BioPAX and in a model representation such as
SBML. However, all the entities that represent different
states of a protein are characterized by the same sequence
identifiers, e.g. UniProt identifiers. Consequently, the
annotations of a given protein were mapped onto all the
corresponding instances in Reactome and BioModels, that
is, to all the nodes that contain the same UniProt identi-
fier. As a result, data containing the sequence features
(natural variations or mutagenesis experiments) extracted
from UniProt can be incorporated to visualize, filter and
search the biological network, for example using Cyto-
scape, a software for network visualization [28] (see sec-
tion "Visualization of SNPs on biological networks" for a
complete description).

The second level of data integration involves the incorpo-
ration of the effect of the sequence variation in the biolog-
ical process in which the protein participates. The effect of
the sequence variation is expressed in natural language in
the Description field of the UniProt files, and comprises
one or more phrases. One can be tempted to think that
state of the art text mining approaches will easily solve the
problem of identification and extraction of the required
information in order to map the functional effect onto the
biological process represented in the biological model.
However, the identification and extraction of the relevant
information and its subsequent mapping to the reactions
was found to be a non trivial task. An example is presented
here in order to illustrate the difficulties that this task
implies, and to highlight the challenges that an automatic
text mining system should aim to handle. For clarity pur-
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poses, the example is analysed from the point of view of a
domain expert (e.g. biologist) performing the interpreta-
tion of the data and their subsequent integration with
pathways.

The example highlights the natural variant of the SOS1
protein, the W->L change at position 729 of the protein,
that has been found to be associated to the Noonan Syn-
drome type 4, and that is known to promote constitutive
RAS activation, therefore enhancing ERK activation (Fig-
ure 1). The biologist knows that SOS1 is involved in the
EGFR signalling, and he/she is interested in assessing the
effect of the natural variation of SOS1, which "promotes
constitutive RAS activation and enhances ERK activation",
as described in UniProt, in the context of the reactions or
interactions in which SOS1 participates. The biologist first
identifies the proteins RAS and ERK (ERK1, ERK2), which

are mentioned in the textual description of the pheno-
typic effect of the SOS1 mutation W->L at position 729 of
the protein. This information can be used to find the reac-
tions in which the protein participates. At this step, a NER
(Named Entity Recognition) system able to perform nor-
malization or disambiguation of the protein symbols to
sequence database identifiers, such as UniProt, should be
used. This is required for the subsequent mapping of the
phenotypic information provided by UniProt to the pro-
tein instances in Reactome, which are annotated to Uni-
Prot identifiers. Our biologist performs this task
manually: he/she queries the Reactome database, using
the UniProt identifier of SOS1 [UniProt/Swiss-
Prot:Q07889], to retrieve the reactions and pathways in
which SOS1 participates. SOS1 is directly involved in the
activation of RAS, and this in turn leads to the activation
of ERK (Figure 1). In Reactome, the activation of RAS is

Mapping SNPs functional effects from textual descriptions to network representationsFigure 1
Mapping SNPs functional effects from textual descriptions to network representations. The activation of RAS by 
SOS1 is used as an example. In the upper part of the Figure the Reactome representation of the reaction is depicted. The tex-
tual description of the functional effect of the SNP from UniProt is presented in the lower part. In Reactome, the reaction is 
annotated to the GO term "Ras guanyl-nucleotide exchange factor activity". The type of reaction (catalysis of "control-type 
activation") is provided by the BioPAX ontology. In UniProt, the W->L mutation at position 729 of SOS1 is described with the 
text "promotes constitutive RAS activation", which could be mapped to the GO term "activation of Ras GTPase activity" by 
NER. Reactome and UniProt refer to the reaction through different perspectives impeding a mapping of the UniProt textual 
description of the sequence variant onto the reaction in Reactome. The direct mapping using the GO annotations is hindered 
as the two GO terms appear in different GO branches. An alternative would be to use the BioPAX ontology.

