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Abstract

Background: Identification of novel drug targets and their inhibitors is a major challenge in the field of drug
designing and development. Diaminopimelic acid (DAP) pathway is a unique lysine biosynthetic pathway present
in bacteria, however absent in mammals. This pathway is vital for bacteria due to its critical role in cell wall
biosynthesis. One of the essential enzymes of this pathway is dihydrodipicolinate synthase (DHDPS), considered to
be crucial for the bacterial survival. In view of its importance, the development and prediction of potent inhibitors
against DHDPS may be valuable to design effective drugs against bacteria, in general.

Results: This paper describes a methodology for predicting novel/potent inhibitors against DHDPS. Here,
quantitative structure activity relationship (QSAR) models were trained and tested on experimentally verified 23
enzyme’s inhibitors having inhibitory value (Ki) in the range of 0.005-22(mM). These inhibitors were docked at the
active site of DHDPS (1YXD) using AutoDock software, which resulted in 11 energy-based descriptors. For QSAR
modeling, Multiple Linear Regression (MLR) model was engendered using best four energy-based descriptors
yielding correlation values R/q2 of 0.82/0.67 and MAE of 2.43. Additionally, Support Vector Machine (SVM) based
model was developed with three crucial descriptors selected using F-stepping remove-one approach, which
enhanced the performance by attaining R/q2 values of 0.93/0.80 and MAE of 1.89. To validate the performance of
QSAR models, external cross-validation procedure was adopted which accomplished high training/testing
correlation values (q2/r2) in the range of 0.78-0.83/0.93-0.95.

Conclusions: Our results suggests that ligand-receptor binding interactions for DHDPS employing QSAR modeling
seems to be a promising approach for prediction of antibacterial agents. To serve the experimentalist to develop
novel/potent inhibitors, a webserver “KiDoQ” has been developed http://crdd.osdd.net/raghava/kidoq, which allows
the prediction of Ki value of a new ligand molecule against DHDPS.

Background
An escalating magnitude of drug resistance among bac-
terial pathogens has been installing a serious threat on
the public health and economy of the developed world. A
survey report has suggested that the direct cost to US
economy alone due to drug resistant bacterial infection is
around $4-$5 billion annually [1-3]. Even for pharmaceu-
ticals companies, it turns out to be a heart-dying situa-
tion that after investing ~$800 million and about 15
years of atrocious labor to introduce a drug in the mar-
ket, the pathogens already attains resistance against the

drug. Therefore, there is an urgent need to recognize
new inhibitors against novel and/or known targets.
Undoubtedly, well-established bacterial targets i.e. cell
wall and membrane biosynthesis, protein biosynthesis,
nucleic acid etc always the first choice for developing
antibacterials. The recent trend in this direction indicates
that researchers are looking for novel targets alongside to
discover new classes of inhibitors/antibiotics.
The amino acids biosynthetic pathways specifically

lysine pathway has gained special attention because of
its potential role in bacterial cell wall and protein synth-
esis [4,5]. The D, L-diaminopimelic acid (meso-DAP), an
important intermediate in the biosynthetic pathway of
lysine is crucial in cross-linking peptidoglycan chains to

* Correspondence: raghava@imtech.res.in
1Bioinformatics Centre, Institute of Microbial Technology, Sector-39A,
Chandigarh, India

Garg et al. BMC Bioinformatics 2010, 11:125
http://www.biomedcentral.com/1471-2105/11/125

© 2010 Garg et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://crdd.osdd.net/raghava/kidoq
mailto:raghava@imtech.res.in
http://creativecommons.org/licenses/by/2.0


provide strength and rigidity to the bacterial cell wall
(known as DAP pathway). The absence of this pathway
in mammalian system suggests that specific inhibitors of
this biosynthetic pathway may be a valuable for develop-
ing novel classes of antibacterial agents. In this study,
we explored DHDPS enzyme of the pathway, which cat-
alysis condensation of pyruvate and aspartate semialde-
hyde to form DHDP. Figure 1 shows the established
DAP pathway for DAP and lysine biosynthesis. The
enzyme is encoded by dapA gene, which has been
cloned and expressed from several strains, including
Thermatoga maritima, Corynebacterium glutamicum,
Mycobacterium tuberculosis and Bacillus anthracis. The

three-dimensional structures of DHDPS enzyme from
Escherichia coli, Staphylococcus aureus, M. tuberculosis
and B. anthracis enzymes with substrate pyruvate and
without have been reported [6-18].
The antibacterial identification using experimental

techniques is invariably very expensive, requires exten-
sive pains and labor. Therefore, in silico techniques,
which have the power to cut down these unavoidable
steps, would be valuable. In recent years, in silico tech-
niques like quantitative structure activity relationship
(QSAR) and molecular docking are gaining high popu-
larity in the drug discovery [19-21]. Both these meth-
odologies allow the identification of probable lead
candidates expeditiously prior to chemical synthesis and
characterization, thereby, making the process more cost
effective [22,23].
In the present study, we attempt to integrate power of

two in silico potential techniques: QSAR and molecular
docking by using docking generated energy-based
descriptors for building QSAR models. Using this strat-
egy, the information regarding binding mode of ligands
in the active site is accumulated which would in turn
assist the accurate prediction of better inhibitor with
improved Ki values. To facilitate this we also developed
a web-interface to help experimentalist working in the
field of designing novel inhibitors against DHDPS
enzyme.

