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Abstract

Background: The dynamic motions of many proteins are central to their function. It therefore follows that the
dynamic requirements of a protein are evolutionary constrained. In order to assess and quantify this, one needs to
compare the dynamic motions of different proteins. Comparing the dynamics of distinct proteins may also provide
insight into how protein motions are modified by variations in sequence and, consequently, by structure. The
optimal way of comparing complex molecular motions is, however, far from trivial. The majority of comparative
molecular dynamics studies performed to date relied upon prior sequence or structural alignment to define which
residues were equivalent in 3-dimensional space.

Results: Here we discuss an alternative methodology for comparative molecular dynamics that does not require
any prior alignment information. We show it is possible to align proteins based solely on their dynamics and that
we can use these dynamics-based alignments to quantify the dynamic similarity of proteins. Our method was
tested on 10 representative members of the PDZ domain family.

Conclusions: As a result of creating pair-wise dynamics-based alignments of PDZ domains, we have found
evolutionarily conserved patterns in their backbone dynamics. The dynamic similarity of PDZ domains is highly
correlated with their structural similarity as calculated with Dali. However, significant differences in their dynamics
can be detected indicating that sequence has a more refined role to play in protein dynamics than just dictating
the overall fold. We suggest that the method should be generally applicable.

Background
It is well established that conformational flexibility plays
a key role in the biochemical functions of proteins [1,2].
Protein motions of functional importance range from
fast (sub-nanosecond) atomic fluctuations to slow
(microsecond upward), large-scale conformational rear-
rangements [3,4]. Several studies have managed to relate
internal protein motions to biochemical functions [5,6],
and in particular the characterization and prediction of
large-scale conformational changes via the use of normal
modes [7] and elastic-network models [8,9] has been
quite successful. However, there are many signalling
molecules (for example PDZ domains) where there is
not a large-scale conformational change and yet some-
how the information that a ligand has bound is

communicated to a different region of the protein.
Furthermore, it is not clear if slight variations in struc-
ture can lead to large variations in dynamics, or similar
protein structures always have similar motions [9].
These problems require a more detailed picture of the
underlying dynamics.
Molecular Dynamics (MD) simulations can be used

effectively to explore the conformational energy land-
scape accessible to proteins [10,11] giving an insight
into how protein dynamics relates back to sequence.
Comparative MD studies address these questions by
performing MD simulations of multiple proteins and
comparing their dynamic trajectories. Previous compara-
tive MD studies of proteins fall into two main cate-
gories. Studies in the first class compared the dynamics
of the same protein simulated under different conditions
[12-15]. In this case, the question is how the motion of
the protein is altered by the new condition, for example
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the presence of a ligand. By contrast, the second class of
studies compared the dynamics of different proteins
simulated under the same condition [16-18] in order to
pinpoint similarities and differences in functionally
important movements.
If the dynamics of non-identical proteins is compared,

a mapping between the different structures is often
required. Therefore a common point of previous com-
parative MD studies of homologous proteins is that they
use prior sequence or structure alignments to find resi-
due equivalencies between the proteins. For example, to
compare the fluctuation of different cold-active
enzymes, Spiwok et al. [18] used structural alignmentto
define equivalent residue pairs between the proteins.
Papaleo et al. [17] performed MD simulations of differ-
ent elastases to compare their molecular flexibility. Here
the correspondences between residues of different pro-
teins were derived from pairwise sequence alignments.
Another example for alignment-guided comparison of
protein dynamics is the work of Pang et al. [16] who
simulated a series of proteins within the same fold
family. To compare the fluctuations as well as the prin-
cipal components of dynamics of only the structurally
conserved residues across the set of proteins, they used
structural alignment to define conserved positions.
Alternatively to MD, simplified models called Gaussian
Network Models were used to explore the common
dynamics of the globin family [19] and the protease
superfamily [20]. In these studies, however, comparative
analysis of dynamics also relied on prior alignments of
the proteins.
Nevertheless, if dynamically equivalent regions do not

match to sequentially and structurally similar regions,
alignments can mislead the comparison of protein
motions. Recently, Zen et al [21,22] developed a method
that takes a combined measure of spatial and dynamic
consistency to derive an alignment on the fly that can
be used to compare the proteins. We introduce here an
alternative method to measure the similarity of back-
bone dynamics of proteins without the use of any prior
alignment information. The method creates pairwise
alignments of proteins based solely on their backbone
motions without taking into account their sequence and
structure. Scores of dynamics-based alignments are used
to quantify the dynamic similarity of proteins. The pro-
posed similarity measure can be applied to study the
topology of protein dynamics space.
The method is tested on members of the PDZ domain