<bp:catalysis rdf:ID=
"Ras_guanyl_nucleotide_exchange_factor_activity_of_GRB2_SOS_EGF_
Phospho_EGFR_dimer__plasma_membrane_">

<bp:CONTROLLER rdf:resource=
"#GRB2_SOS_EGF_Phospho_EGFR_dimer__plasma_membrane_2"/>

<bp:CONTROLLED rdf:resource=
"#Sos_mediated_nucleotide_exchange_of_Ras__EGF_EGFR_Sos_Grb2_"/>

<bp:DIRECTION rdf:datatype=
"http://www.w3.org/2001/XMLSchema#string">PHYSIOL-LEFT-TO-RIGHT/>

<bp:CONTROL-TYPE rdf:datatype=
"http://www.w3.org/2001/XMLSchema#string">ACTIVATION/>

</bp:catalysis>

mapping by Reactome curators

GO:0005088 (molecular function)
Ras guanyl-nucleotide exchange factor activity

no relation between GO terms

X
GO:0032856 (biological process)
activation of Ras GTPase activity

W->L at position 729: in Noonan syndrome type 4; 
promotes constitutive RAS activation and enhances ERK activation. 

mapping through NER

BioPAX representation

mapping to BioPAX ontology
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represented as a chain of reactions that starts with the
binding of the EGF ligand to the EGFR and ends with the
nucleotide exchange of RAS catalysed by SOS1 (Figure 1).
SOS1 is found in the cytoplasm of non stimulated cells in
complex with Grb2, and upon binding to activated EGFR
receptor complex, SOS1 mediates the nucleotide
exchange of RAS, leading to RAS activation. The question
here is how to map the effect "promotes constitutive RAS
activation" in this chain of reactions. The representation
in Reactome depicts the biochemical reactions (e.g. the
GTP/GDP exchange of RAS) stimulated by SOS1 that lead
to RAS activation. In the textual description of the natural
variant effect, the activation of RAS is mentioned, but no
detail on the biochemical reaction is given. Thus, the same
biological process is referred to in different sources, Reac-
tome and UniProt, through different perspectives, which
makes it difficult to identify both representations as the
same. A domain expert is able to accomplish this match-
ing on the basis of domain knowledge and inference
made from available data (publications, databases). On
the other hand, the Reactome reaction is annotated to the
Gene Ontology (GO, [29]) term GO:0005088, that repre-
sents "Ras guanyl-nucleotide exchange factor activity".
Thus, an approach to achieve the mapping in an auto-
matic way would involve finding the GO concepts in the
textual description of the SNP. The term RAS activation
could be mapped to the concept "activation of Ras GTPase
activity" (GO:0032856) by applying NER. Again, these are
different concepts describing the same process from dif-
ferent perspectives. Moreover, these two concepts belong
to different branches from GO (biological process and
molecular funtion), thus hampering the attempt to find a
connection between the description of the natural variant
and the Reactome reaction using the ontology. However,
the connection between the two different perspectives
could be achieved using the BioPAX ontology, which
describes the reaction ("Sos-mediated nucleotide
exchange of Ras (EGF:EGFR-Sos:Grb2)") as a "Catalysis"
reaction of the "control-type activation" (see Figure 1 and
BioPAX ontology http://www.biopax.org/release/biopax-
level2.owl). In order to be able to use the BioPAX ontol-
ogy, first the textual description of UniProt has to be
mapped to the BioPAX activation reactions and then the
entities have to be used to find the specific reaction. For
instance the entity RAS could be mapped to the "control-
led" entity in the BioPAX representation (Figure 1). In this
way, the set of reactions expressed as "Ras activation" in
the text could be obtained from the BioPAX representa-
tion in Reactome and, eventually, mapped unambigu-
ously.

