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Abstract
Background: Different microarray studies have compiled gene lists for predicting outcomes of a range of treatments 
and diseases. These have produced gene lists that have little overlap, indicating that the results from any one study are 
unstable. It has been suggested that the underlying pathways are essentially identical, and that the expression of gene 
sets, rather than that of individual genes, may be more informative with respect to prognosis and understanding of the 
underlying biological process.

Results: We sought to examine the stability of prognostic signatures based on gene sets rather than individual genes. 
We classified breast cancer cases from five microarray studies according to the risk of metastasis, using features derived 
from predefined gene sets. The expression levels of genes in the sets are aggregated, using what we call a set statistic. 
The resulting prognostic gene sets were as predictive as the lists of individual genes, but displayed more consistent 
rankings via bootstrap replications within datasets, produced more stable classifiers across different datasets, and are 
potentially more interpretable in the biological context since they examine gene expression in the context of their 
neighbouring genes in the pathway. In addition, we performed this analysis in each breast cancer molecular subtype, 
based on ER/HER2 status. The prognostic gene sets found in each subtype were consistent with the biology based on 
previous analysis of individual genes.

Conclusions: To date, most analyses of gene expression data have focused at the level of the individual genes. We 
show that a complementary approach of examining the data using predefined gene sets can reduce the noise and 
could provide increased insight into the underlying biological pathways.

Background
Much attention has been given to predicting patient sur-
vival from microarray data. In breast cancer, van 't Veer et
al. [1,2] set out to find genes that could be used to predict
whether breast cancer patients would experience a
metastasis five years after surgery (a binary variable).
Their list of 70 genes (NKI70) performed well in predict-
ing the clinical outcome (area under receiver-operating
characteristic curve, AUC ≈ 0.7) and is currently com-
mercially available as a prognostic test for breast cancer
patients. However, Ein-Dor et al. [3] used the stratified
bootstrap to show that many other gene lists of similar
predictive ability could be found from the same data.

Moreover, the overlap between the gene lists was low.
Similarly, Michiels et al. [4] reported that gene lists
derived from seven published cancer studies were highly
unstable, and suggested random resampling for valida-
tion of such signatures. Many other studies of predicting
breast cancer survival using gene expression have fol-
lowed, with differing gene lists [5]. Reyal et al. [6] exam-
ined the performance of nine gene signatures on seven
breast cancer datasets. Although the signatures had simi-
lar predictive ability, they showed little agreement on the
individual predictions -- less than 50% of the individual
predictions agreed -- and had only a small number of
overlapping genes.

These results raise several questions. First, are these
genes truly associated with cancer and metastasis, or are
they spurious, the result of complex models overfitting
the data? Second, if these genes are associated with can-
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cer, are they also causally related to it? (a gene may be
"down stream" of a cancer-causing gene and therefore be
associated with but not cause cancer). Third, can a stable
gene list be found at all? Fourth, do the different lists
actually represent the same underlying pathways [7] and
hence are in more agreement than is otherwise apparent?
Interestingly, it is not clear whether there is any advan-
tage in using gene lists, as opposed to single genes, at
least from a prediction point of view -- Haibe-Kains et al.
[8] found that classifiers built on single genes were as
accurate (in terms of AUC) as classifiers based on multi-
ple genes. Similarly, Lai et al. [9] reported that simpler
models (univariable models) were more stable than mul-
tivariable models, possibly due to overfitting of the latter.

