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Abstract

Background: Oligonucleotide arrays have become one of the most widely used high-throughput tools in biology.
Due to their sensitivity to experimental conditions, normalization is a crucial step when comparing measurements
from these arrays. Normalization is, however, far from a solved problem. Frequently, we encounter datasets with
significant technical effects that currently available methods are not able to correct.

Results: We show that by a careful decomposition of probe specific amplification, hybridization and array location
effects, a normalization can be performed that allows for a much improved analysis of these data. Identification of
the technical sources of variation between arrays has allowed us to build statistical models that are used to
estimate how the signal of individual probes is affected, based on their properties. This enables a model-based
normalization that is probe-specific, in contrast with the signal intensity distribution normalization performed by
many current methods. Next to this, we propose a novel way of handling background correction, enabling the use
of background information to weight probes during summarization. Testing of the proposed method shows a
much improved detection of differentially expressed genes over earlier proposed methods, even when tested on
(experimentally tightly controlled and replicated) spike-in datasets.

Conclusions: When a limited number of arrays are available, or when arrays are run in different batches, technical
effects have a large influence on the measured expression of genes. We show that a detailed modelling and
correction of these technical effects allows for an improved analysis in these situations.

Background
Most applications of oligonucleotide arrays, such as
finding differential expressed genes or network reverse
engineering, involve the comparison of different arrays.
Since array measurements are highly sensitive to the
experimental conditions, comparison of arrays can be
problematic. This is especially the case when experi-
ments have been performed in different batches or
experiments. Several normalization methods have been
developed to handle this problem (e.g. MAS 5.0 [1],
VSN [2], RMA [3], PDNN [4], PLIER [5], GCRMA [6]).
In this work we focus on differences between arrays

caused by amplification, hybridization and location-

based effects. Often used normalization methods such as
RMA do not take into account these significant techni-
cal effects, while methods such as PDNN and GC-RMA
only take into account the hybridization effect (although
in a different way than we propose). We introduce a
new normalization method that takes into account all
these effects and improves performance over the exist-
ing methods. Although this study focuses on Affymetrix
GeneChips, the resulting method can also be applied to
other oligonucleotide platforms.

Technical effects
The Affymetrix platform uses arrays with short 25-
nucleotide probes placed on them. To measure mRNA
expression, transcripts are amplified, fragmented and
labeled, after which they are placed on the array to
hybridize with the probes. After washing, the amount of
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hybridized RNA can be measured per probe. The first
step that can easily be influenced by experimental con-
ditions is the amplification. In this process, a primer is
used to bind to the poly-A tail of a transcript, after
which T7 RNA polymerase uses this primer to start the
creation of new (complementary) copies of the tran-
script. We found that the array signal shows a negative
bias for probes closer to the 5’ end of the transcript
(Figure 1). This effect has been identified earlier, and is
part of the quality control measures in MAS 5.0 and the
affy package [7]. Some authors have suggested that the
5’ end negative bias is caused by 5’ end RNA degrada-
tion. We found that an incomplete amplification (i.e.
copies only cover part of the transcript) better explains
the data (Additional file 1, Section S5). Currently, such
an effect is not taken into account by any normalization
methods that we know of.
The second step that can be influenced is the hybridi-

zation and washing of the fragmented transcripts (Figure
2). It is well known that these effects are generally
dependent on the sequence [4,8-11]. In several current
normalization methods (GCRMA, PDNN), the probe
sequence information is used to remove signal bias and/
or correct for the rate of binding of transcripts to the
probe. In contrast this work focuses on using the hybri-
dization model to reduce signal variance.
The third technical effect is based on the location of

the probe on the array. Some parts of the array show
blemishes which reduce or increase the signal. We also
find that large parts of the arrays can be affected
between batches (Figure 3). We estimate this effect for
every probe and remove it from the signal. A more sim-
ple 16-block grid based method is part of the MAS 5.0
method, while [12,13] divide the array in subarrays and
apply normalization on each subarray separately.

Background removal after normalization phase
Microarray pre-processing methods often have a back-
ground signal subtraction phase (bias reduction, i.e.
removing signal consisting of optical background and
signal due to non-specific binding), followed by a nor-
malization phase (variance reduction) and summariza-
tion of the probe sets. The primary goal of the first
phase is to improve accuracy (i.e. match the true signal
level more closely), while the second phase is performed
to improve precision (i.e. consistency of measurements
over different arrays). Current pre-processing methods
differ mostly in the method of bias reduction. For exam-
ple, MAS 5.0 uses mismatch probes to estimate the
background, RMA uses a general background distribu-
tion and GCRMA a sequence-based model. For normali-
zation, often general distribution-correcting methods
such as quantile normalization [14] or loess normaliza-
tion [15] are used. One can perform these methods
using a single reference array, or use multiple reference
arrays as is done in the PTR method [16].
Our first attempt at removing technical effects during

the bias reduction phase did show that, although one
can improve accuracy, it is hard to not simultaneously
decrease precision. The reason for this is that the esti-
mated correction factors (biases) can be large and are
estimated for each array separately with models that are
simplifications of reality. To solve this, we perform the
background subtraction phase after the normalization
phase. Consequently, within the normalization phase,
differences in technical effects between arrays are cor-
rected. For example, in the case of sequence effects we
perform now variance normalization (Figures 2c, d)
instead of bias removal (Figures 2a, b). As we normalize
not only the true signal but also the background signal,
this allows us to use the same background estimate for