family. PDZ (post-synaptic density-95/discs large/zonula
occludens-1) domains are common protein-protein
interaction domains [23], most often binding the C-
terminal of the ligand protein [24] (see Fig. 1). PDZ
domains play an important role in organizing signalling
complexes and ion channels [25,26]. The biophysical

aspects of folding and binding reactions of PDZ
domains has been intensively studied [27], as well as
their ligand preferences [28,29] and the background of
binding specificity against a wide range of ligands [30].
Due to their biological importance, PDZ domains are
found in a large number of species: bacteria, yeast,
plants, invertebrates and vertebrates [31]. The dynamics
(collective normal modes) of PDZ domains in relation
to functional properties was studied on a coarse-grained
model [32]. Recently, Law et al. [33] have proven by
NMR-relaxation experiments that PDZ domain side-
chain dynamics is evolutionary conserved. In this paper
we conclude that backbone dynamics of PDZ domains
is also evolutionarily conserved. We first describe the
development of the method and how it can be used to
generate an alignment before demonstrating its applica-
tion to PDZ domains.

Results
Dynamic Fingerprint Matrix
We introduce a novel way to characterize the backbone
dynamics of proteins. The underlying idea is that in a
moving protein each residue is fluctuating relative to all
other residues, therefore a detailed description of
motion should capture all inter-residue fluctuations.
While static structures are often characterized by the
matrix of inter-residue distances (i.e. the distance
matrix), this representation is not applicable for a mov-
ing protein in which inter-residue distances are con-
stantly changing. It is possible, however, to characterize
the relative motion of any two residues by the distribu-
tion of their distance over time. We measure the extent

Figure 1 The third PDZ domain (PDZ3) of Postsynaptic Density
Protein-95 (PSD-95) in complex with the C-terminal peptide of
CRIPT. PDB code 1BE9.
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to which residue i and residue j are fluctuating relative
to each other by

F D tij ij    (1)

where Fij is calculated as the standard deviation of
the distribution of Dij (distance of the two residues)
in the whole conformational ensemble generated by
MD simulation. In this initial investigation we only
consider distances between Ca atoms, but the techni-
que can easily be extended to a more detailed
description of each amino acid residue. The standard
deviation of the distance distribution reflects how
much the two residues fluctuate relative to each
other. Fij values are calculated for each residue pair
and are collected into a matrix denoted by F, which
we will refer to as the Dynamic Fingerprint Matrix
(DFM). Similarly to a distance matrix that charac-
terizes a single conformation, a dynamic fingerprint
matrix characterizes an ensemble of conformations.
(The relationship of DFMs and correlation matrices is
discussed in Additional file 1.)

Comparing DFMs using prior alignment
Where a prior alignment is known, the comparison of
DFMs is straightforward. Given a pairwise sequence
alignment of protein A and B, let a and b be the index
vectors of the aligned residues of sequence A and B,
respectively. That is, the kth match column, (i.e. columns
not containing a gap in the alignment) aligns residue a
(k) of protein A with residue b (k) of protein B. Thus
each pairwise alignment can be characterized by an (a,b)
pair. Let FA and FB be the DFMs of the two proteins. The
(a,b) alignment define a submatrix of size of |a|×|a| of
both DFMs. The (i, j) entries of the two submatrices are
given by

F Fi j
A

i j
B

   ( ) ( ) ( ) ( )and (2)

Note that the two submatrices describe the pairwise
fluctuations of the aligned residues only. The (i, j)
entries of the two submatrices are considered equivalent
as they describe the fluctuations of equivalent pairs of
residues.
We define the dynamic similarity score of protein A

and B based on a prior (a,b) alignment as:
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where each pair of equivalent matrix entries are com-
pared one-by-one and their contribution to the overall
score is given by
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is the relative difference of the two equivalent matrix
entries.
s(i, j) is an S-shaped logistic function that assigns

positive score (s+) to highly similar matrix entries and
negative score (s-) to highly dissimilar entries (Addi-
tional file 1: Fig. S1). An user-adjustable cut-off para-
meter, t, defines the critical d(i, j) over which s(i, j)
turns negative. The relationship between t and para-
meter ω of s(i, j) is discussed in Additional file 1 as
well as the choice of parameter values. The key differ-
ence from using a discrete threshold is that the
parameter l can be tuned to set the steepness of the
S-shaped function to make s(i, j) less dependent on
the cut-off parameter t. Since s(i, j) is associated with a
match column pair in the alignment, it will be referred
to as the Pairwise Match Score (PMS) of columns
i and j.