If the different predictive genes truly represent the
same underlying biology, then perhaps what is needed is
to evaluate genes as members of gene pathways, and use
the pathway information to somehow guide the selection
of predictive genes. Ideally, one would like to have
detailed gene pathway information, which can then be
used to select genes with a potential causal link to cancer
and metastasis. This has largely not been possible due to
limitations on data size (too few samples) and the com-
plexity of gene interactions. Therefore, the problem of
finding the pathway information must be tackled in other
ways. One way is to assume that genes with correlated
expression belong together in one pathway (or are some-
how otherwise related to each other, even if they do not
interact directly), and to find the sets de novo in the data,
using methods such as searching over a space of models
representing regulation programs [10] and k-means clus-
tering [11]. Similarly, van Vliet et al. [12] used an unsu-
pervised module discovery method to find gene modules,
calculated a discrete module activity score, and used the
score as feature for a naïve Bayes classifier. They reported
that classifiers based on gene sets were slightly better pre-
dictors of breast cancer outcome than those based on
individual genes. Chuang et al. [13] used a mutual-infor-
mation scoring approach to analyse known protein-pro-
tein interaction (PPI) networks, infer gene pathways, and
find subnetworks predictive of breast cancer metastasis.

The other main approach has been to use external
pathway information, for example, from the literature.
Svensson et al. [14] analysed expression data from ovar-
ian cancers based on gene sets from the Gene Ontology
(GO) [15]; to represent the set's expression they used a
statistic that is essentially a majority-vote of the over- and
under-expressed genes (whether the set is over- or under-
expressed on average). In a large study of 12 breast cancer
datasets, Kim and Kim [16] reported a classification accu-
racy of 67.6% over 6 additional datasets, using 2411 gene
sets from GO categories, pathway data, and other
sources. They, too, reported low overlap between the top
gene sets identified, in terms of their common genes. Lee

et al. [17] used the MSigDB C2 gene sets, selected gene
sets using the t-test on their constituent genes, and used
the sets as features for classification in several cancer
datasets, including breast cancer. They, did not, however,
examine whether features derived from gene sets are any
more stable than those based on individual genes, a ques-
tion which is the focus of our work.

Once a tentative or known gene pathway has been iden-
tified, the next issue is how to use the expression levels of
its constituent genes in a meaningful way. Some options
are to use the mean or median expression [18], the first
few principal components [19], and the z-statistic [20].
Below we examine several approaches, which we call set
statistics.

Our Approach
In this work we propose using prior knowledge, in the
form of pre-specified gene sets from the Molecular Sig-
natures Database (MSigDB) [21] dataset, in order to form
new features from the individual genes. Moving away
from considering genes in isolation, these features serve
as proxies for measuring the activity of the set as a whole.
There are many approaches to gene set enrichment [22];
however, it is not clear whether these enrichment mea-
sures imply good predictive abilities. In contrast, we com-
pare features derived from gene sets with features based
on individual genes, with respect to the following criteria:

• discrimination: ability to predict metastasis within 5
years, both on average and its variance;
• stability of the ranks of individual features within
datasets;
• concordance between the weights and ranks of fea-
tures from different datasets;
• and the underlying biological process pointed to by
the features.

Methods
We explored a range of methods for extracting gene sets.
These statistics are described below; we first discuss the
data used.

Data
We used five breast cancer datasets from NCBI GEO
[23]: GSE2034 [24], GSE4922 [25], GSE6532 [26,27],
GSE7390 [28], and GSE11121 [29]. All five are Affymetrix
HG-U133A microarrays (some datasets include other
platforms; these platforms were excluded). We removed
quality control probesets, probesets with close to zero
variance across samples, and probesets with more than
15% missing expression levels (otherwise, missing values
were imputed using the median expression of the non-
missing samples [[30], pp. 48-50]). In total, each microar-
ray had 22,215 remaining probesets. The datasets were
independently normalised (see Additional File 1).
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Data Composition
The data contains both lymph-node-negative and node-
positive breast cancer patients. For GSE7390, GSE11121,
and GSE2034, none of the patients received adjuvant
treatment. For GSE6532 and GSE4922, some patients
received adjuvant therapy; these were removed from the
data. The data contains patients with both ER-positive
and ER-negative tumours. Patients were classified into
two groups, low and high risk, according to the time to
distant metastasis, using a cutoff point of 5 years. Patients
censored before the cutoff were considered noninforma-
tive and were removed from the data, as shown in Table
1.