Figure 1 Dependance of the measured signal w.r.t. probe position. Probes have been ordered on their position along the mRNA molecule.
Most probe sets consist of 11 probes. In these figures, we show the median expression profile (after quantile-quantile normalization) for the first
probe in all probe sets, the second probe in all probe sets, and so on for 11 probes (for probe sets with a different number of probes we use
interpolation). Each line in both plots indicates a separate microarray. The different colors in a) represent different arrays, and in b) represent
different batches. For a description of the datasets see the Methods section.
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all arrays during the background removal phase. This
way we can still improve accuracy, while simultaneously
preventing the reduction of precision.

Background removal within summarization phase
In general it is true that in cases that the measured fold
change between arrays is low one is less certain that
there is actually a ‘real’ fold change as opposed to situa-
tions where there is a large fold change. An important
factor influencing the measured fold change is (again)
the background signal. Probes with a relatively large
background signal will generally have a smaller fold
change, if the fold change is calculated over the whole
signal (background + foreground).

Currently, most methods remove the background
before the summarization of the probe sets. Although
this reduces signal and fold change bias, it also obscures
the ‘real’ fold change. That is, the fold changes of probes
with a large background signal will be blown up more
than those of other probes. In fact, probes which mea-
sure only background signal for some arrays could get
infinite fold changes if this was not prevented by limit-
ing the amount of background subtracted. This has a
major impact on the summarization of probe sets, as
such probes become more important than they should.
One could choose to perform no background subtrac-

tion, preventing the dominance of high-background
probes, at the cost of increased bias. But, even then

Figure 2 Dependance of the measured signal w.r.t. probe sequence. Probes consist of 25 nucleotides. For probes with the same number of
C, G nucleotides we calculated the median signal for each array (a, b) or median of the difference w.r.t. the median signal over all arrays (c, d)
(both after quantile-quantile normalization). The different colors in a) represent different arrays, and in b) represent different batches. For a
description of the datasets see the Methods section.
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probes that measure mostly background signal influence
the summarization outcome. Therefore, in our
approach, we have moved the background removal not
only after the normalization phase, but into the sum-
marization phase. This allows us to model the impor-
tance of the probes during summarization according to
the amount of ‘true’ signal they measure.

Results and Discussion
Algorithm overview
To perform normalization, one has to determine what
differences between arrays are caused by technical

effects. However, performing pairwise comparisons of
the arrays would lead to a quadratic number of compar-
isons, which does not scale for a large number of arrays.
For this reason we construct a reference array (Figure 4,
step 1a) based on the median of the signal: s j = med-
iani(sij) (with sij the measured signal of the j’th probe on
the i’th array), and compare all the arrays to this refer-
ence array.
An often used model (e.g. [6]) for background removal

is to split the signal in components according to S = O +
B + X, where S is the measured signal, O represents
the optical background, B is the background signal

Figure 3 Dependance of the measured signal w.r.t. probe array location. (a, b) The image shows for each probe the log2 signal difference
w.r.t to the median array (after quantile-quantile normalization), mapped to the location of the probe on the array. The value of MM-probes
(which are located next to their corresponding PM probe) are set to the residual of their corresponding PM probe. (c, d) These images give an
overview of the global array effect over all arrays. Each array is represented by a column, which is obtained by taking for each row in that array
the median of values as shown in (a, b). For a description of the datasets see the Methods section.
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caused by non-specific binding, and X is the ‘true’ signal
(in which we are interested). Here, we do not only use
this model for background removal, but also for normali-
zation, as some technical effects only affect a subset
of these components. For example, amplification
only affects X, while location-based effects appear to
influence mostly B + X (Additional file 1, Section S6).
Our method works by first estimating values for these
components for the reference array (Figure 4, step 1b),
obtaining

s o b xj j j  ˆ ˆ ˆ (1)

with ˆ, ˆ , ˆo b xj j being the reference optical background,
non-specific binding background and ‘true’ signal (the
reference components). Then, in the normalization
phase, we first normalize for the optical, hybridization
and amplification effects (Figure 4, step 2a). These

effects modify the components of the reference array
signal into the measured signal in the following way:

s o d b xij i j j i
bd

j j i
fd

j i   ˆ ˆ ( ) ˆ ( ) ( )     a (2)

Here, di is the optical effect difference, τ is the hybri-
dization model and � the amplification model. The
parameters of these models (di, i

bd
i
fd, , and ai respec-

tively) are fitted by minimizing the difference between sij
(the measured signal of array i) and sij (i.e. the refer-
ence array corrected for the differences caused by the
technical effects for array i):

min (log log )
, , ,d

ij ij

ji i
bd

i
fd

i

s s
  a

2 2
2  (3)