Results
For the docking of 23 inhibitors, E. coli DHDPS crystal
structure stored in the PDB file 1YXD was retrieved.
The crystal structure of DHDPS consisted of two similar
chains (A and B) with inhibitor bound at allosteric site
[13]. The water molecules and inhibitor were removed
using PYMOL software and chain A was considered for
the docking purpose. The python scripts were used for
carrying out automated flexible docking of 23 inhibitors
on the predefined and experimentally characterized
binding pocket, where the residue LYS161 being parti-
cularly very important. Hence, it’s important to consider
the flexibility of LYS161 and the inhibitors, while per-
forming docking. Figure 2 shows the docking of two
inhibitors: Inh-6 (having minimum Ki value) and Inh-10
(with maximum Ki value) at the active site of DHDPS
enzyme. In order to validate our docking methodology
another crystal structure of E. coli DHDPS (3DU0) with
substrate bound at the active site was obtained from
PDB. The enzyme 1YXD could not be used as it
enclosed bound conformation of an allosteric inhibitor
(S)-Lysine. Since crystals were remarkably similar
(RMSD value of 0.15Å), therefore, the same procedure
for the docking of pyruvate was adopted which resulted
in very slight variation in the RMSD value of 0.31 Å.
Hence, the docking protocol adopted in the present

Figure 1 Enzymatic action of DHDPS leads to the biosynthesis
of bacterial cell wall and protein components. Figure 1 shows
the action of DHDPS enzyme involved in protein and cell wall
synthesis process.
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study was able to reproduce the conformation compar-
able to the crystal structure with substrate at active site.
Additionally, analysis of 10 docked poses of substrate
generated by AutoDock software was also carried out.
In Additional File 1: table S1 we have shown the values
of free binding energies and RMSDs in the inreasing
order of ranking. It was observed that RMSD value for
the fifth ranked pose was lesser in comparison with the
pose with best and minimum free binding energy. We
also calculated the pair-wise corelation between free
binding energy and RMSD, resulted in R value of 0.81,
which reveals that there exists correlation between free
binding energy and RMSD values, however not the ideal
or perfect one. Therefore, it’s not always true that the
pose with the lowest binding energy is the one with the
lowest RMSD to the crystal structure. Ofcourse, one can
validate or check the RMSD values for a single ligand
system with bound crystal structure known. However,
during virtual screening procedure with large number of
unknown structures to dock, it’s practically impossible

to obtain the RMSD values. Therefore, in such cases, it
has been shown in the past that the compounds with
the lowest binding energies are generally considered as
potential hits.
It’s important to mention that in general, after docking,

AutoDock computes 11 types of energy values i.e. - i)
Estimated free energy of binding (EFreeBind); ii) Final
Intermolecular Energy (EInterMol), which is the sum of 4
energies such as (iii) vdW + Hbond + desolv Energy
(EVHD), (iv) Electrostatic Energy (EElec), (v) Moving
Ligand-Fixed Receptor (EMLFR), and (vi) Moving Ligand-
Moving Receptor (EMLMR); vii) Final Total Internal
Energy (EFTot), again the sum of 2 energy values such as
(viii) Internal Energy Ligand (EIntL), and (ix) Internal
Energy Receptor (EIntR); (x) Torsional Free Energy (ETors)
and (xi) Unbound System’s Energy (EUnb). Finally, 11
types of energy values based descriptors were then used
as independent variables for QSAR modeling.
To obtain significant and non-correlated variables

from the above-mentioned 11 descriptors, a statistical

Figure 2 View of docked Inh-10 (A1 and A2) and Inh-6 (B1 and B2) at the active binding site of DHDPS. Figure 2 shows the docked
conformation of inh-10 and inh-6 in active site of DHDPS where protein is shown in secondary structure and inh-10, inh-6 is represented in ball
and stick model.
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package, STATISTICA, was used. Indeed all the descrip-
tors were highly significant, showing the p < 0.05. To fil-
ter out correlated descriptors, pair-wise correlation
coefficient at the cut-off value of 0.9 was imposed. The
two variables namely EUnb and EIntL yielded the pair-
wise correlation values > 0.9 with EFTot and therefore fil-
tered out from the further analysis (Table 1).
Using MLR, a QSAR based model was generated using