Gene Sets
We used five MSigDB http://www.broadinstitute.org/
gsea/msigdb gene set collections: C1 (positional gene
sets), C2 (curated gene sets), C3 (motif gene sets), C4
(computational gene sets), and C5 (GO terms) [21], a
total of 5452 gene sets, of which 5414 sets could be
mapped to the Affymetrix HG-U133A probesets. Note
that the C2 collection includes sets derived from KEGG
[31] and Gene Ontology [15], among others.

Set Statistics
The purpose of the set statistic is to reduce the set's
expression matrix to a single vector, which is then used as
a feature for classification. The intention is for the set sta-
tistic to be representative of the expression levels of the
set, in a useful way. Here we describe the different set sta-
tistics used in this work. All of our set statistics are unsu-
pervised, in the sense that they do not take into account
the metastatic class, unlike methods such as the t-test
[32], GSEA [21], or GSA [33]; any standard classifier, such
as a support-vector machine (SVM), can be built on top
of these features.
Mathematical Notation

Here, X is the p × N matrix of gene expression levels,

where p denotes the number of genes and N denotes the

number of samples. Every gene belongs to one or more

gene sets , such that  ε {1, ..., p}, j = 1, ..., M, where

M is the number of gene sets. sj = | | and s¬j denote the

number of genes inside and outside the jth set, respec-

tively.
Set Centroid and Set Median
The centroid is simply the mean expression level over all
genes in the set. The matrix of all centroids is an M × N
matrix with entries

where xki is the expression level for the kth gene in the
ith sample. Similarly, the set median is the median
expression level for all genes in the set, for a given sample.

The motivation for the centroid is that it reduces the

variance of noise in the feature, since the sample variance

of the mean of a random vector x = (x1, ..., xn) is the

square of the standard error of the sample mean ,

for n > 1. The actual decrease in variance depends on
the degree of correlation of the variables. Another inter-
pretation is that all the genes in the same set are effec-
tively shrunk towards the set mean, thereby reducing the
effect of outlier genes [32] and reducing overfitting. The
set median is similar to the centroid, except that it is less
sensitive to outliers.
Set Medoid
The matrix of medoids is defined as the gene in the set Sj
closest (in Euclidean distance) to the centroid, for each
sample i
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Table 1: Sample sizes and breakdown by class

Dataset Good Obs. Removed Obs.

< 5 years ≥ 5 years Total

GSE2034 82 165 247 8

GSE4922 30 103 133 9

GSE6532 21 91 112 25

GSE7390 36 154 190 8

GSE11121 28 154 182 18

Observations (samples) were removed if they were censored before the 5-year cutoff.

http://www.broadinstitute.org/gsea/msigdb
http://www.broadinstitute.org/gsea/msigdb
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where xki is the expression level for the kth gene (out of
the sj genes in the set) in the ith sample. In this formula-
tion, the set medoid is not the same as the set median.
Set t-Statistic
The set centroid does not take into account different
means and variances between the genes, nor the fact that
a gene may have a high mean but high variance as well
(low signal-to-noise ratio). An alternative is to use the
one-sample t-statistic. The matrix of t-statistics is com-
puted by first centering and scaling the expression matrix
so that each gene has mean zero and unit variance, and
then computing the t-statistic for each set in each sample,

where centroidji is the centroid statistic from Eq. 1, and
sdji is the standard deviation of the genes in set j in the ith
sample. Scaling is done to prevent spurious t-statistics,
due to very small variances, from inflating the impor-
tance of "non-interesting" genes. We excluded sets with
fewer than 30 genes.
U-statistic p-value
The competitive U-statistic for the set, also known as
Wilcoxon's rank-sum statistic [35], compares the mean
rank of the genes in the set to the mean rank of the genes
outside the set, for all samples. The U-statistic is calcu-
lated as follows.

1. Create a list of gene expression ranks

 of the sj genes in the set in the ith

sample.

2. Sum the ranks for the set 
3. The U-statistic for set Sj in sample i is then Uij = Rij -
sj(sj + 1)/2.

For large n, the jth U-statistic is approximately nor-
mally-distributed, with μ = sjs¬j/2 and σ2 = sjs¬j(sj + s¬j + 1)/
12. Once the U-statistic is computed, we use its log p-
value as the feature for the classifier.