This minimization is done robustly using a Huber M-
estimator [17], for every array i separately. Note that the
difference is in log scale, as the technical effects we are
removing are mostly multiplicative effects. We obtain
sij by using the optimized parameters in Equation 2.
This enables us to get an estimate of the technical effect
difference for an array i w.r.t. the median pseudo-array
using tij = sij - s j . We substract this technical effect
difference from the measured signal sij for array i, to
obtain the corrected signal for these effects, i.e.:

  s s tij ij ij (4)

Using this signal, we perform in the next step array
location correction (L(.)) and distribution correction
using quantile normalization (Q(.)) (Figure 4, step 2b).
The reason to do these corrections separately is that
these effects cannot be effciently estimated using the
approach of equation 3. As technical effect estimations
can be dependent on each other, one could choose to
perform the normalization steps in an iterative fashion
(i.e. repeatedly applying each step until convergence).
We found, however, that repeating the first part (step
2a) of the normalization is unnecessary, as it did not
add noticeable performance. For the second part (step
2b), one could first perform array location correction
and then quantile normalization, or the other way
around. However, as quantile normalization is a fast and
idempotent procedure, we perform quantile normaliza-
tion both before and after array location correction, i.e.
  s Q L Q sij ij( ( ( ))) . Also in this case we did not find

noticeable performance advantages over a non-iterative
solution.
In the next subsections we discuss how to estimate the

reference signal components (Equation 1), as well as the
hybridization and amplification model (Equation 2). Then
we discuss the array location correction performed during

Figure 4 Method overview. High level overview of the steps from
measured signal to summarization output.
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step 2b, and the final step in the algorithm, the summari-
zation and background removal (Figure 4, step 3).
Estimating signal components
To divide the reference array signal s j in its compo-
nents (Equation 1) we first estimate ô and b̂ j . To esti-
mate the reference optical background and the reference
background due to non-specific binding, we use respec-
tively a scalar and a sequence-based hybridization model
(the same model as was also used to model the hybridi-
zation differences in Equation 2). Using these, we try to
explain as much of the reference signal as possible.
Although we could use s j as target signal, we found
that using mini(sij) performs slightly better, presumably
because it is a closer estimate of the ‘only-background’
signal. The estimate then becomes:

ˆ, ˆ arg min

(log min ( ) log [ ( )])

,
o

w s o

bg
o j

j i ij j
bg

bg

 



  


2 2

2
(5)

where τj represents the hybridization model for probe
j, jbg represents the hybridization model parameters,
and wj is a weight assigned to each probe indicating
whether the probe violates the background model and is
calculated according to:

w
s o

j
i ij j

bg
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



1 2 2if 

else

log min ( ) log [ ( )] 


(6)

The reason for this non-symmetric least-square
weighting is to prevent an estimated background that
is larger than the measured signal. In this work we use
h = 10. The model is estimated robustly using a (itera-
tively reweighted least square) Huber M-estimator. Then
we determine B and X, in such a way that S ≥ B + O
using

ˆ ( ( ˆ ), ˆ)b min s oj j
bg

j   (7)

and

ˆ ˆ ˆx s b oj j j   (8)

Hybridization model
The hybridization model τj is used three times: to esti-
mate the reference background signal b̂ (Equation 5) as
well as to estimate the background and foreground
hybridization differences between arrays (Equation 2).
The separate background and foreground hybridization
difference model represents the notion that the non-spe-
cific hybridization process differs from the hybridization
process of the targeted sequence [4].

The hybridization model is based on the probe
sequence. Earlier studies have indicated that the position
of nucleotides on the probe are important [4,8]. Further-
more, [4] as well as [10] suggested to fit dinucleotide
binding strength, based on hybridization experiments in
earlier studies. Each dinucleotide is presumed to have a
multiplicative effect on the signal. As additive models
are easier to handle, we use the following transforma-
tion:  

j
j 

2 . This allows us to estimate the effects as
additive components of  j .  j is modelled according to
two parts. One part models the influene of nucleotide
pairs in the probe sequence (part 1, τ(1),j). The other
part models the influence of the number of certain
nucleotides present in the probe sequence (part 2, τ(2),j).
Let ζj represent the (length 25) sequence of probe j,

and ζj,m Î (’A’, ’C’, ’G’, ’T’) the m’th nucleotide on it.
Although we could fit a model where we determine an

influence factor for every nucleotide pair for every posi-

tion (i.e.  
   ( ), ,( )

,( , )1
24

1j mm j m m
, where ζj,(m,m+1) is

defined as {ζj,m,ζj ,m+1}), this would lead to a large
amount of variables. As these influence factors vary
smoothly with probe position, it is possible to estimate
the position effect with fewer parameters. To this end,
we used B-splines (see Additional file 1, Section S4), i.e.