An additional difficulty appears if the fact that the SNP
produces a "constitutive" activation has to be considered
as well. But before addressing this issue, the biologist
needs to interpret the meaning of "constitutive RAS acti-

vation". A possible interpretation of this assertion would
be the following: mutated SOS1 does not depend on the
binding of the activated EGFR receptor in order to activate
RAS, and thus RAS is activated by SOS1 in a constitutive,
ligand-independent manner (see [30] for an example). At
this stage, an automatic system should deduce that in the
presence of the allelic variant W->L of SOS1, there is no
requirement for the signal originated by the binding of the
EGF to its receptor to activate RAS. To accomplish this,
this knowledge should be appropriately represented in an
ontology.

In summary, this single example reveals the complexity of
the integration process. The steps required to achieve the
integration in an automatic way can be expressed as fol-
lows:

1. Extraction and mapping of information from natural
language description of SNPs and mutations onto reac-
tions or relations in networks. This requires a text mining
system able to identify genes/proteins, along with their
function and biological process in which they participate.

2. Identification of the entities/relationships in the net-
work and mapping of both representations (text, net-
work). The main difficulties here are the different levels of
granularities and different perspectives used in text and
pathways to describe the same process.

Solving these challenges will require ontologies and the
use of sophisticated text mining tools able to map infor-
mation extracted from text to information represented in
networks. Once the information is represented in a OWL-
DL [31] based format, such as Reactome, reasoning could
be applied in order to mimic the interpretations per-
formed by a human expert [32-34].

Mapping of SNPs on biological networks
In order to integrate data about SNPs and protein
sequence mutations in biological networks, we developed
node attribute files for Cytoscape that allow the visualiza-
tion of the data in the context of networks. The use of the
node attribute files containing protein annotations allows
the identification of the nodes in the network that have
mutations and/or natural variations. Figure 2 and Table 1
provide information on all the annotations available for
each SNP in the attribute files; these annotations can be
used to visualize, filter and search the network. As already
mentioned, in the pathway representation all different
states of a protein appear as different nodes. Hence, we
mapped the information about the protein mutation and
natural variation of a given protein onto all the corre-
sponding nodes in the pathway. The UniProt identifier
was used for this mapping and therefore any pathway,
protein-protein interaction network or network model
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containing UniProt identifiers can be extended with the
attribute files. In addition, two distinct visual styles
accounting for the network representation formats SBML
and BioPAX are provided.

As an example, Figure 3 shows the complete EGFR signal-
ling pathway in BioPAX format, in which the nodes with
annotations on natural variants or mutations are high-
lighted (see Figure 4 for node colour mapping).

The detailed information about the mutation or natural
variant is stored in the node attribute "mutagenesis" or

"polymorphism", and can be visualized as a bullet list by
moving the mouse over their textual description (see Fig-
ure 5). In Figure 5, the Akt activation reaction, which
forms part of the ErbB signalling, is depicted in SBML for-
mat. The nodes Akt and Aktstar are coloured according to
the mutagenesis information available in the attributes
file. In the lower right part of the figure, the list of all
mutations for the selected node Akt is displayed. For each
mutated residue, the position along with the original and
changed residue and the phenotypic description account-
ing for the functional effect of the mutation are provided.
Whenever possible, the mutated residue is normalized to
dbSNP identifiers. For the natural variants, the position
and the original and altered residue, the functional effect
and, if available, the disease association including the
MIM identifier [15], as well as the dbSNP reference are
provided. Moreover, additional annotations (see Table 1)
to GO [29] terms and UniProt entries, which were
extracted by text mining of the textual description of the
mutation, are provided. All annotations can be used for
searching or filtering the network on the basis of the func-
tional effect of SNPs. Figure 6 shows the ErbB signalling
network (SBML format), in which after applying a filter
based on the attribute file, nodes for which the mutation
or SNP has an effect on the biological process "phosphor-
ylation" (GO:0013056310) are selected and visualized on
the network (coloured in yellow in Figure 6). In this par-
ticular example, the amino acid exchange T->D in Akt
[UniProt/Swiss-Prot:Q9Y243] at position 305 is associ-
ated with a 2-fold increase in phosphorylation.