4 variables namely, EFreeBind, EElec, EIntR, and ETors which
accomplished correlation (R/q2) values of 0.81/0.65 with
MAE of 2.61 (Table 2). Though model was able to
obtain good correlation values however, q2 value was
observed to be very low (Figure 3). Next, SVM along
with F-stepping variable selection approach was
employed. During first cycle of F-stepping remove-one,
an elimination of fifth descriptor i.e. EMLFR from the set
of n = 9 and the development of SVM model using 8
remaining variables attained the best correlation R/q2

values of 0.87/0.75 and MAE of 2.24 (C = 50, g = 45)
listed in Table 2. For the second cycle, the removal of
9th descriptor i.e. EIntR further improved the correlation
value to 0.91/0.81 showing reduction in MAE to 2.01
(C = 50, g = 50). The next cycle however did not
enhance the correlation values significantly as exclusion
of EMLMR offered correlation values 0.90/0.81 and MAE
of 2.16 (C = 75, g = 50) therefore, making its absence or
presence to elicit no influence on correlation values.
The correlation between predicted and actual activity
values is shown in Figure 4. In the subsequent cycles of
variables selection, no improvement in correlation values
was observed. Therefore, it can be deduced that 6
descriptors i.e. EFreeBind, EInterMol, EVHD, EElec, EFTot and
ETors are important to predict the inhibitory activity
values for the present dataset of 23 inhibitors against
DHDPS. Further, an external cross-validation was car-
ried out by randomly dividing 23 inhibitors dataset into
three different sizes of training and test sets such as 21
and 2; 19 and 4; 17 and 6 respectively. The highest cor-
relation q2/r2 values of 0.81/0.97 (an average of 8-9 best

models) was obtained for the largest training and smal-
lest test sets of 21 and 2 inhibitors (Table 3). An
increase in the size of test set with corresponding
decrease in training set size reduced the r2 values along
with slight reduction in q2 values. The notion behind
this splitting was to appraise a high predictive correla-
tion values on the test set even when the size of training
set was very low.
Besides, pair-wise correlation coefficient values listed

in Table 4 between Ki and energy-based descriptors for
23 inhibitors were calculated. Surprisingly, three
descriptors such as EFreeBind, EInterMol, and EVHD from
the finally selected 6 energy-based descriptors (described
earlier) showed high fluctuations with respect to Ki

values (Figure 5), which in turn have higher pair-wise
correlation coefficient values (irrespective of signs). On
the other hand, the variables i.e. EFTot and ETors

observed to be neutral, indeed provided low correlation
values of 0.20 and 0.075 respectively. The EMLFR, which
showed high correlation value of 0.62 with Ki, was
removed in the first cycle of variables selection. These
deviations prompted us to carry out the clustering of
the dataset of 23 inhibitors using JChem software http://
www.chemaxon.com/. As shown in Figure 6, all 23

Table 1 Matrix showing the pair-wise correlation values for docking generated 11 energy-based descriptors

EFreeBind EInterMol EVHD EElec EMLFR EMLMR EFTot EIntL EIntR ETors EUnb

EFreeBind 1.000 0.846 0.800 0.167 0.776 0.171 -0.181 -0.021 -0.450 -0.140 0.043

EInterMol 0.846 1.000 0.884 0.183 0.857 0.312 -0.369 -0.155 -0.624 -0.458 -0.111

EVHD 0.800 0.884 1.000 -0.031 0.840 0.124 -0.278 -0.141 -0.404 -0.374 -0.037

EElec 0.167 0.183 -0.031 1.000 0.516 -0.603 0.022 0.183 -0.425 -0.143 0.069

EMLFR 0.776 0.857 0.840 0.516 1.000 -0.222 -0.225 -0.020 -0.577 -0.397 0.007

EMLMR 0.171 0.312 0.124 -0.603 -0.222 1.000 -0.279 -0.251 -0.120 -0.136 -0.219

EFTot -0.181 -0.369 -0.278 0.022 -0.225 -0.279 1.000 0.935 0.324 -0.380 0.938

EIntL -0.021 -0.155 -0.141 0.183 -0.020 -0.251 0.935 1.000 -0.033 -0.498 0.956

EIntR -0.450 -0.624 -0.404 -0.425 -0.577 -0.120 0.324 -0.033 1.000 0.256 0.093

ETors -0.140 -0.458 -0.374 -0.143 -0.397 -0.136 -0.380 -0.498 0.256 1.000 -0.480

EUnb 0.043 -0.111 -0.037 0.069 0.007 -0.219 0.938 0.956 0.093 -0.480 1.000

Table 2 Correlation values for MLR and SVM based QSAR
models developed using descriptors selected at pair-wise
correlation cut-off value 0.9

Number of input variables R q2 MAE

Using MLR (23 inhibitors)

4 0.81 0.65 2.61

Using SVM (23 inhibitors)

8 0.87 0.75 2.24

7 0.91 0.81 2.01

6 0.90 0.81 2.16

5 0.90 0.79 2.19

Using SVM (20 inhibitors)

5 0.95 0.89 1.28
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Figure 3 Comparison between actual and predicted Ki values for MLR model generated using descriptors selected at pair-wise
correlation cut-off value 0.9. Figure 3 depict the experimental and predicted Ki value in X and Y direction respectively with q2 value 0.6531
using MLR model.