 







 

 

( ), ( ) (’ ’,,...’ ’)

,( , ) , ,

( )

( ) ( )
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1
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j m m p q p qI p B m

AA TT

qq

Q

m 24 (9)

where jp,q is a knot weight q for nucleotide pair p,
and Bp,q(m) is the corresponding B-spline basis function
factor for position m on the probe. Furthermore, I((ζj,(m,

m+1) = p) is an indicator function determining if probe j
has nucleotide pair p on positions (m, m + 1).
This model assumes that all contributed binding affi-

nities contribute linearly to the sequence effect in log-
space. In reality we did not find this to be the case. For
example, probes with relatively many adjoining C, G
nucleotides reported consistently a higher signal than
would be expected from the linear model. For this rea-
son, we added factors to the model that depend on the
number of certain nucleotides within a probe. Let c(N,
ζj,(v,w)) = ∑nÎN|ζj,x| ζj,x = n, v ≤ x ≤ w| represent the
number of certain nucleotides N in a (part of) the probe
sequence ζj,(v,w), then the second part of the sequence
model is:

  


   ( ), , , , , ,( ) ( ( , ))2 2j v r q j r v r q

q

Q

r Rv V

B c v (10)

where r is a sequence range parameter with elements
from R = {(1, 25), (1, 13), (14, 25)}, V Î {’A’, ...’T’,
{’A’,’C’}, ...} contains the nucleotide sets that were
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counted in each probe, Bv,r,q(.) is the B-spline basis func-
tion factor with as parameter the number of nucleotides
that fall within range r and are in set v, and jv,r,q is the
corresponding weight for knot q. We use the different
sequence ranges r to better model the non-specific
background binding which often only hybridizes with a
part of the probe sequence. The final model is then the
summation of the two introduced parts:

         j j j( ) ( ) ( )( ), ( ) ( ), ( )1 1 2 2 (11)

Experimentally, we found that Q = 5 knots with
degree 3 (cubic B-splines) are able to fit the signal well.
Our results indicate that there is enough data to esti-
mate the 230 parameters within j without significant
overfitting. This is to be expected as there are often
more than 200,000 probes on a microarray.
Amplification effect correction
Our experiments (Additional file 1, Section S5) indicate
that the lower expression of 5’ end probes is best
explained by incomplete amplification of the probes.
Copies are made starting from the 3’ end of the tran-
script, using a primer attached to the poly-A tail. How-
ever, not every copy will be complete, causing a 3’ end
bias in the signal we measure. This suggests that differ-
ences in this effect between arrays could be modeled
using the distance between a probe and the poly A-tail.
As it is somewhat complicated to determine the location
of this poly-A tail w.r.t. to the probe set (due to spli-
cing), and most probe sets are located close to the poly-
A tail, we make the simplification that we consider the
amplification differences to start at the 3’ end of the
probe set. We found that a simple (linear) probe loca-
tion model, pjai, where pj is the distance of a probe to
the 3’ end of the probe set and ai an amplification dif-
ference parameter, did not remove most of the amplifi-
cation effect. We suspected that the amplification effect
is actually sequence-dependent, and changed our model
to include these effects:

 j i
j i( )a p a 2 (12)

where probe-specific vector pj contains for each dinu-
cleotide the number of occurences between the middle
of probe j and the 3’ end of its probe set, and the array-
specific vector ai contains the parameters for each dinu-
cleotide determining its role in amplification differences.
An F-test shows that this model significantly improves
the amount of amplification effect our model is able to
fit over the location-only linear model (Additional file 1,
Section S5).
Array location effects
Estimating the (per-probe) array location effects within
the model itself would lead to an unrealistic large

number of parameters. For that reason, we estimate the
array location effects separately. That is, for a given
input signal xij, we calculate an output signal yij = L(xij)
corrected for location effects. In the ‘Algorithm over-
view’ section it is described how this function is used in
the second normalization step. Although we cannot
exclude that location effects could affect the optical
background signal, we found that normally only the
hybridization signal (both background and foreground)
is affected (see Additional file 1, Section S6). Further-
more, even if there are location effects in the optical
background they will not have a significant impact
on the signal of expressed genes. For this reason, we
estimate the location effect only for the hybridization
signal. Assuming that the input signal has already
been normalized for optical background (as we do in
Figure 4, step 2a), we can use a common optical back-
ground estimate ô .
To perform the location correction, we determine the

difference between the median signal over all arrays and
the input signal, for each array i. The difference between
these two is calculated after optical background subtrac-
tion, using:

εij i ij ijx o x o   log [ ( ) ] log [ ]2 2median (13)

We use log scaling as the location effects affect the
signal multiplicatively. Next, all calculated residues �ij
are mapped to the arrays on the location of their corre-
sponding probe j (see Figure 3). If there is a location
effect in a certain region of an array this will show as
residues with a negative or positive bias. To robustly
estimate this effect, we calculate for each probe on each
array the median of the residues in the neighborhood.
However, not every place on the array contains a probe,
furthermore we do not use the mismatch probes. To
handle the empty probe positions as well as probes near
the border of the array, we choose to use a fixed size
median box filter of 9 × 9, which takes into account
only the valid probes under it. This means that
the number of probes used by the filter depends on its
position. The result of this filter are location effect
values lij = median_box_filter(�i, j) for each probe on
each array. To obtain the corrected signal we calculate
y o x oij ij

ij  ˆ ( ˆ)2 .
Summarization
The normalized signal sij is summarized for each probe
set Pk (1 ≤ k ≤ K). Instead of using median polish
(RMA) or the Tukey bi-weight (MAS5) we apply here a
Huber M-estimator which was found to lead to better
results [18]. Also, it enables us to use a more flexible
model, which uses the estimation of the background
signal, such that probes with a high background signal
w.r.t. to the true signal obtain a lower weight. Similar to
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other summarization methods, we estimate a mean
probe set expression ωk, a probe set array factor aik

containing fold changes w.r.t. to ωk, and a probe affinity
factor rj. These factors are estimated using the following
model:

ˆ , ˆ , ˆ arg min

log log ˆ ˆ

, ,
,

     k ik j
i j P

ij

k ik j
k

s o b



   


2 2 jj

k ik j



  2

2
  

(14)

To make the model identifiable, we use the constraints
∑iaik = 0 ∀k and ∑jrj = 0. When the mean true signal
level for a probe is low (i.e. 2 k j ), the array effect aik

will have less influence on the magnitude of the residual
signal. Due to this, the probe will have less influence on
the final summarized signal.
A second modification we make is the removal of outlier

probes. This has been suggested before in [18]. If the
Huber M-estimator (see Additional file 1, Section S3)
assigns a low weight to the measured values of a probe
(i.e. < 0.9) for more than one-third of the arrays we
remove the probe entirely as its quality for the other arrays
is also questionable. However, we make certain that we
keep always more than 5 probes within a probe set.
The fold change values aik are used for further ana-

lyses. These fold changes are corrected for bias as the
background signal has been removed. Using bias-cor-
rected fold changes can be advantageous when per-
forming for example network reverse engineering.
However, as discussed in the introduction, one looses
information on the reliability of the fold change. This
is one of the reasons that methods such as MAS
5.0 and PLIER (which perform a strong background
correction, removing most of the bias) do not perform
that well when used with differential expression
detection algorithms based on the magnitude of the
fold change. To prevent this, we have added an option
to backscale the fold changes using

   




  





      
ik i j i jo b o bk ik klog log2 22 2 .

This is the final output of the algorithm and is used in
the subsequent analyses.

Differentially expressed gene detection performance
To determine the detection performance on differen-
tially expressed genes we used two spike-in datasets, one
using the HG_U95A platform and one using the
HG_U133A platform (a description of the used datasets
can be found in the Methods section). We compared
(Table 1) the ROC50 score for our method as well as
several other popular normalization methods. The main
result is that for both datasets the proposed method
(referred to as Robust Difference Normalization (RDN))

obtains the highest performance (i.e. respectively an
ROC50 score of 0.89 and 0.80). If we look at the fold-
change ranking, the next-best method is RMA for the
HG_U133A dataset and GCRMA for the HG_U95A
dataset. However, both methods do not perform consis-
tently well over both datasets.
Every spike-in experiment was performed three times.

We compared the performance both by using the meth-
ods on single replicates (and averaging the performance
over the three replicates) as well as by applying the
methods on the complete dataset simultaneously. As
expected, the performance gain when using each repli-
cate separately is larger, as replication is performed to
reduce the effect of unwanted differences between
arrays. However, even with replication our method out-
performs other methods. In this context, it is also inter-
esting to look at the SAM test statistic score. Many
studies do not have multiple replicates for each sample
(as is done here), but use multiple samples per class.
When comparing such classes, often the SAM(-related)
test statistic score is used, which takes into account
variability within a class to determine the ranking. Redu-
cing variability caused by technical effects can improve
its results. Here we see that RDN performs better than
many of the other normalization methods. The slightly
higher SAM score of GCRMA for the HG_U95A dataset
can be attributed partially to its use of a low probe
expression cutoff, thereby removing probe sets with very
low expression from consideration. If we apply a similar
cut-off to the same amount of probes as in GCRMA, we
obtain a better SAM-score of 0.76. To determine the
performance effect of individual components of RDN,
we ran our method with certain normalization steps dis-
abled (Table 1). When performing only a standard
quantile normalization in combination with the new
summarization procedure, RDN already outperforms
most of the other methods. Enabling correction for loca-
tion-specific effects as well as hybridization effects
further increases the performance. Amplification correc-
tion on the other hand does not significantly add to the
performance for these experiments. This is as expected,
as there are no significant differences in amplification
between the arrays (see Figure 1a, the lines are more or
less parallel), presumably because the amplification was
done once for all arrays, which in practice is not realistic
for most experiments.