Table 1: Node attribute description

Node attribute name Description

UniProtId UniProt identifier
entrezGeneId Entrez Gene identifier
mutagenesis List of the mutagenesis information:

contains the amino acid exchange, the sequence position and the textual phenotypic description from UniProt
polymorphism List of the natural variant/polymorphism information:

contains the amino acid exchange, the sequence position, the textual phenotypic description from UniProt and if 
available a MIM id and the textual description of the disease association; if at the same position mutagenesis data is also 
available, this data is listed as a sub-list of the polymorphism

OMIM Disease name associated with the natural variant
DbSNP dbSNP identifier
GObiolProcess List of GO biological process terms that are associated to the natural variant or mutant
GObiolProcessId List of GO biological process identifiers that are associated to the natural variant or mutant
GOmolFunction List of GO molecular function terms that are associated to the natural variant or mutant
GOmolFunctionId List of GO molecular function identifiers that are associated to the natural variant or mutant
GOcellComponent List of GO cellular component terms that are associated to the natural variant or mutant
GOcellComponentId List of GO cellular component identifiers that are associated to the natural variant or mutant
extUniProtIds List of UniProt identifiers that are associated to the natural variant or mutant
mutPolyFlag Required for the visual styles

1: only mutagenesis information available
2: only polymorphism information available
3: mutagenesis and polymorphism information available but not at the same position
4: mutagenesis and polymorphism information available at the same position

Schematic view of the integration of SNP phenotypic data with biological networksFigure 2
Schematic view of the integration of SNP phenotypic 
data with biological networks.

SNP Functional effect

GO annotations
Protein annotations

Disease association

OMIM annotations

Phenotypic effectNetwork mapping
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Incorporating the effect of perturbation in biological 
dynamic models
Once data integration is accomplished, it is desirable to
consider this information in the modelling of the behav-
iour of the network. In particular, it is of interest to deter-
mine the effect of different perturbations on the dynamics
of a signalling pathway. Here, the perturbations are the
functional effects of SNPs or mutations on the activity of
the proteins. This task is usually performed by laborious
and time-consuming review of the literature. We propose

that the integration of the data on perturbations obtained
from curated databases such as UniProt with the represen-
tation of biological networks can aid in the evaluation of
different perturbations on the dynamics of a model. To
illustrate how this can be accomplished, the model for the
EGFR (or ErbB) signalling network in MCF-7 cells pub-
lished recently [35] was selected. The ErbB signalling net-
work is composed of multiple extracellular ligands, four
trans-membrane receptors (ErbB1 or EGFR, ErbB2 or
HER2/NEU, ErbB3, and ErbB4), cytoplasmic adapters,
scaffolds, enzymes, and small molecules. Signalling is ini-
tiated when a ligand binds to a receptor and causes the
receptors to homo- or heterodimerize. This leads to acti-
vation of the receptor's tyrosine kinase activity and auto-
phosphorylation of tyrosine residues on receptor
cytoplasmic tails. Then, several cytoplasmic adapter, scaf-
fold, and enzymatic proteins can be recruited to the
plasma membrane by binding to receptor phosphotyro-
sines. A complex network of interactions between the acti-
vated receptors, recruited proteins, and plasma membrane
molecules leads to the activation of multiple downstream
effectors, including extracellular-signal-regulated kinase
(ERK) and protein kinase B/Akt, which are implicated in
the control of proliferation and survival [35,36]. The
model is composed of a combination of mechanistic,
ordinary differential equations for the representation of
the dynamics of the short term response (up to 30 min) of
different receptor combinations upon the stimulation
with the ligands EGF and HRG. A simplified version of the
model is reproduced in Figure 7 from the original publi-
cation [35]. In particular, the effect of the S->A mutation
at position 218 in MEK1 http://www.uniprot.org/uni