Figure 4 The correlation between actual and predicted Ki values for SVM model generated using variables selected at pair-wise
correlation cut-off value 0.9. Figure 4 illustrate the experimental and predicted Ki value in X and Y direction respectively with q2 value 0.811
using SVM model.

Table 3 Detailed results obtained during external cross-validation procedure using six descriptors with pair-wise
correlation cut-off value below 0.9

Size of training set q2 MAE Size of test set r2 MAE

21 0.81 ± 0.01 2.26 ± 0.09 2 0.97 ± 0.02 0.74 ± 0.23

19 0.76 ± 0.03 2.58 ± 0.12 4 0.94 ± 0.02 0.94 ± 0.15

17 0.73 ± 0.03 2.7 ± 0.08 6 0.80 ± 0.11 1.60 ± 0.36

Table 4 Pair-wise correlation values for 11 energy-based descriptors with respect to Ki values

EFreeBind EInterMol EVHD EElec EMLFR EMLMR EFTot EIntL EIntR ETors EUnb

R (-)0.66 (-)0.53 (-)0.45 (-)0.44 (-)0.63 0.15 0.20 (-)0.01 0.59 (-)0.075 0.001
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inhibitors clustered into two unique groups however,
three compounds Inh-8, Inh-15, Inh-17 were variable.
Hence, to filter the noise that might be caused due to
these 3 inhibitors, a QSAR model was again generated
removing these 3 structures. Using F-stepping variable
selection approach, 5 energy-based input variables i.e.
EFreeBind, EInterMol, EVHD, EIntL and EMLFR generated a
QSAR model attaining correlation R/q2 values of 0.95/
0.89 and MAE of 1.28 (Figure 7 and Table 2).

Additionally, QSAR modeling was also carried out
using six non-correlated descriptors i.e. EFreeBind, EElec,
EFtot, EIntR, EMLMR and ETors having pair-wise correlation
value less than 0.5. Using MLR, the QSAR model was
developed with four types of input variables- EFreeBind,
EMLMR, EIntR, and ETors, which accomplished correlation
(R/q2) values of 0.82/0.67 and MAE of 2.43 (Table 5).
Hence, a small increase in correlation values in compari-
son to earlier MLR model (0.81/0.65 with MAE of 2.61),

Figure 5 The variations in the values of 6 energy-based input variables with respect to experimental Ki values. Figure 5 shows the
variation in energy descriptors with respect to Ki values.

Figure 6 The clustering of 23 inhibitors dataset. Figure 6 illustrate the clustering graph of all 23 inhibitors where inh-8, inh-15 and inh-17
exist as singleton.

Figure 7 Comparison between actual and predicted Ki values for SVM model developed using 20 inhibitors dataset. Figure 7 depict the
experimental and predicted Ki value in X and Y direction respectively with q2 value 0.89.

Garg et al. BMC Bioinformatics 2010, 11:125
http://www.biomedcentral.com/1471-2105/11/125

Page 6 of 13



was observed. Further, SVM model was trained using six
descriptors but the model attained poor correlation
(R/q2) values of 0.67/0.40 and MAE of 2.91 (C = 200,
g = 1) signifying the presence of some descriptors ideally
may not required for robust model generation. Thus,
employing the F-stepping variable selection approach,
the removal EMLMR from the set of n = 6 energy-based
descriptors and using the 5 remaining descriptors
for the SVM model development achieved best correla-
tion R/q2 values of 0.83/0.67 and MAE of 2.63 (C = 20,
g = 55) (Table 5). Next, filtering of ETors enhanced the
correlation (R/q2) value of model to 0.84/0.69 with
reduction in MAE to 2.51 (C = 75, g = 125). Then,
QSAR modeling was carried out on the remaining four
descriptors and the removal of EFTot augmented the cor-
relation value to 0.93/0.80 with attenuation of MAE
value to 1.89, a noteworthy enhancement. The correla-
tion between predicted activities for the inhibitors
and their actual experimental values is depicted in
Figure 8A. There exists a good agreement between

predicted and experimental activity values hence sug-
gesting the robustness of QSAR model. Therefore, the
three energy-based descriptors such EFreeBind, EElec, and
EIntR were imperative to predict the inhibitory activity
values. Interestingly, the performance of three descriptor
based QSAR model was found to be better in compari-
son to the six descriptors based SVM model (0.90/0.81
and MAE of 2.16) which was described earlier using
cut-off value of 0.9. Additionally, the removal of three
outliers like Inh-7, Inh-16 and Inh-23, further enhanced
the prediction efficiency of QSAR model by increasing
the correlation (R/q2) values to 0.94/0.87 and reduction
in MAE to 1.45 (Figure 8B). Further, high external train-
ing/testing cross-validated correlation values (q2/r2) in
the range of 0.78-0.83/0.93-0.95 was attained by ran-
domly splitting the dataset into several training sets for
model building and independent testing on correspond-
ing test sets (Table 6).
In order to assess robustness and validation of the

finally developed three descriptors based QSAR model,
a bootstrap analysis for 100 runs by statistical sampling
of the original dataset was also performed which yielded
a higher q2bootstap value of 0.88 ± 0.029. Thus, higher and
lower values of q2bootstap and standard deviation para-
meters comprehensively support the statistical validity of
the presently developed QSAR models. Further, Y-rando-
mization test was also carried out using shuffled activity
dataset which resulted in poor performance i.e. nearly
all of the q2 values were < zero (q2 ranged from -0.15 to
-0.41 and MAE from 4.15 to 5.13), thereby signifying the
consistency of QSAR model.