This statistic is slightly unusual since it pits gene sets
against other gene sets, that is, its distribution depends
on the number of genes sets rather than samples. Goe-
man and Bühlmann [36] argue that this statistic is inap-
propriate since it switches the standard relationship
between genes and samples in the experimental setup
(the sample size becomes the number of genes, not the
number of microarrays); however, Barry et al. [37] con-
sider it a useful statistic nonetheless. In any case, we use

this statistic only as a feature for a classifier, and not to
directly make inferences about the statistical significance
of the sets' expression levels.
1st Principal Component of the Set
Principal Component Analysis (PCA) is performed using
the singular value decomposition (SVD) of the gene set's
sj × N expression matrix Xj, defined as

where Uj and Vj are matrices whose columns are the left
and right singular vectors, respectively, and Dj is a diago-
nal matrix with the diagonal being the eigenvalues (also
called loadings).

The first eigenvector ν1j (first column of Vj) explains the

highest amount of variance in . The 1st principal

component (PC) of the matrix, PC1j, is obtained by pro-

jecting the data onto that eigenvector

where ν1j is an sj × 1 column vector. Hence, PC1 is the
best rank-1 approximation of the data. We mean-centred
and scaled the matrix XT before applying PCA.

The Centroid Classifier
Feature instability, manifested as discordant gene lists,
can be caused both by inherent instability and by overfit-
ting the classifier to the data. Therefore, to reduce the risk
of overfitting, we use the centroid classifier [[38], pp. 4-6].
The centroid classifier is equivalent to a heavily-regular-
ised support vector machine [39] and to Fisher Linear
Discriminant Analysis (LDA) with diagonal covariance
and uniform priors [40,41]. Therefore, we expect that it is
less prone to overfitting than an SVM or similar classifi-
ers. We further stabilise the centroid's estimate by averag-
ing them over random subsamples of the data, see
discussion of "Internal and External Validation."

The centroid classifier finds the centroid of each class,
that is, the p-vector of average gene expression in each
class. New observations are classified by comparing their
expression with the two centroids, and choosing the clos-
est centroid. Given a p × N matrix Z, the centroids (p-vec-
tors) of the positive and negative classes are, respectively,

where n+ and n- are the number of samples in each

class, and zi is the ith expression vector of p features (ith
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column of Z). The centroid classifier predicts using the

inner-product rule  = <zi - c, w>, where c = (c+ + c-)/2 is

the point midway between the centroids, and the weight

of each feature is

where w is the p-vector connecting the two centroids.

The sign of  is then the predicted class. For calculating

AUC we use  as the prediction, since it produces an

AUC estimate with lower variance than using the class

prediction sign ( ).
This centroid classifier is similar but not identical to the

classifier used by van 't Veer [1]; they assigned each sam-
ple to the class that has the highest Pearson correlation of
its centroid with the sample. This is equivalent to our ver-
sion of the centroid classifier when the samples are scaled
to unit norm [[42], p. 203]. See Additional File 1 for fur-
ther discussion.

Despite its simplicity, the centroid classifier performs
well in microarray studies [39] where commonly the
number of features is much greater than the number of
samples (p Ŭ N). For the centroid classifier, we observed
discrimination similar to or better than several other clas-
sifiers (support vector machine, nearest shrunken cen-
troids [40], and the van 't Veer [1] classifiers, see
Additional File 1 for details). The centroid classifier
requires no tuning, making it fast to compute, and mak-
ing nested cross-validation unnecessary during feature
selection (see [43] for examples of where it is required).