Node Colour MappingFigure 4
Node Colour Mapping. Nodes are assigned to different 
colours according to the kind of information available. Purple 
nodes only contain information on mutagenesis experiments; 
turquoise depicts nodes for which only polymorphism data 
exists. Some nodes have data for both, mutagenesis and natu-
ral variant, either at different sequence positions (pink) or at 
the same position (light purple).

mutagenesis

polymorphism

both not at the same position

both at the same position

Node colour mapping

Node colour mutPolyFlag

Cytoscape visualization of the "Signaling by EGFR" pathway in BioPAX formatFigure 3
Cytoscape visualization of the "Signaling by EGFR" pathway in BioPAX format. The nodes are coloured according 
to the kind of information they are annotated with (see colour mapping Figure 4).
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prot/Q02750#section_features, which leads to protein
inactivation, was evaluated on the dynamics of the net-
work. In order to model this inactivation of MEK1, the
species "MEKstar", which represents the activated/phos-
phorylated MEK1, was modified by changing its concen-
tration to be constantly zero (see Methods). The effect of
the MEK1 mutation on the dynamics of the network can
be appreciated in Figure 8. The analysis was performed as
in the original publication [35], by calculating the
amount of activated Akt produced as a response to differ-
ent combinations of the ligands. Similarly to the dynam-
ics of the response in the wild-type, the response in the
network where MEK1 is mutated shows that HRG acts as
a dominant ligand. A higher level of active Akt can be
observed when the mutant is present in comparison with
the wild-type, and a similar response is obtained for all
the combinations of EGF/HRG concentrations. Moreover,
a remarkable difference was observed when the system

was stimulated with EGF 10 nM in the absence of HRG. In
this situation, while in the wild-type there is a rapid
increase of active Akt peaking at around 4 min, followed
by a slower decrease in the signal, in the presence of
mutated MEK1, the model predicts a slower rate of forma-
tion of active Akt, followed by a mild although sustained
increase in the active Akt concentration (no decrease in
the concentration up to 30 min was observed). As
expected, in the presence of mutated MEK1, the model
predicts that active ERK is not produced (data not shown).
Based on the ErbB network model (Figure 7), the sus-
tained activation of Akt after stimulation with EGF can be
explained by two ERK-dependent inhibitory mechanisms
on Akt activation. One is related to the negative feedback
loop of ERK on the ErbB receptors, and the other is related
to the ERK negative feedback loop on Gab1. In the origi-
nal publication [35], similar results were obtained when
the ERK feedback to the receptors is blocked in silico, sug-

Cytoscape screenshot depicting part of the "ErbB signalling" (SBML format)Figure 5
Cytoscape screenshot depicting part of the "ErbB signalling" (SBML format). For the selected node Akt (yellow), 
the mutagenesis information is shown in the node attribute browser (pop-up window in the lower right part).
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gesting that the lack of ERK negative feedback on the
receptors leads to a sustained signal. Moreover, a similar
response is observed when the ErbB2 receptor is overex-
pressed (Figure 9). In this situation, the excess of ErbB2
shifts the receptor dimer population towards ErbB1-
ErbB2 heterodimers rather than ErbB1-ErbB1 homodim-
ers [35]. Since in the model only ErbB1-ErbB1 homodim-
ers undergo ligand-induced degradation, a more
sustained signal is expected (Figure 9). This effect is more
evident with EGF since it signals preferably through ErbB1
receptors. In the ErbB2 overexpression model, the slower
increase in Akt activation was explained as the result of the
increased recruitment of the phosphatase PTP1-B to
ErbB1-ErbB2 heterodimers compared to homodimers. As
this process is not likely to happen in the MEK1 mutant
model, the slower increase in Akt is intriguing. Neverthe-

less, it is worth to mention that the inactivation of MEK1
is not found to be associated with cancers.

The previous example was only chosen for illustrative pur-
poses, to exemplify the usefulness of incorporating
sequence variation data in a modelling exercise.