2D descriptors based QSAR modeling
To compare the performance of three energy-based
QSAR model with simple 2D QSAR models, the 2D

Table 5 Correlation values for MLR and SVM based QSAR
models developed using non-correlated variables
selected at the cut-off value 0.5.

Number of input variables R q2 MAE

Using MLR (23 inhibitors)

4 0.82 0.67 2.43

Using SVM (23 inhibitors)

5 0.83 0.67 2.63

4 0.84 0.69 2.51

3 0.93 0.80 1.89

Using SVM (20 inhibitors)

3 0.94 0.87 1.45

Figure 8 Scatter plot between experimental versus predicted Ki values provided by highly non-correlated 3 energy values based SVM
model for 23 inhibitors (A) and 20 inhibitors dataset (B). Figure 8 depict the experimental and predicted Ki value in X and Y direction
respectively with q2 value 0.80 and 0.87 for 23 and 20 inhibitors dataset respectively.

Garg et al. BMC Bioinformatics 2010, 11:125
http://www.biomedcentral.com/1471-2105/11/125

Page 7 of 13



QSAR modeling with 14 non-correlated descriptors was
also performed. The study was commenced by MLR
modeling, which tried to establish structure-activity rela-
tionship using five descriptors i.e. MSD, PJI2, Jhetm,
ALOGP2, and Me by attaining correlation R/q2 values
of 0.78/0.61 and MAE of 3.08 (Table 7). The perfor-
mance of 2D descriptors based model was found to be
lower in comparison with four energy-based MLR
model described earlier (R/q2 values of 0.82/0.67 and
MAE of 2.43). Further, using all 14 non-correlated
descriptors for the training of SVM model, a very poor
correlation (R) value of 0.23 was observed. The removal
of 7 descriptors: nBm, BLI, Jhetm, GATS1v, nHAcc,
ALOGP and MATS3 m (after employing 7 cycles of
F-stepping remove-one) and the training of SVM model
with remaining 7 descriptors attained R/q2 values of
0.77/0.57 and MAE of 3.26 (C = 25, g = 25). During the
next cycle, an exclusion of JGI2 (topological charge
index) optimized the SVM model (C = 300, g = 25)
by achieving correlation R/q2 values of 0.79/0.60 and
MAE of 3.10. In the next cycle, the removal of nH (con-
stitutional) descriptor improved the correlation
value to 0.82/0.64 with reduction in MAE value to 2.68
(C = 200, g = 25). Finally, elimination of Me constitu-
tional descriptor and the development of QSAR model
on the remaining 4 descriptors, which included two
topological descriptors-MSD, PJI2, molecular property-
ALOGP2 and Burden eigenvalues descriptor-BEHm1,
yielded correlation R/q2 values of 0.84/0.67 and MAE of
2.61 (C = 300, g = 25). Hence, the performance of SVM
based 2D QSAR model was found to be very low in
comparison with three energy values based QSAR
model developed using SVM.

Implementation of webserver
We attempted to develop efficient QSAR model and
based on these models, a web server “KiDoQ” (available
at http://crdd.osdd.net/raghava/kidoq) using CGI-PERL
and python scripts was developed. User can draw the
structure of ligand molecule using JME editor incorpo-
rated on the server. The server also accepts input as
mol/mol2 structure files pasted or uploaded on the ser-
ver (Figure 9). The working flow of KiDoQ server is
shown in Figure 10.

Discussion
The QSAR modeling has been accepted as a promising
methodology for lead identification. Nevertheless, if
high-resolution target structure is available, then recep-
tor structure based approach is often a first choice. The
recent studies have shown the better performance of
QSAR models even in the presence of target structure.
However, simple QSAR approach can sometimes lead to
false prediction if the collected data does not cover the
complete property space or the selected 2D/3D descrip-
tors are not reliable. Therefore, both techniques have
their own advantages and limitations [19-23]. Keeping
in view, the importance of docking and better perfor-
mance of QSAR, we integrated both approaches by
using docking generated energy-based scores as descrip-
tors for QSAR modeling. The major benefit presumed
by this integration would be an additional validation of
the docking predicted inhibitors as bioactive or inactive
by prediction of their bioactivity values using QSAR
models henceforth, would facilitate in reduction of false
positives.
In the present study, docking of the 23 experimentally

known inhibitors of DHDPS at its active binding site
resulted in 11 energy-based descriptors. For valid statis-
tical results, it was imperative to restrict the maximal
number of descriptors or to remove highly correlated
ones, as presence of redundancy reduced the discrimi-
nating power of input variables, thereby reducing their
worth in model development. Ideally, a regression
model with n training set compounds and k descriptors
may be acceptable only if n > 4k and for any of the k
descriptors- i) the significance level p is < 0.05; ii) the
pair-wise correlation coefficient should be < 0.9 [24,25].
Therefore, we also looked for statistically significant and
non-correlated energy-based descriptors. All 11 types of
energy-based descriptors were statistically significant but