Internal and External Validation
Since we have five datasets, it might be reasonable to
combine them. However, we were interested in measur-
ing the concordance between datasets rather than per-
forming a meta-analysis. The inter-dataset analysis
emulates the real-world situation where different studies
are performed separately, rather than pooled together.
Therefore, we distinguish between internal and external
validation. In the former, we estimate the classifier's gen-
eralisation inside each dataset, using repeated random
subsampling; the subsampling is used to form a bagged
classifier for each dataset (see below). We then perform
external validation, where the bagged classifier from each
dataset is used to predict the metastatic class of patients
from another dataset. This is a more realistic estimate of
the classifier's discriminative ability.

In the internal validation, we used repeated random

subsampling to estimate the classifier's internal generali-

sation error, as measured by AUC (see Additional File 1

for the AUC from internal validation). In this approach,

the dataset is randomly split B times into training and

testing parts (2/3 and 1/3 of the data, respectively). We

used B = 25 splits. Repeated random subsampling with a

2/3-1/3 split is similar to the 0.632 bootstrap without

replacement [44]. Each split results in one model; the pre-

dictions from B models are then combined into one pre-

diction -- bagging [[45], pp. 246-250] -- by averaging over

the B predictions , and using that vector of

averages as the final prediction. Bagging also reduces the

variance of the predictions, without increasing the bias

[45].

Results and Discussion
Classification
We observed that the discrimination from the internal
and external validation were similar, showing that the
centroid classifier did not significantly over- or under-fit

y i
∧

w c c= −+ − , (8)

y i
∧

y i
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y i
∧ y y B
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Figure 1 Classification. Average and 95% confidence intervals for 

AUC from external validation between the five datasets (n = 2 ×  

= 20 (train, test) pairs) for different numbers of features. Note that each 
dataset ranks its features independently, hence, the kth feature is not 
necessarily the same across datasets. raw denotes individual genes.
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the data. Following are results for the external validation;
see Additional File 1 for the internal validation results.

Figure 1 shows AUC for external validation (trained on

one dataset and predicted on another, a total of 2  =

20 predictions), using centroid classifiers trained on dif-

ferent numbers of features. The maximum number of

features is 22,215 for genes and for 5414 gene sets. For

clarity, we only show the results for classifiers based on

expression of individual genes (denoted "raw"), the set

centroid, the set median, and set t-statistic. (See Addi-

tional File 1, Figure 6 for more set statistics and Addi-

tional Table 1 for significance tests.) Unlike classifiers

such as logistic regression or SVMs, the centroid classi-

fier's weight of one feature does not depend on the oth-

ers. While it is known that genes are not independently

expressed, this strong assumption does not appear to

reduce classification accuracy in our datasets. In addi-

tion, this assumption makes recursive feature elimination

especially simple, since features can be eliminated in

reverse order of their rank, where the rank is the absolute

value of their weights w, and the rank does not need to be

recomputed each time. The best AUC of about 0.7 is con-

sistent with previous results based on either lists of indi-

vidual genes [1,24] or of gene sets [12]. The set centroid,

set medoid, set median, and set t-statistic showed similar

AUC to that of individual genes. The set PC, and set U

statistic showed statistically-significant reductions in

AUC compared with individual genes, see Additional

Table 1. (Note that each dataset ranks the sets indepen-

dently, hence the top sets may be different. A consensus

list of top sets is provided in Table 2).
While AUC does not seem to improve, on average, by

using set statistics rather than individual genes, Figure 2
shows that the variance of the AUC is consistently lower
for the set t-statistic than for individual genes. This
observation is consistent with the greater stability of gene
set features, discussed below.

Stability of Feature Ranks
We were interested in how the ranks of a single feature
vary, since we prefer features that are highly ranked on

average and have small variability about that average. If a
feature has low average rank and large variability, it may
sometimes appear at the top of list simply by chance
when the experiment is repeated, indicating that it is not
a reliable predictor. Features with high average rank and
large variability may appear to be good predictors (on
average) but will create unstable gene lists, manifesting as
different datasets producing different gene lists of similar
predictive ability.