This approach opens the possibility of evaluating the
functional effect of SNPs and mutations on the structure
and dynamics of network models.

Discussion
In this paper we have presented a general strategy for the
integration of pathway and sequence variation data,
towards their use in network visualization and analysis, as
well as in the modelling of signalling pathways. In princi-
ple, all the data derived from UniProt could be used for

Cytoscape visualization of "ErbB signalling" (SBML format) after filtering for the GO biological process "phosphorylation"Figure 6
Cytoscape visualization of "ErbB signalling" (SBML format) after filtering for the GO biological process "phos-
phorylation". All nodes are coloured according to the kind of information they are annotated with (see Figure 4). Nodes that 
passed the filter are coloured in yellow (see red arrows). They have a variant or mutation that is associated with phosphoryla-
tion.
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this purpose, provided that the relevant models are avail-
able. Several difficulties were found when we tried to com-
bine the data from two structured databases: UniProt and
Reactome. Even though the data from these resources is
already organized or structured (the entities participating
in the interactions are specified) there are a lot of difficul-
ties in the identification of the reactions and nodes in the
networks that are affected by the mutation or the SNP.
These difficulties go beyond tasks that any current text
mining system would be able to handle, since at least NER
and relationship extraction tools are required. The diffi-
culties are mainly related with the different perspectives
that can be used to refer to the same biological process
and how to deal with them to map the different represen-
tations to a single concept, and also in the complexity of
the processes inherent to the knowledge domain. Similar
issues were also discussed in relation to the manual anno-
tation of a corpus describing events in the field of molec-
ular biology [37,38]. In these papers, the authors
described the difficulty between mapping events
expressed in natural language with reactions represented
in pathways.

The intended integration allowing the mapping of the
phenotypic effect of SNPs on biological networks (signal-
ling pathways, protein-protein interaction networks, and
dynamic models) has evident practical usefulness. The
clinical phenotypic effect (e.g. sequence variation associ-
ated with colon cancer) and the functional phenotypic
effect (e.g. sequence variation produces a decrease of
enzymatic activity) can be evaluated in the context of the
reactions and processes that are affected by the SNP. This
is a very important issue as it provides information about
the functional effect of mutations at the cellular level that

are relevant in the clinical practice. Disease-associated var-
iants or specific mutations of interest could be evaluated
in the context of network models. Moreover, it would be
possible to assess the effect of different sequence varia-
tions in the same model, an approach particularly rele-
vant to consider the polygenic character of complex
diseases. This can have significant consequences for
understanding mechanisms of disease and the design of
new therapeutical approaches.

Conclusion
In this paper we have presented a general strategy for the
integration of pathway and sequence variation data,
towards the use of the integrated information for network
visualization and analysis, and for the modelling of sig-
nalling pathways. This will aid the modellers in studying
the functional impact of protein sequence variations on
the model dynamics and proposing relevant experiments.
This is of particular interest when the SNP or mutation is
known to be associated to disease. We expect that this
approach will help in the study of the functional impact
of disease-associated SNPs in the behaviour of cell signal-
ling pathways, which ultimately will lead to a better
understanding of the mechanisms underlying complex
diseases.

Methods
Data sources
Mutagenesis and natural variant information was
obtained from UniProt/SwissProt (release 57.0 March
2009). The pathway "Signaling by EGFR" http://
www.reactome.com/cgi-bin/
eventbrowser_st_id?ST_ID=REACT_9417 was down-
loaded in BioPAX format level 2 from Reactome (release
27) (see Additional File 2). The network model of "ErbB
signalling" developed by Birthwistle et al. [35] was down-
loaded in SBML format from BioModels http://
www.ebi.ac.uk/biomodels-main/publ-
model.do?mid=BIOMD0000000175. This model was
used for the visualization in Cytoscape [28] and the net-
work modelling. Cytoscape version 2.6.0 supports SBML
Level 2 Version 1 (SBML L2 V1). As the model down-
loaded from BioModels is in SBML L2 V3 format, it had to
be modified for visualization in Cytoscape (see Addi-
tional File 3). Since the model downloaded from the orig-
inal publication [35] does not contain a mapping to
UniProt identifiers, the mapping between all proteins
appearing in the ErbB signalling network and UniProt was
obtained from the annotations in the BioModels database
and is provided as a mapping file as part of the supple-
mentary materials (see Additional File 4).