Table 6 Results obtained during external cross-validation procedure using three non-correlated descriptors

Size of training set q2 MAE Size of test set r2 MAE

21 0.83 ± 0.02 1.90 ± 0.07 2 0.95 ± 0.03 0.98 ± 0.09

19 0.81 ± 0.01 2.01 ± 0.08 4 0.94 ± 0.02 0.98 ± 0.37

17 0.78 ± 0.03 2.28 ± 0.24 6 0.93 ± 0.03 1.09 ± 0.24

Table 7 Performance of 2D QSAR based MLR and SVM
models

Number of input variables R q2 MAE

Using MLR

5 0.78 0.61 3.08

Using SVM

7 0.77 0.57 3.26

6 0.79 0.60 3.10

5 0.82 0.64 2.68

4 0.84 0.67 2.61
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only 2 and 5 variables showed pair-wise correlation
value > 0.9 and 0.5 respectively, resulting their removal
necessary for rigorous QSAR modeling. As QSAR mod-
eling for DHDPS enzyme’s inhibitors is being carried
out for the first time, therefore both linear (MLR) and
non-linear (SVM) techniques were employed. In our
study, the performance of SVM model was found to be
much better in comparison with MLR model. The sim-
ple linear model was unable to handle the diversity of
the present dataset; therefore, the cases where simple
linear techniques fail, non-linear techniques could pro-
vide a better option.
Further, it was also noticed that the structural diver-

sity of 23 inhibitors and redundancy among finally
selected six descriptors resulted in wrong selection of
input variables. Therefore, we removed highly diverse
three structures and used remaining 20 inhibitors for
QSAR modeling. Interestingly, the performance of
model was found to be enhanced in comparison to the
model developed using 23 inhibitors. Further, QSAR

modeling carried out with highly non-correlated 3
descriptors i.e EFreeBind, EElec, and EIntR (selected at the
cut-off pair-wise correlation value of 0.5) provided better
correlation values in comparison to the earlier six
descriptors (selected at the cut-off pair-wise correlation
value of 0.9) based QSAR model. Therefore, removal of
redundant descriptors reduced the noise and enabled
the better training of QSAR models. The three non-cor-
related descriptors appeared to be governing factors in
establishing structure actvity relationship for DHDPS
enzyme. One of the possible reasons for their selection
was a higher pair-wise correlation value with respect to
Ki in comparison with other descriptors i.e. EFtot, EMLMR

and ETors removed during QSAR modeling.
Among three descriptors, the value of EFreeBind based

descriptor was found to be dependent on other two

Figure 9 A snapshot of submission page of KiDoQ webserver.
Figure 9 shows the screen shot of KiDoQ webserver.

Figure 10 Schematic flow for the working of KiDoQ webserver.
Figure 10 illustrate the workflow diagram of KiDoQ webserver.
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descriptors i.e. EElec, and EIntR as well on other corre-
lated energy based descriptors (such as EVHD). Gener-
ally, in the absence of receptor’s flexibility EIntR remains
constant and does not make any significant contribution
to EFreeBind, however, the flexibility incorporates trans-
formations leading to internal energy changes. In the
present study, the changes in the value of EIntR were
observed as the LYS161 was kept flexible. It was noticed
that inhibitors with lower Ki value were characterized by
high negative EIntR values. These inhibitors included ali-
phatic compounds generally the pyruvate and aspartate
semialdehyde analogues. On the other hand, inhibitors
such as Inh-17, Inh-14, Inh-23 and Inh-10 with higher
Ki values exhibited lower negative EIntR. In view of this,
we suggest EIntR based descriptor is an important discri-
minating variable for developing robust QSAR models.
Further, EElec was also found to be imperative as varia-
tions in the EElec values was highly dependent on the
number and type of receptor residues involved in estab-
lishing charge interactions with inhibitors. We observed
that inhibitors such as Inh-9, Inh-11, Inh-18 and Inh-20
with strong electrostatic interactions with receptor
exhibited strong binding, resulting in higher negative
EFreeBind and EElec values that in turn provided lower Ki

values. A few inhibitors such as Inh-17 and Inh-14 char-
acterized by aromaticity, the strong electrostatic or
π-cationic interactions though provided higher negative
EElec values however, at the cost of reasonable reduction
in the EIntR values, which in turn provided higher Ki