Comparing DFMs without prior alignment
In the previous section we have introduced how to com-
pare the DFMs of two proteins using a prior sequence/
structural alignment. Our main goal, however, is to find
the optimal alignment of two proteins based on solely
their DFMs. Note that it is the opposite strategy of pre-
vious comparative MD studies which relied upon prior
alignments. We aim to find the (a,b) pair corresponding
to the maximal similarity score. Let (a*, b*) be the pair
of index vectors for which SAB(a, b) is maximal. SAB(a*,
b*) is then called the dynamic similarity score of protein
A and B and is simply denoted by SAB. The sequence
alignment problem is hereby transformed into a matrix
alignment problem. Structural alignment algorithms
Dali [34] and MatAlign [35] aim to solve the same ques-
tion when aligning distance matrices. The search space
of (a,b) pairs is exponentially large and the global opti-
mization problem is in fact NP-hard. In this case to find
the maximum score SAB we employ a simulated anneal-
ing protocol (see Methods).

Single Match Score (SMS)
Although the PMS scores concerning a given match col-
umn depend on the other match columns in the align-
ment, it is useful to compare the total contributions of
each individual column to the alignment score. For
match column i, the sum of PMS scores with respect to
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all other match columns will be referred to as the Single
Match Score (SMS):

s i s i j
j
j i

( ) ,  




1



(6)

In other words, the SMS of a match column is the
score by which the total alignment score decreases in
case of removing that match from the alignment.
Matches of negative SMS values are beneficial to
remove in optimizing the alignment. Hence the optimal
dynamics-based alignment contains only positions of
non-negative SMS values. Either studying a prior
(sequence/structural) or a dynamics-based alignment,
the SMS-profile represents our confidence in each
aligned pairs of residues.

Analysis of the motion of PSD-95 PDZ3
Before we discuss the comparative analysis, we first
demonstrate that the DFM protocol is appropriate by
characterizing the dynamics of the third PDZ domain
(PDZ3) of PSD-95 (Postsynaptic Density Protein 95)
from Rattus norvegicus. PSD-95 plays an important role
in controlling synaptic strength and plasticity in the cen-
tral nervous system [36]. The 110-residue-long PDZ3 is
the most well studied PDZ domain [27] which has a
canonical PDZ-domain structure consisting of six b-
strands (b1-b6) and two a-helices (a1 and a2). The pep-
tide-binding groove is located between the b2-strand and
a2-helix (see Fig. 1). As described in Methods, we used a
20 ns MD trajectory to calculate the Dynamic Fingerprint
Matrix (DFM) of PDZ3 (see Fig. 2A). Simple analysis of
the DFM revealed that the most dynamic part of the
domain is the a2 helix (His372-Ala382). This observation
is in accordance with De Los Rios et al [32] who per-
formed Normal Mode Analysis of a Gaussian Network
Model of PDZ3. As the a2-helix and the b2-strand form
the binding pocket it seems likely that the considerable
relative motion of these two structural components may
be related to the capacity to bind ligands.
To see how a particular residue fluctuates relative to

all other residues, we examined individual rows of the
DFM. We will refer to the kth row of the DFM as the
dynamic profile of residue k. The dynamic profile of
Phe325, for example, shows us that it is the b1/b2 loop
and the a2-helix which fluctuates the most relative to
this residue (see Fig. 2B). Phe325 is at the N-terminal
end of the b2-strand, right next to the b1/b2 (L1) loop
that interacts with the carboxylate terminal of the
bound peptide. Therefore, the relative motion of Phe325
and the a2-helix at the other side of the binding pocket
along with the L1 loop may reflect the manner in which

peptide binding occurs. A further example profile from
a residue situated within an alpha helix (Asp 348) is
shown Additional file 1.
We have calculated the mean value of each rows of

the DFM which we will call the average fluctuation pro-
file (Fig. 2C). Atomic fluctuations are often character-
ized by the RMSF (root mean square fluctuation). It can
be seen that the RMSF profile is very similar to the