To evaluate the variability of the ranks, we used the per-
centile bootstrap to sample the observations with
replacement, generating a bootstrap distribution for the
centroid weights for genes and gene sets in one dataset
(GSE4922). Since there are 22,215 genes and only 5414
gene sets, a reduced gene list was derived by training a
centroid classifier on the GSE11121 dataset and selecting
the 5414 genes with the highest absolute centroid
weights; the list was fixed across bootstrap replications.

In many cases we are interested in a small signature
comprised of the most useful or predictive features.
Therefore, we selected the top 15 genes and gene sets
based on their mean rank. Figure 3 shows the mean, 2.5%,
and 97.5% percentiles from 5000 bootstrap replications,
for these top features (shown from highest to lowest)
using the set centroid statistic (see Additional Figure 8 for
the results for other set statistics). It is clear that the top
gene sets have lower variation than the top genes. In light
of these results, it is not surprising that lists of prognostic
genes show little overlap, as even the best ranked genes
vary considerably within the same dataset, let alone
between them; gene set features are more stable.

Concordance of Datasets
We were interested in how the different datasets agreed
on the importance of the features (genes or gene sets). We
used two approaches: rank-correlation of the centroid
classifier's weights, and concordance of the gene lists. For
this section, the classifier was not bagged -- we trained a
single centroid classifier on each dataset. We note that
the datasets are independently normalised -- we are
interested in the agreement between datasets despite dif-
ferent normalisation schemes.

We measured concordance using Spearman rank-cor-

relation between the classifier weights estimated from

each dataset, a total of  = 10 comparisons. Figure 4

shows the Spearman rank-correlations for each set statis-

tic. It is evident that the rank-correlations for the weights

of the set centroids, set median, set medoid, and the set t-

statistic are higher than for the individual genes. This
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Table 2: Top gene sets by average rank

# Set Cat. Sign MSigDB
Description

Enriched GO BP Terms (adj. p-value)

1 GNF2_MKI67 C4 -1 Neighborhood of MKI67 "phosphoinositide-mediated signaling": 1.95 × 10-10, "spindle organization": 
5.86 × 10-6, "establishment of mitotic spindle localization": 1.10 × 10-5, 
"kinetochore assembly": 5.48 × 10-5, "mitotic chromosome condensation": 1.37 
× 10-4, "protein complex localization": 2.55 × 10-3, "regulation of striated 
muscle development": 2.55 × 10-3, "metaphase plate congression": 2.55 × 10-3

2 GNF2_CCNA2 C4 -1 Neighborhood of CCNA2 "phosphoinositide-mediated signaling": 4.05 × 10-16, "DNA replication": 1.04 × 
10-9, "mitotic chromosome condensation": 1.32 × 10-8, "regulation of striated 
muscle development": 3.76 × 10-3, "metaphase plate congression": 3.76 × 10-3

3 GNF2_TTK C4 -1 Neighborhood of TTK "phosphoinositide-mediated signaling": < 2.22 × 10-16, "mitotic chromosome 
condensation": 4.35 × 10-14, "DNA replication": 1.01 × 10-12, "spindle 
organization": 1.37 × 10-9, "establishment of mitotic spindle localization": 9.59 
× 10-5, "kinetochore assembly": 4.76 × 10-4, "DNA repair": 5.78 × 10-3, "mitosis": 
9.44 × 10-3

4 GNF2_HMMR C4 -1 Neighborhood of HMMR "phosphoinositide-mediated signaling": < 2:22 × 10-16, "mitotic cell cycle 
spindle assembly checkpoint": 1.26 × 10-11, "spindle organization": 4.89 × 10-10, 
"mitotic chromosome condensation": 8.46 × 10-8, "cell proliferation": 6.22 × 10-

6, "DNA replication": 1.09 × 10-5, "establishment of mitotic spindle localization": 
5.33 × 10-5, "kinetochore assembly": 2.65 × 10-4, "protein complex localization": 
8.29 × 10-3, "regulation of striated muscle development": 8.29 × 10-3, 
"metaphase plate congression": 8.29 × 10-3