values, in comparison to the aliphatic inhibitors and the
ones with weak electrostatic interactions. In addition, it
was also figured out that inhibitors i.e. Inh-1, Inh-3,
Inh-4, Inh-5, Inh-6, Inh-12, Inh-13, Inh-15 and Inh-19
exhibited strong affinity to receptor albeit no or very
weak electrostatic interactions were observed. This sug-
gest that binding of inhibitors to DHDPS is not specifi-
cally dependent on electrostatic interactions, however
other bonded and non-bonded interactions appeared to
be playing important role, which in turn provided higher
negative EFreeBind values and lower Ki values (For details
see Additional File 1).
As we have employed a complex procedure of using

docking generated energy-based descriptors for QSAR
modeling; therefore, it became imperative to compare
the model performance with simple conventional 2D
QSAR models. The SVM based 2D QSAR model
achieved a poor correlation value of 0.84/0.67 in com-
parison with docking energy-based SVM model
(0.93/0.80) indicating inadequacy of 2D descriptors in
providing acceptable and robust QSAR model for data-
set of 23 inhibitors. This low performance of 2D QSAR
models may be due to presence of high structural diver-
sity among the inhibitors that was not easily captured
using simple 2D descriptors.

To conclude, the present strategy of predicting Ki

values using docking generated energy-based descriptors
for QSAR modeling is a promising approach to predict
potent inhibitors against DHDPS enzyme.

Conclusions
In this study, we describe a new approach for prediction
of antibacterial compounds that both take QSAR and
docking strategy into its consideration. By using this
approach, we get promising results instead of using
these two strategies individually and develop a webser-
ver called KiDoQ. This webserver will be helpful for bet-
ter prediction of antibacterial compounds against
dihydrodipicolinate synthase (DHDPS).

Methods
Inhibitors Dataset
The information regarding the experimentally known 23
inhibitors, classified as potent, moderate and slightly
weak, was obtained from the literature [6-18]. The
IUPAC names of these inhibitors along with Ki values
are shown in Table 8. Chem3D Ultra (v11.0), windows-
based software was used for sketching the 2D structures
for all inhibitors followed by cleaning and refinement in
order to correct the accidentally distorted or unrealistic
bond angles and lengths. The 2D structures were con-
verted into 3D structures using CORINA software.
Then each structure was energy minimized to give ener-
getically preferred 3D structures.

Docking energy-based descriptors
were calculated using automated docking software Auto-
Dock (v.4.0) (AD) [26]. It is a suite of three C programs:
i) AutoTors, which facilitates input of ligand coordinates;
ii) AutoGrid, which precalculates a three-dimensional
grid based on macromolecular coordinates; and iii) Auto-
Dock, which performs a actual docking simulations.
Before docking process, several separate pre-docking
steps: ligand preparation, receptor preparation and grid
map calculations were performed. The ligand and recep-
tor preparation stage involved the addition of hydrogen
atoms, computing charges, merging non-polar hydrogen
atoms and defining AD4 atom types to ensure that atoms
conformed to the AutoDock atom types. The information
about rotatable torsion bonds that defines the bond flex-
ibility was acquired. The ligands and receptor molecule
preparation was followed by grid construction using
AutoGrid module. During grid construction, atom types
of the ligand, which acted as probes in the calculation of
grid maps, were identified. The grid with default volume
of 40 × 40 × 40 Å with a spacing of 0.375Å centered on
the receptor was prepared. For conformational searches,
the docking calculations using the genetic algorithm
(GA) procedure with default parameters was performed.
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2D QSAR modeling
DRAGON software was used for the calculation of 2D
descriptors. For our dataset, the software calculated ~848
types of 2D descriptors categorized into different descrip-
tor blocks such as constitutional descriptors, topological
descriptors, walk and path count descriptor, connectivity
indices, information indices, 2D autocorrelation, edge
adjacency, burden eigenvalues, topological charge indices,
functional groups, molecular properties and eigenvalues
based indices. Initially, the descriptors with zero or unas-
signed values were excluded and then pair-wise correla-
tion test to remove highly correlated descriptors at a
cut-off value of 0.50 was executed. This procedure
resulted in 14 descriptors for 2D QSAR modeling.

QSAR Model Construction
QSAR methodology quantitatively correlates the struc-
tural molecular properties (descriptors) with functions
(biological activities) for a set of compounds by means
of linear or non-linear statistical methods. In the present
study, we exploited both linear (MLR) and non-linear
(SVM) statistical methods for flourishing the robust
QSAR models [27,28]. Retrospectively, for QSAR model-
ing, both linear and non-linear models have been

extensively used [29-36]. MLR tries to model the rela-
tionship between two or more independent descriptors
and dependent variable such as Ki by fitting a linear
regression equation to the observed data with corre-
sponding parameters (constants) and an error term. On
the other hand, SVM based on statistical and optimiza-
tion theory, handles complex structural features. In the
present study, SVM_light http://www.cs.cornell.edu/Peo-
ple/tj/svm_light/, which is an implementation of SVM,
was used for QSAR modeling.