Figure 2 Analysis of the DFM of PSD-95 PDZ3. (A) shows the
dynamic fingerprint matrix (DFM). Regions where the distance
fluctuation gives a high standard deviation, s, are indicated as red.
Low s values are indicated as blue. (B) Example dynamic ‘profile’ for
residue 25 (F325 of PDZ3 of PSD-95). (C) Average fluctuation profile
(the mean value of s for residue i) compared to the RMSF profile.
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average fluctuation profile (Fig. 2C). There was 0.94 cor-
relation between the average fluctuation profile and the
RMSF profile. We conclude that a DFM contains the
same information as a standard RMSF plot, however, by
describing relative inter-residue fluctuations, it gives us
a more detailed representation of protein flexibility.
More importantly, it does away with the dependency on
a single “native” reference structure for defining fluctua-
tions and is simple to compute.

Dynamics-based alignments of PDZ domains
We have thus far demonstrated that the DFM methodol-
ogy can be a useful way to analyse protein motions, but
the power of the approach is that it enables us to com-
pare the dynamics of two or more different proteins.
Furthermore this information can be used to derive an
alignment. To illustrate this we selected 10 PDZ domains
from a range of organisms (see Table 1) and ran 20 ns
explicit MD simulations (see Methods). We then calcu-
lated the DFMs for each protein and created dynamics-
based alignments of each pairs of proteins using the
matrix alignment algorithm described in Methods. Fig. 3.
presents an example: the alignment of PDZ3 of PSD-95
and the PDZ domain of neuronal nitric oxide synthase
(nNOS). The alignment does not require any prior
sequence or structural information; the two DFMs are
the only inputs of the algorithm (Fig. 3A). The most simi-
lar submatrix pair found by the algorithm have 77 × 77
entries which are highlighted (in white) in Fig. 3B. The
optimal submatrix pair corresponds to a pairwise align-
ment consisting of 77 aligned residues. Removing the
rows and columns of the DFMs that correspond to gaps
in the alignment, the remaining matrices will be referred
to as the ‘collapsed DFMs’ (which are identical to the
submatrices identified). Although one cannot see notable
similarity between the original DFMs, the collapsed
DFMs appear to be visually similar patterns (Fig. 3C).
The derived dynamics-based alignment was compared

to a structural alignment created by pairwise DaliLite
[37] and a pairwise sequence alignment created by the

Needleman-Wunsch algorithm [38] using EMBOSS-
Align [39]. Fig. 4. presents the three alignments anno-
tated by the secondary structure elements of the canoni-
cal PDZ-domain fold (i.e. six beta-strands, b1 to b6, and
two alpha-helices, a1 and a2). For the DFM-alignment
and the sequence alignment, the SMS score of each col-
umn is also presented, reflecting our confidence in indi-
vidual aligned positions.
As shown by Fig 4, equivalent secondary structure ele-

ments of the two proteins align very well in the
dynamics-based alignment, suggesting that dynamics,
just like sequence and structure, may contain enough
information to match proteins at the secondary struc-
ture level. Moreover, the DFM-based alignment includes
20 pairs of identical residues, out of which 18 and 20
are also present in the Needleman-Wunsch and Dali
alignments, respectively. Despite all these similarities,
however, a striking difference can be seen between the
DFM-based alignment and the sequence/structural
alignments. The second alpha-helix (a2), included both
in the Needleman-Wunsch and Dali alignments, is
almost completely missing from the DFM-alignment,
indicating that, although conserved at the sequence and
structure level, this helix has different dynamics in the
two proteins. Characterized above, the a2-helix has high
mobility in the PDZ3 of PSD-95 unlike in the PDZ of
nNOS, that makes the two regions dynamically non-
alignable. This is a clear example, when the dynamics-
based alignment gives similar information as sequence
and structural alignments, but at the same time, it pro-
vides new insights into the properties of proteins, that
cannot be detected through standard alignment
methods.

Analysing SMS-profiles
Since it was optimized by the matrix alignment algo-
rithm, the DFM-alignment includes only matches of
positive SMS values as shown by Fig. 4A. The SMS-pro-
file has its peaks within b-strands but drops at certain
match columns (e.g. in the b1/b2 and b2/b3 loops and

Table 1 Representative members of the PDZ domain family used in this study.