Data integration
We extracted the information of mutagenesis experiments
and natural variants for all human entries of the manually

Simplified schematic representation of the ErbB signalling modelFigure 7
Simplified schematic representation of the ErbB sig-
nalling model. ErbB receptor ligands (EGF and HRG) acti-
vate different ErbB receptor combinations, leading to 
recruitment of various adapter proteins (Grb2, Shc, and 
Gab1) and enzymes (PTP1-B, SOS, and RasGAP). These 
membrane recruitment steps eventually lead to the activa-
tion of ERK and Akt. The figure and legends are from the 
original publication [35].
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Dynamic and dose response of the ErbB signalling pathway in the presence of mutated MEK1Figure 8
Dynamic and dose response of the ErbB signalling pathway in the presence of mutated MEK1. Simulation of Akt 
activation in response to simulatenous EGF and HGR stimulation. (A) EGF: 10 nM, HGR increasing. (B) HGR 10 n M, EGF 
increasing. Responses were obtained and normalized as described in [35].
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curated part of UniProt resulting in 11806 entries (Figure
10). For this purpose, we parsed the flat file ftp://ftp.uni
prot.org/pub/databases/uniprot/current_release/knowl
edgebase/complete/uniprot_sprot.dat.gz of the Uni-
ProtKB/Swiss-Prot database using Swissknife [39], an
object-oriented Perl library to handle Swiss-Prot entries.
UniProt entries contain cross references with several data-
bases, for example to NCBI Gene. However, some entries
did not contain the NCBI Gene identifier. Missing map-
pings to NCBI Gene were obtained from NCBI Gene [40]
database whenever possible using mapping obtained
from different databases [41]. These mappings were
required to complete the annotation of natural variants
with dbSNP identifiers (see below). The resulting files are
comprised of 54868 natural variants for 11245 UniProt
entries, and 7330 mutagenesis experiments for 1766 Uni-
Prot entries. For several natural variants and mutants, the
description field indicates an association to a disease phe-
notype. The MIM code for every disease annotation was
obtained from the humsavar.txt file http://www.uni
prot.org/docs/humsavar, release 57.2 of May 2, 2009),
and added to the attribute file as an additional annota-
tion. Annotations to NCBI dbSNP [42] are provided for

24576 natural variants in the original UniProt file. An
automatic mapping strategy was applied in order to find
additional mappings to dbSNP for natural variants and
mutagenesis entries. For this, we obtained the correspond-
ing NCBI Gene identifier for each UniProt entry. This is
required in order to have access to dbSNP data, which can
be performed through the NCBI Gene identifier. Then we
used the position and alleles information from the
sequence features annotations to query a local mirror of
dbSNP (build 129, NCBI build 36.3) for human genes.
We restricted the queries to non-synonymous SNPs, and
to different types of SNPs (single base, dips) according to
the kind of change described in UniProt. In addition, a
correction on the position of the residue was applied to
account for differences in counting protein residues raised
by considering or not the initial Methionine residue (as
described in [43]). Our method is able to provide the cor-
rect dbSNP identifier for 94% of the annotations per-
formed by UniProt curators. By this procedure, it was
possible to assign dbSNP identifiers to 4505 natural vari-

Workflow of the data integration processFigure 10
Workflow of the data integration process. 1) Data on 
mutations and sequence variants is gathered from UniProt. 2) 
The disease association mapping to OMIM is obtained from 
UniProt, if available. 3) A mapping of UniProt and Entrez 
Gene ids is created. 4) The annotation to dbSNP, which is in 
part provided by UniProt is extended. 5) Further annotations 
to GO ontology are obtained by NER. 6) Cytoscape node 
attribute files are created from the integrated data that is 
stored in a SQL database. 7) The annotated network is visu-
alized in Cytoscape.