Differential gene finding - hMSC dataset
The hMSC dataset has been measured in three batches,
which each show differences in technical effects (see Fig-
ures 1b, 2d, 3d). As is the case for most biological data-
sets, we do not know the exact true outcomes for the
hMSC dataset. For this reason, we can only use the inter-
nal consistency of the dataset after normalization as a
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measure. Besides using the difference between replicate
array pairs (for which RDN outperforms the other meth-
ods, see Additional file 1, Section S1), we also looked at
differentially expressed genes. We used the binary labels
for gender and sample bone location for this purpose.
The normalization methods are applied on the full data-
set. Then we determine for each batch separately the list
of top genes w.r.t. to the class labels using SAM, and
determine the overlap between the lists of top genes
from the different batches. For this, we calculate an over-
lap score. Let Tb,m be the list of m most significant genes
for batch b w.r.t. to a certain set of class labels, then a
score for each gene, g, can be calculated that expresses
how often it is present in one of the lists of m most sig-
nificant genes for each of the different batches:

gene_score g m b m

b

B

I g T B, ,

| |

( ( ) ) / (| | )    1 1 (15)

where |B| represents the number of batches, and I is
an indicator function with value 1 if g is part of the top
m genes of a batch, otherwise 0. After determining the
gene scores, we determine the total overlap score of all
genes, o(m), by summing the individual gene scores.
Similar to an AUC score, the final overlap score is cal-
culated by determining the area under the o(m) function
with 1 ≤ m ≤ M, while normalizing for M, i.e:

O o m MM

m

M



( ( )) /

1

(16)

We report this score for various M in Figure 5.
Despite the large number of samples (which reduces the
need for extra normalization), RDN performs on average
better than other normalization methods. The next best
method (PDNN) is also a method that corrects for
sequence effects, confirming that this has a positive
effect. We determined the influence of amplification
correction by disabling it. Here results are less conclu-
sive. Although we see an improvement for the location
label, this is not the case for the gender label.

Signal bias and background estimation
To remove signal bias, one needs a good background
estimate. To compare the estimated background with
the real background signal we used spike-in probes. For
these probes we know that for a spike-in concentration
of 0, we should only measure background signal [10].
Figure 6a shows the estimated and measured back-
ground signal. Although we only use a linear model, the
estimator gives a relatively good approximation of
the actual background signal. A perfect prediction of the
background cannot be expected as our model only looks
at dinucleotides and nucleotide counts, leaving out
the effect of longer matching RNA sequences within the
RNA sample. The underestimation of the background is
caused by using h = 10 in Equation 6. We used this
value to prevent overestimation of the background,
which would remove true signal. In Figure 6b, we show
the estimated dinucleotide weights w.r.t. to the probe
position for the background model. As can be seen, ‘CC’
dinucleotides add to the background signal for a large

Table 1 An overview of the results for the two spike-in experiments

(ROC50 scores) HG_U95A HG_U133A

Method name fold chg.
single repl.

SAM all fold chg. all fold chg.
single repl.

SAM all fold chg. all

MAS 5.0 0.00 0.25 0.01 0.01 0.45 0.02

PLIER 0.00 0.49 0.01 0.04 0.61 0.10

VSN 0.62 0.42 0.77 0.65 0.32 0.70

PDNN 0.63 0.45 0.73 0.59 0.70 0.71

RMA_NBG 0.64 0.53 0.78 0.69 0.66 0.77

RMA 0.47 0.27 0.75 0.68 0.70 0.77

GCRMA 0.71 0.68 0.84 0.65 0.57 0.72

RDN 0.80 0.66 (0.76) 0.89 0.75 0.77 0.80

RDN [qq] 0.67 0.57 0.80 0.71 0.65 0.77

RDN [qq, loc] 0.70 0.65 0.83 0.72 0.69 0.78

RDN [qq, hyb] 0.76 0.74 0.87 0.75 0.75 0.80

RDN [qq, hyb, amp] 0.76 0.73 0.87 0.75 0.75 0.80

RDN [qq, hyb, loc] 0.80 0.68 0.88 0.76 0.77 0.80

See Additional file 1, Table S1 for a description of the methods. Both fold change and the SAM test statistic were used to determine ROC50 scores (see Methods
section). The ‘single repl.’ score is determined by applying the normalization and scoring methods to each of the three replicate array-sets individually and
averaging the results, while the ‘all’ score is obtained by using all replicates simultaneously. The lower 5 rows describe versions of RDN which use a subset of
quantile-quantile normalization (’qq’), array location (’loc’), hybridization (’hyb’) and amplification (’amp’) correction to determine their individual influence.
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part. Furthermore, we see that dinucleotides such as
‘GG’, ‘GC’ are preferentially bound to the nucleotides
closest to the 5’ end.
To correct for signal bias, the estimated background is

removed from the signal during summarization (Equa-
tion 14). To determine the remaining signal bias after
this procedure, we compared the corrected expression
levels for the spike-in probe sets with their actual spike-
in concentrations (Figures 6c, 6d). As these are log-log
plots, unbiased signals should result in straight lines. In
these plots, we see that PLIER and PDNN are the best
performing method in terms of bias reduction (see also
Tables S6 and S7 in Additional file 1, containing the r2

measure as well as the slope for each of the methods).
By default, RDN does not focus on bias correction as

unbiased fold changes can negatively impact differential
expression detection, as discussed in the introduction.
In fact, after summarization it re-adds the background
signal (backscaling). Due to this, RDN has approximately
the same bias as RMA_NBG, a method which does not
remove background signal. However, if one requires
more accurate signals one can also use a different set-
ting for RDN, i.e. no backscaling and no underestima-
tion of background (h = 1). With this setting, RDN has
a summed r2 measure between PDNN and PLIER.