Protein containing PDZ domain PDB entry Resolution (Å) Source organism

nNOS 1qau 1.25 Rattus norvegicus

InaD 1ihj 1.8 Drosophila melanogaster

PSD-95 (PDZ3) 1bfe/1be9 2.3/1.82 Rattus norvegicus

tricorn protease 1k32 2.0 Thermoplasma acidophilum

GRIP2 (PDZ4) 1x5r NMR structure Homo sapiens

Rv0983 1y8t 2.0 Mycobacterium tuberculosis h37rv

PhotosystemII D1 Protease 1fc6 1.8 Scenedesmus obliquus

Alpha-1 Syntrophin 1qav 1.9 Mus musculus

EpsC 2i6v 1.63 Vibrio cholerae

DVL2 2f0a 1.8 Xenopus laevis
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at the C-terminal end of a1-helix). This suggests that b-
strands of the domains have minor fluctuations that
makes them easier to align than the other regions of the
proteins.
As we discussed before, the dynamic similarity of pro-

teins can also be measured based on a prior (sequence
or structural) alignment. In this case, the motion of the
subsets of residues defined by the prior alignment is
compared. To test this option, we used the Needleman-

Wunsch alignment as a prior alignment, which resulted
in a dynamic similarity score of -132.8. The optimal
similarity score found for this example is 1307.3, and
the extreme non-optimality of the sequence based align-
ment score illustrates that conserved sequence positions
can match dynamically dissimilar subsets of residues.
Accordingly, 46 per cent of the columns of the collapsed
Needleman-Wunsch alignment have negative SMS. The
less-matching region (a continuous block of negative

Figure 3 (A) Comparison of DFMs for PDZ3 of PSD-95 with the PDZ domain of nNOS. (B) Identification of similar submatrices, containing
77 residues in this case, from the DFMs. (C) Collapsed DFMs highlighting the similarities in these proteins.
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SMS values) appears to be the a2-helix, explaining why
this region is excluded from the optimized DFM-
alignment.

Dynamics-space of PDZ domains
The dynamic similarity score of the PDZ domain of
nNOS and PDZ3 of PSD-95 is S = 1307.3, which was
converted to a p-value of 9·10-11 using the significance
analysis framework described in Methods. Likewise the
alignment algorithm has found significant dynamic simi-
larities between other pairs of PDZ domains. The
p-values are summarized in Table 2 and can be shown
as a dynamic similarity graph Additional file 1: Fig S4A,
in which the different proteins are represented by the
nodes of the graph, and two proteins are connected if
they have significantly similar (p-value < 0.05) dynamics.
It is interesting to note that the dynamic similarity

shows differences between different structures. We can
see a cluster of five proteins (1be9, 1qau, 1qav, 1ihj and
2f0a) that are better-connected in the dynamic similarity
graph. Out of the 10 possible links between these struc-
tures 8 are present in the graph. Two additional links
are found between 2f0a/1x5r and 1ihj/1fc6. Three struc-
tures (2i6v, 1k32 and 1y8t), however, do not have signif-
icant dynamic similarity with any other structures.
Looking for structural explanations for these differences,
we examined the pairwise Dali Z-scores between the 10
domains (summarized in Additional file 1: Table S1 and
shown as a Dali Z-score graph in Additional file 1: Fig.
S4B). In this second graph, two nodes are connected if
their Dali Z-score is more than 8.5 (a threshold selected
empirically). As expected, each protein pair has

significant structural similarity (all Dali Z-scores are
over 3.5), but a subset of structures are more similar to
each other than to the others. A cluster of six structures
(1be9, 1qau, 1qav, 1ihj, 2f0a and 1x5r) appears to be
fully connected in the graph, while two additional links
are found between 1fc6/1y8t and 1ihj/1fc6. Two
domains (1k32 and 2i6v) are not linked to any other
structures.
The almost perfect overlap (with the only exception of

1x5r) between the well-connected clusters in the two
graphs suggests a topology-preserving mapping between
the structure space and dynamics space of PDZ
domains. There appears to be a strong correlation (0.82)
between the raw dynamic similarity scores and Dali Z-
scores considering all 45 protein pairs (Additional file 1:
Fig. S5), and a weaker but still strong correlation (0.63)

Figure 4 The resulting alignment that can be derived from the collapsed DFMs (A) is compared to the alignments derived from the
Dali (B) and Needleman-Wunsch (NW) algorithms (C). Identical pairs are indicated by blue boxes. The single match score (SMS) is depicted
underneath the DFM and NW alignments. It can be seen that the region corresponding to the second alpha helix in the NW alignment gives
negative SMS values indicating that the dynamic similarity is not preserved in this region.