5 GNF2_CDC20 C4 -1 Neighborhood of CDC20 "phosphoinositide-mediated signaling": < 2.22_10-16, "spindle organization": 
2.20 × 10-12, "mitotic cell cycle spindle assembly checkpoint": 4.07 × 10-11, 
"mitotic chromosome condensation": 1.52 × 10-9, "cell proliferation": 8.96 × 10-

9, "mitosis": 1.83 × 10-8, "establishment of mitotic spindle localization": 8.95 × 
10-5, "kinetochore assembly": 4.45 × 10-4, "DNA replication": 7.83 × 10-3

6 GNF2_SMC2L1 C4 -1 Neighborhood of 
SMC2L1

"mitotic cell cycle spindle assembly checkpoint": 5.15 × 10-13, "mitotic 
chromosome condensation": 7.16 × 10-9, "phosphoinositide-mediated 
signaling": 2.14 × 10-6, "establishment of mitotic spindle localization": 1.31 × 
10-5, "kinetochore assembly": 6.51 × 10-5, "protein complex localization": 2.90 
× 10-3, "DNA strand elongation during DNA replication": 2.90 × 10-3, 
"regulation of striated muscle development": 2.90 × 10-3, "metaphase plate 
congression": 2.90 × 10-3, "cell proliferation": 2.94 × 10-3, "nucleotide-excision 
repair, DNA gap filling": 3.56 × 10-3

7 GNF2_H2AFX C4 -1 Neighborhood of H2AFX "cell proliferation": 9.28 × 10-10, "phosphoinositide-mediated signaling": 5.54 × 
10-7, "mitosis": 8.48 × 10-5, "mitotic cell cycle spindle assembly checkpoint": 
1.33 × 10-4, "protein complex localization": 1.63 × 10-3

8 GNF2_ESPL1 C4 -1 Neighborhood of ESPL1 "phosphoinositide-mediated signaling": 5.38 × 10-11, "kinetochore assembly": 
3.12 × 10-5, "mitotic chromosome condensation": 6.75 × 10-5, "spindle 
organization": 7.76 × 10-4, "protein complex localization": 1.67 × 10-3, 
"regulation of striated muscle development": 1.67 × 10-3, "metaphase plate 
congression": 1.67 × 10-3

9 GNF2_RRM2 C4 -1 Neighborhood of RRM2 "phosphoinositide-mediated signaling": 4.52 × 10-15, "mitotic cell cycle spindle 
assembly checkpoint": 1.17 × 10-9, "spindle organization": 1.20 × 10-7, "DNA 
replication": 5.42 × 10-6, "cell proliferation": 1.97 × 10-5, "establishment of 
mitotic spindle localization": 4.09 × 10-5, "kinetochore assembly": 2.03 × 10-4, 
"protein complex localization": 6.80 × 10-3, "regulation of striated muscle 
development": 6.80 × 10-3, "metaphase plate congression": 6.80 × 10-3

10 GNF2_PCNA C4 -1 Neighborhood of PCNA "phosphoinositide-mediated signaling": < 2.22 × 10-16, "DNA replication": 1.47 
× 10-15, "mitotic chromosome condensation": 2.36 × 10-7, "spindle 
organization": 4.33 × 10 -7, "establishment of mitotic spindle localization": 9.59 
× 10-5, "cell proliferation": 4.18 × 10-4, "DNA repair": 4.33 × 10-4, "kinetochore 
assembly": 4.76 × 10-4, "mitosis": 9.44 × 10-3

Top 10 gene sets by average rank over the five datasets, using the set centroid statistic. GO enrichment p-values are from a Bonferroni-adjusted 
one-sided Fisher's exact test (30,330 tests). Sign = -1 if expression is negatively associated with long-term survival, and vice versa. The background 
list for the test includes all Affymetrix HG-U133A probesets that could be mapped to GO BP terms, excluding IEA annotations.
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indicates that classifiers built from features based on gene

sets are more stable than those built using individual

genes, and are less likely to overfit.
To measure how the ranked lists produced by each