Evaluation of QSAR models
To assess the predictive performance of QSAR models,
different cross-validation procedures were adopted. First,
in leave-one-out strategy (LOOCV), one molecule was
removed from the dataset as a test compound and the
remaining 22 molecules were used to build the model.
This process was repeated 23 times with each inhibitor
as a test molecule. Once a regression model was con-
structed, goodness about the fit and statistical signifi-
cance was assessed using the statistical parameters
outlined below
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where, xi and yi represents the actual and predicted Ki

values for the ith compound. N is the total number of
compounds, x represents the averaged value of the
actual Ki for the entire dataset.
Here, it was equally important to use an independent

test set to check the real predictive accuracy of trained
QSAR models. However, 23 compounds were not
expected to be sufficient for independent testing using
existing QSAR models. Therefore, an alternative strat-
egy, external cross-validation, was adopted, where differ-
ent number of inhibitors i.e. 2, 4, and 6 were randomly
selected as independent test sets. The models were then
trained on the remaining inhibitors i.e. 21, 19, and 17

Table 8 Dataset of 23 inhibitors along with their
experimentally known Ki values

S. No Inhibitor IUPAC Name Ki values
(mM)

Inh-1 2-oxobutanoate 0.83

Inh-2 2-oxoheptanedioate 0.17

Inh-3 2-oxopentanoate 0.7

Inh-4 3-bromo-2-oxopropanoate 1.6

Inh-5 3-fluoro-2-oxopropanoate 0.22

Inh-6 2,4-dioxopentanoic acid 0.005

Inh-7 (2R)-2-amino-3-(2-aminoethylsulfanyl)propanoic
acid

2.4

Inh-8 (2S)-2-aminocyclopentan-1-one 12

Inh-9 (2R)-2-azaniumyl-4-hydroxy-4-oxobutanoate 0.09

Inh-10 4-oxo-1H-pyridine-2,6-dicarboxylic acid 22

Inh-11 2,6-dioxoheptanedioic acid 0.156

Inh-12 Dimethyl 4-oxo-1H-pyridine-2,6-dicarboxylate 6.9

Inh-13 Pyridine-2,6-dicarbonitrile 0.35

Inh-14 Pyridine-2,6-dicarboxylate 11

Inh-15 Oxaldehydate 0.028

Inh-16 (3R)-3-aminooxolan-2-one 8

Inh-17 Benzene-1,3-dicarboxylic acid 15

Inh-18 (2S)-2-amino-4-oxobutanoic acid 0.27

Inh-19 1-oxidopyridin-1-ium-2,6-dicarboxylic acid 0.06

Inh-20 (2S)-2-azaniumyl-3 sulfinopropanoate 6.1

Inh-21 (2S)-2-azaniumyl-5-hydroxy-5-oxopentanoate 9

Inh-22 4-oxobutanoic acid 0.3

Inh-23 (1R)-cyclohex-3-ene-1,3-dicarboxylic acid 15

Garg et al. BMC Bioinformatics 2010, 11:125
http://www.biomedcentral.com/1471-2105/11/125

Page 11 of 13

http://www.cs.cornell.edu/People/tj/svm_light/
http://www.cs.cornell.edu/People/tj/svm_light/


using LOOCV procedure followed by independent test-
ing on the corresponding test sets. This cycle of ran-
domly separating test and training sets was repeated.
Here, to determine the predictive accuracy of models on
the test set, predictive r2 value was used

r

SD yi x
i

N

SD
2

2

1
  

 i (4)

where, SD is the sum of the squared deviations
between the activities of the test set and mean activities
of the training molecules.
Then, Y-randomization test was performed in order to

appraise high training and testing correlation values
observed during QSAR modeling, were not occurred
incidentally. Here, the shuffled activity dataset was
derived by randomly shuffling the dependent variables Ki

and keeping the descriptors original, afterward using this
randomly shuffled dataset to develop new QSAR models.
The process of shuffling was carried out many times with
subsequent generation of corresponding models never-
theless, with an assumption that the resulting models
should give low performance, which would obviously
imply the rigorous robustness of the original models.

Input variables selection
The selection of best descriptors that establish the rela-
tionship between chemical structure and an inhibitory
property is crucial for the success of QSAR modeling. In
the present study, we adopted F-stepping remove-one
approach for variable selection. Accordingly, each input
variable was removed one-by-one from the set of n vari-
ables followed by QSAR modeling using the remaining
n-1 variables. However, if the correlation value was
increased, the particular variable was permanently
removed from the analysis. These cycles were repeated
until no further improvement in the correlation values
was observed and stopped if n-1 removal resulted in
reduction of correlation values.

List of abbreviations used
The abbreviations used are: QSAR: Quantitative Struc-
tural Activity Relationship; DAP: Diaminopimelic Acid;
CADD: Computed Aided Drug Designing; LYS161:
Lysine-161; SVM: Support Vector Machine; LOOCV:
Leave-One-Out Cross-Validation; MAE: Mean Absolute
Error; MLR: Multiple Linear Regression.
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