Table 2 Dynamic similarity p values for the 10 PDZ
domains.

1qau 1ihj 1be9 1k32 1x5r 1y8t 1fc6 1qav 2i6v 2f0a

1qau

1ihj 4·10-4

1be9 9·10-11 0.34

1k32 0.62 0.76 0.74

1x5r 0.32 0.32 0.60 0.39

1y8t 0.61 0.47 0.58 0.62 0.36

1fc6 0.08 8·10-3 0.78 0.76 0.65 0.19

1qav 1·10-8 2·10-3 1·10-5 0.66 0.14 0.07 0.17

2i6v 0.68 0.78 0.58 0.70 0.71 0.55 0.81 0.59

2f0a 1·10-4 3·10-6 0.27 0.30 8·10-4 0.14 0.47 6·10-6 0.72

Those that are significant (at the p < 0.05) are highlighted.
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considering only the 35 protein pairs having non-signifi-
cant dynamic similarities.
Interestingly, all the 6 proteins in the fully connected

cluster of the Dali graph (5 of which are well-connected
in the dynamics graph too) are from multicellular
organisms (metazoa), while the other 4 proteins are
from unicellular species. The structural difference
between PDZ domains from simple and complex organ-
isms is well-known. First recognized by Liao et al. [40]
and exemplified by other authors [41,42], PDZ domains
of bacterial and plant origin have a circularly permuted
fold compared to the canonical PDZ domain fold found
in metazoa. Despite their considerably different architec-
ture, non-metazoan PDZ domains have very similar
overall tertiary structure to metazoan PDZ domains.
This is indeed reflected by Additional file 1: Table S1
which shows that metazoan and non-metazoan PDZ
domains are significantly similar structures (Dali
Z-scores above 2). On the other hand, the fact that the
metazoan structures form a distinct cluster in the Dali
graph shows the difference between the canonical and
the circularly permuted fold. Putting it all together, our
data suggests that the essential structural difference
between PDZ domains of metazoan and non-metazoan
origin is also reflected by the dissimilarity of their
dynamics. Metazoan PDZ domains appear to be structu-
rally and dynamically more conserved. However, even
within the cluster of the metazoan proteins, there are
significant differences in dynamics (on this timescale)
that can be quantified.

Robustness of DFMs
MD simulations are subject to sampling problems. In
order to assess whether the simulations have run long
enough to provide a reasonable picture of the dynamics
we examined the convergence of the DFM patterns. We
ran five 20 ns simulations of the same protein (PSD-95
PDZ3) using different random seeds for the initial atomic
velocities. The similarities of each pairs of DFMs resulted
from the different MD runs were measured by the matrix
alignment algorithm. Naturally, the five DFMs were not
perfectly the same, but the similarity between each pair
was highly significant (see Table 3). Most importantly,
comparing different simulations of the same protein
results in much higher similarity scores, than the compari-
son of different PDZ domains. These results lead us to the
conclusion that the sampling in 20 ns simulations can be
sufficient to provide robust DFM patterns for a compara-
tive analysis. Clearly, simulating the proteins for longer
period of time further improves the convergence of DFMs.

Conclusions
We have demonstrated a novel methodology for com-
paring the backbone dynamics of proteins simulated by

Molecular Dynamics simulations and for deriving an
alignment that is based solely on the underlying
dynamics of the system within a particular timescale; in
this case 20 ns. We have selected that timescale for
practical reasons, but it is effectively arbitrary as we
were mainly interested in seeing if we could quantify
the similarity in a meaningful way. The method should
work just as well for longer timescales. Of course, the
most useful timescale is the one which proteins exhibit
their function. The comparison of our dynamic similar-
ity score with the Dali score demonstrates structure and
dynamics are indeed correlated, but at a level (R = 0.82)
that still allows for significant differences in dynamics to
be apparent. This may explain why methods such as
elastic network models seem to work for predicting
large-scale conformational changes, but that the detailed
differences between protein motions can still be signifi-
cant. With respect to the PDZ domains we have shown
that the majority of motions within the protein are simi-
lar, but additionally that we can detect differences
(located at the binding interface) that are significantly
different and could not be detected by the usual
sequence or structure based alignment methods. We
have developed a method for measuring dynamic simi-
larity between proteins with a simple algorithm. As the
method is capable of detecting precise differences in the
dynamics between structures it could also be used to
assess the influence of ligand-binding on the dynamics
of protein structure. We are currently exploring that
aspect as well as developing further improvements on
the algorithm.