Signal precision for low, medium and high expression
spike-ins
Next to signal accuracy (improved by background
removal), one can also look at signal precision (improved
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by normalization). However, one cannot use measures
such as the standard deviation of a probe signal over mul-
tiple arrays. The reason for this is that background
removal blows up the fold changes, especially of low
expression probes. As each method uses different strate-
gies for background removal, one can not directly com-
pare such measures. A similar problem affects
comparisons of signal precision using spike-in probes,
where one determines the performance of the spike-in
probe sets for different spike-in concentration ranges. For
example, when testing low-expression spike-in probe sets,
the performance for a method without background

substraction will be affected by a relatively large number
of high-expression false positives. For methods with back-
ground subtraction, it is the other way around.
Therefore, we report here on an experiment (Figure 7)

in which we compared fold changes of spike-in probe
sets only to the fold changes of probe sets that are clo-
sest in average expression. That way, the results are only
negligibly affected by confounding effects due to signal/
fold change bias. In this experiment, the highest preci-
sion is obtained by RDN. It is interesting, however, that
PLIER performs quite good for low spike-in concentra-
tions, indicating that mismatch probes can be useful for

Figure 6 Background and signal accuracy. (a) Comparison between estimated background signal (bj) and measured spike-in probe signal (sj)
on the HG_U133A platform, for spike-in concentrations of 0. Results for other platforms are similar. (b) Estimated dinucleotide weight with
respect to probe position on the HG U133A platform. (c, d) Calculated average expression levels for the spike-in probe sets at different spike-in
concentrations, showing the bias in signal levels. The slope of the line represents the scale of the fold changes (for r2 and slope values see
Tables S6 and S7 in Additional file 1).
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improving signal precision. However, for high expression
spike-in probe sets (especially HG_U95A), PLIER does
not perform that well, which is to be expected as mis-
match probes are designed to report mainly background
signal. Methods which also correct for foreground signal
effects (RDN, PDNN) perform better here.
Another method to quantify precision is to rank repli-

cate array pairs w.r.t. non-replicate array pairs based on
the difference in expression between the arrays in the
pair. Then one can compare the ranking using a method
such as the AUC score. We did this on the hMSC data-
set (Additional file 1, Section S1) and found that RDN
outperforms all other methods.
A third way to determine precision is to look at genes

that have been spiked-in into the hMSC dataset. We
run here into the same problem as with using standard
deviations, namely that different methods can have dif-
ferent fold change scales. Fortunately, we found that one
gene (bioC) has been spiked-in at a different concentra-
tion for batch 3 of the hMSC dataset. This allows us to
asses both the precision and fold change scale simulta-
neously, showing the strong reduction in technical varia-
tion obtained by using RDN compared to other methods
(Figure 8).

Inspection of dataset after normalization
To validate the used models, we determined whether the
technical effects are indeed removed after normalization.
Results for the hMSC dataset (which has the largest dif-
ferences in technical effects) are shown in Figure 9.
Only for the less occuring types of probes, for example
those with a GC content of 5, we see that there are still
differences between the different arrays. This is caused
by the limited amount of knots used in the B-splines,
which however does protect the model from overfitting.

We also see that a large part of the amplification differ-
ence has been removed, although there are still some
outlier arrays. It is interesting to note that sequence cor-
rection also plays a role here. The drop in the signal on
the 3’ end of the probe set, which can be seen in
Figures 9a and 1, is mostly caused by the relatively lar-
ger number of ‘A’ nucleotides close the 3’ end of a gene.
That is, the position on the gene and the sequence com-
position of the probes are not completely independent,
suggesting that sequence and amplification effects
should be estimated simultaneously as is done in our
model. The array location normalization effectively
removes trends in the array images (see Additional
file 1, Figure S6), although locations where a large
correction was necessary still have more variabilty in the
residual signal, as is to be expected.

Discussion
The results show that the performance improvements
shown cannot be attributed to one component of the
algorithm. Rather, it is a collection of improvements
obtained by normalizing the different technical effects,
removing the background after the normalization proce-
dure, and, using background information in the sum-
marization procedure.
Our method currently assumes that, on average, the

expressions of genes remains similar accross multiple
arrays, allowing us to identify the technical effects. This
assumption is also used in other widely used normaliza-
tion methods such as quantile normalization. The lim-
itation of these type of methods is that they cannot be
used when all genes change their expression simulta-
neously upwards or downwards. RDN requires more
computation time than other normalization methods (10
minutes per array on a recent dual core 3 Ghz Intel