uniprot_sprot.data humsavar.txt

SQL DB

1) get mutagenesis and 
natural variant information

2) get disease mapping to OMIM

EntrezGene

dbSNP

GO
UniProt

5) get annotation to GO, UniProt

4) get annotation to dbSNP

3) get uniProt-Entrez Gene mapping

Cytoscape node 
attriute file

6) create node attribute files

7) annotated network visualization

Effect of 10-fold ErbB2 overexpessionFigure 9
Effect of 10-fold ErbB2 overexpession. Simulations of 
EGF- and HRG-induced Akt activation under wild-type (WT) 
and ErbB2 overexpression conditions (ErbB2 up). (A) Stimu-
lation with EGFR. (B) Stimulation with HRG. The figure and 
legends are from the original publication [35].
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ants and 7 mutagenesis residues that were added to the
annotations performed by UniProt curators.

Furthermore, text mining techniques were applied to the
text in the Description field in order to identify concepts
from controlled vocabularies in the phenotype descrip-
tion of the natural variants and mutations. The EBIMed
system [44] was accessed through SOAP web service of
Whatizit [45] and applied to the free text. EBIMed con-
tains a NER module for the identification of mentions of
GO [29] terms. In addition, it identifies mentions of pro-
teins, which are disambiguated or normalized to UniProt
identifiers. These data were extracted as additional anno-
tations on the natural variations and mutations, provid-
ing a characterization of the functional effect in terms of
GO terms and associated proteins.

All these data were combined for the development of
attribute files that can be loaded into Cytoscape allowing
the mapping, visualization, filtering and searching of the
SNP information in the context of biological pathways.

Visualization in Cytoscape
For pathway visualization, we used Cytoscape version
2.6.0 [28]. Cytoscape is widely used open-source software
for visualization and analysis of networks. In Cytoscape,
networks are represented as graphs where the nodes are
the entities (e.g. proteins) and the edges their interactions
(e.g. reactions). For the visualization of mutagenesis and
natural variant information in the context of biological
networks, we developed three different node attribute
files (for a detailed description of the attributes see Table
1) and two visual style files that can easily be imported
into Cytoscape. In detail, we provide separate attribute
files for the mutagenesis (see Additional File 5) and the
natural variant (polymorphism) data (see Additional File
6) and furthermore one for a combined view of both (see
Additional File 7). The two different visual styles account
for the two major network representation formats SBML
(see Additional File 8) and BioPAX (see Additional File 9)
which differ in their node attributes representation. Here,
the nodes are coloured according to the kind of informa-
tion that is available (see Figure 4). Furthermore, we pro-
vide a guide explaining how to use the attribute and visual
style files within Cytoscape (see Additional File 10), as
well as an example Cytoscape session (see Additional File
11). As mentioned above, the mapping of the mutations
and natural variants on the pathway requires the existence
of UniProt identifiers for the nodes in the pathway. We
want to emphasize that for pathways in BioPAX format
downloaded from Reactome, there exists a node attribute
containing the UniProt identifier. For pathways in SBML
format, a mapping of the nodes to UniProt identifiers is
provided during curation in BioModels database.

ErbB signalling network model
We used COPASI (version 4.4) [46] to model the dynam-
ics of ErbB signalling with inactivated MEK. For this pur-
pose, we modified the species "MEKstar", which
represents the activated/phosphorylated MEK1, in the
SBML file of the original model [35]. We set the species
attributes "constant" and "boundaryCondition" to "true"
and kept the "initialConcentration" zero. This implies
that the concentration of MEKstar is constantly zero. The
dynamics of the system and the data normalization were
performed as in the original publications. All plots were
generated with R [47]. The modified model is available as
Additional File 12.
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