Methods
Molecular Dynamics Simulations
We carried out all-atom MD simulations of 10 represen-
tative members of the PDZ domain family (Table 1) in
explicit water and with Na+ and Cl- ions to a concentra-
tion of 150 mM. After 200 ps of restrained MD, 20 ns
of unrestrained MD was performed with the GROMACS
software package [43,44] using the OPLS force field [45]
in an NPT ensemble (see Additional file 1 for full
details). Snapshots from the trajectories were saved
every 5 ps for analysis.

Table 3 Dynamic similarity scores of five trajectories of
1be9 with different initial seed velocities.

Run 1 Run 2 Run 3 Run 4 Run 5

Run 1

Run 2 2363.3

Run 3 3223.7 3029.8

Run 4 2283.9 1589.4 1715.7

Run 5 2693.1 2221.1 2692.8 2244.1

All pairs are highly significant (p-value ≈ 0).
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Matrix Alignment Algorithm
To find a good approximation for the global maximum
of SAB(a,b) in a reasonable time, we have developed a
heuristics approach based on the multiple restart Simu-
lated Annealing (SA) method. The algorithm performs
an MCMC (Markov chain Monte Carlo) search in the
space of (a,b) pairs. The Markov chain starts from a
random initial alignment, and in each step the align-
ment is modified by inserting or removing one residue
pair. We use the Metropolis acceptance criterion [46] to
decide the next state of the chain. The parameter called
‘temperature’ which controls the acceptance probability
is gradually reduced according to an exponential decay
annealing schedule, leading to the convergence to a
high-scoring and potentially optimal alignment. We let
the Markov chain explore the search space at a given
constant temperature: the chain has to go through a
minimal number of accepted steps before the tempera-
ture is further reduced. The initial temperature is cali-
brated using the method proposed by Johnson et al.
[47]. The whole SA procedure terminates when the
acceptance ratio goes below a critical value. To over-
come the stochastic nature of SA and the possible exis-
tence of local optima, the process is restarted for a
number of times from random initial states and the best
result of the multiple runs is selected as the final output
of the algorithm.
Significance Analysis
To assess the statistical significance of dynamic similar-
ity scores between PDZ domains, we have performed 20
ns MD simulations of 12 evolutionarily and functionally
unrelated proteins of different sizes referred to as the
Reference Set (Additional file 1: Table S2). Reference
proteins were aligned using our dynamic fingerprint
alignment algorithm to measure the background distri-
bution of similarity scores. Using the background distri-
bution, the significance of dynamic similarity of any two
proteins can be expressed by the p-value of their simi-
larity score.
Since the optimal alignment score of two proteins is

the maximum of the scores of their possible alignments,
it follows a type I Extreme Value Distribution, as shown
in Additional file 1: Fig. S2. The background score dis-
tribution was found to be dependent on the lengths of
sequences (i.e. the size of input DFMs). To capture the
size dependency of the background distribution, we
approximated the μ(L) and s(L) functions, where μ is
the location parameter, s is the scale parameter of the
Extreme Value Distribution and L = LALB is the product
of the two sequence lengths.
To measure μ(L) and s(L) in a wider interval, not

only the full DFMs but their submatrices of different
sizes were also aligned. A total number of 2970 dynamic
alignments were performed. Regression lines were fitted

to the measured points of μ(L) and s(L) and are used to
approximate the parameters of the background distribu-
tion (Additional file 1: Fig. S3). The p-value of a
dynamic alignment of protein A and B is therefore
given by

p A B
SAB L

L
, exp exp   

  
 






























(7)

where L = LALB, and LA and LB are the lengths of pro-
tein A and B, respectively. (For a more detailed explana-
tion of the applied significance analysis framework, see
Additional file 1.) We use a significance threshold of
p = 0.05 to detect significant dynamic similarities
between proteins.

Additional file 1: Supplementary Information. Contains detailed
information about the actual algorithms employed, data sets used, and
extended interpretation of the data presented in the main manuscript.

Abbreviations
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