Figure 7 Signal precision. Signal precision for different spike-in concentration ranges. For each 2-fold spike-in concentration step the fold
change and average expression of every spike-in probe set was determined over the arrays where the concentration step takes place. The fold
change was compared to the fold change of 1000 probes closest in average expression (on the same arrays). The ranks are combined for a low,
middle, and high spike-in concentration range, and an averaged AUC score is calculated.
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processor). However, this amount of time is still small
when compared to the time it takes to perform the
microarray experiment. Furthermore, it is easy to paral-
lelize the algorithm. Compared to the number of probes
(> 200.000) our method uses a relatively limited numer
of parameters. This prevents overfitting, so that only
large scale effects affecting many probes simultaneously
are removed. For platforms with even more probes one
can choose to estimate the parameters with a subset of
the probes. Currently, the amplification correction is

based upon the assumption that probe sets are close to
the poly-A tail of the probe set. This is not always the
case. We found that especially probe sets further away
from the poly-A tail can have large variations in signal
for all probes, correlating with the amplification differ-
ences. This is not corrected by our current method.
Given reliable distances towards the poly-A tail this
could be added relatively easily.
The approach shown in this paper could also be use-

ful for other oligonucleotide platforms. In this work we
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Figure 9 Technical effects after RDN normalization. Technical effects after RDN normalization (compare to figures 1 and 2 for the situation
before normalization).
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have mainly focused on gene expression. However, it
could also be applied to ChIP-chip or tiling
experiments.

Conclusions
We have introduced a new normalization method that
corrects for hybridization, amplification and array loca-
tion effects that occur when measuring expression using
oligonucleotide arrays. The proposed Robust Difference
Normalization (RDN) corrects these technical effects by
removing the differences in measured expression over
different arrays instead of correcting for signal bias for
each array. In this way, the proposed normalization pro-
cedure focuses on controlling the precision instead of
the accuracy of the measured expression, which is more
important for some applications (like, for example,
detecting differentially expressed genes). We have
shown that the proposed RDN method increases perfor-
mance, even on experimentally tightly controlled and
three times replicated spike-in data sets. The method
will be most useful for studies consisting of few inde-
pendent replicates or those showing large batch effects.

Methods
Data
Spike-in experiments have often been used for validation
of normalization methods. We use two Latin Square
experiments performed by Affymetrix on the HG-U95A
and the HG-U133A platforms. These consist of respec-
tively 59 and 42 arrays, and each measure 14 different
spike-in gene groups. For each spike-in group, 14 differ-
ent concentrations are measured. For the HG-U95A
experiments these concentrations are 0, 0.25, 0.5 ... 1024
pmol, while for the HG-U133A experiment the concen-
trations are 0, 0.13, 0.25 ... 512 pmol. Fold changes
between subsequent steps are equal to 2. For every mea-
surement there are three replicates. The HG-U95A plat-
form has extra replicates for some of the measurements.
See Additional file 1, Section S2 for a description of
which spike-in probe sets were used.
We also validated our method on a dataset measuring

human mesenchymal stem cells (hMSCs). In this experi-
ment, bone marrow aspirates were obtained from the
acetabulum or iliac crest of patients undergoing hip
replacement surgery, who had given written informed
consent. Human mesenchymal stem cells (hMSCs) were
isolated and proliferated as described previously in [19].
To analyze the gene expression profile we seeded hMSCs
at 1000 cells/cm2 and upon reaching near confluence
RNA was isolated using an RNeasy mini kit (Qiagen).
Quality and quantity were analyzed by gel electrophoresis
and spectrophotometrically. For 62 donors, RNA micro-
array experiments were performed on the HG-U133A 2.0
platform, in three different batches of respectively 21, 21

and 20 donors. Although experiments were performed at
the same microarray facility, and with arrays from the
same production batch, signficant technical differences
were observed between the batches. Differences are likely
due to the fact that the batches are performed at a differ-
ent dates with several months in between. To validate
our method, we used two different binary labelsets,
namely the gender of the donors and the location (acta-
bulum or iliac crest) from where the cells were obtained
in the body.

Spike-in performance
Using the Affymetrix spike-in datasets, we compared the
performance of different normalization methods to
detect differential expression between different spike-in
concentrations. Each spike-in experiment contains 14
concentration groups, with each next group in the series
having a 2-fold higher concentration. To make the com-
parison a more realistic approximation of reality, we
only compared two subsequent concentration groups
(limiting the comparison to 2-fold differences, including
the step from 0 to the next lowest concentration). The
resulting number of spike-in concentration pairs is 13 *
|spike-ins|. We determine the fold-change or SAM test
statistic [20] for the array pairs with the subsequent
concentration groups. As is usually done, to determine
the performance we calculate an area under the ROC
curve (AUC score) using the spike-in pairs with 2-fold
concentration difference as positive examples, and the
non-spike-in pairs as negative examples. We limit the
number of false positives to 50 for each array pair (also
called ROC50 score), corresponding to regular practice
(e.g. [21]) where one is only interested in results with a
limited number of false positives.

Quantile-quantile normalization
The quantile-quantile normalization is performed by
mapping the signal distribution of different arrays to the
distribution of the median array, after which the mea-
surements from all arrays are sorted and replaced with
values from the median array [14].

Availability
The software is available as a Matlab Toolbox at http://
bioinformatics.tudelft.nl/users/marc-hulsman

Additional file 1: Supplementary information. More details can be
found in the supplementary information.
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