dataset agreed on the top-ranked genes, we used the fol-
lowing approach. The features for each dataset were
ranked by the absolute value of their w weight. Then, for
each number f of features, f = 1, ..., p, we chose each data-
set's top f-ranked features. Next, we counted how many of
these f features occurred at least k of the five datasets.
Results for k = 5 are shown in Figure 5. Lists based on
individual genes show little overlap for cutoffs up to
about 130 -- in other words, there are no genes that occur
in all five datasets up to that cutoff. In comparison, the set
statistics, especially the set medians and the set centroids,
produce lists with higher overlap, even at cutoffs below
10. This result further supports the conclusion that lists
of individual genes are highly unstable, and that the little
overlap between reported prognostic signatures is to be
expected.

MSigDB Sets
Table 2 shows the top 10 gene sets by rank, where the
rank was averaged over the feature ranks from the five
datasets, using the set centroid statistic. Also shown is
enrichment for BO Biological Process (BP) terms from a
Bonferroni-adjusted Fisher's exact test, for the genes

belonging to these sets. The top sets are enriched for GO
BP terms related to the cell cycle and cell division pro-
cesses, and for the PI3K pathway which interacts with the
Ras oncogene [46], confirming the cell cycle process as
one of the major biological mechanisms associated with
breast cancer metastasis [47,48]. The top set,

Figure 2 Classification variance. Variance and 95% confidence inter-

vals of the AUC from external validation between the five datasets (n = 

2 ×  = 20 (train, test) pairs) for different numbers of features. The 

confidence intervals are 

, where 

 is the α = 0.05 quantile for a chi-squared distribution with n - 1 de-

grees of freedom, s2 is the sample variance and.
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GNF2_MKI67, is related to Ki-67, a known marker of
cancer proliferation [49].

The potential advantage of gene sets signatures over
individual gene signatures depends on the degree of these
genes' coexpression. A critical aspect of this performance,
therefore, is the source for the grouping of genes into sets.
The MSigDB is composed of five set classes depending on
the annotation used to define the sets. Whereas catego-
ries C1 and C3 are derived from the chromosomal loca-
tion and sequence of regulatory elements, respectively,
categories C2 and C4 both originate from expression pro-
files; C5 is based on GO categories. In addition, the data-
sets these categories are based on vary with respect to
sample size; whereas C4 was is based on hypothesis-free
examination of co-expression across almost two thou-
sand expression profiles, C2 is mainly based on publica-
tions of expression profiles, rarely using more than
dozens of samples.

To see whether different MSigDB categories were more
useful for predicting metastasis, we combined four data-
sets (GSE2034, GSE4922, GSE6532, and GSE7390) into a
single training set. A separate centroid classifier was
trained on each gene set, using the set-centroid statistic,
and the gene sets were then ranked by their centroid clas-
sifier weights (negative to positive). We then tested the
classifiers on the fifth dataset, GSE11121. Finally, we used
the two-sample Kolmogorov-Smirnov statistic to com-
pare the ranks from the different categories (see Addi-
tional File 1 for details and results for other set statistics).

Figure 6 shows the cumulative-sum statistic, from
which the Kolmogorov-Smirnov statistic is computed, for
the ranked gene sets. In order to link that rank with per-
formance in sample classification, we plotted the classi-
fier's AUC value for each of these sets along the rank. The
results show that the C4 sets tend have extreme centroid
weights, especially towards the negative side, than the
other categories. In contrast, C2 sets show a concentra-
tion towards the positive weights, albeit much smaller.
Category C3 tends to be concentrated in the middle
ranks, and category C1 tends to be concentrated in the
negative to middle ranks. Finally, category C5 is distrib-
uted more uniformly across the ranks; this may be since
GO sets do not take the direction of expression change

Figure 5 List concordance. Concordance of feature lists (genes or 
gene sets) for different cutoffs f = 1,...,200, counting the number of fea-
tures occurring in all of the five datasets' lists, ranked higher than f. raw 
denotes individual genes.
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into account, potentially leading to sets composed of
genes with a mixture of positive and negative correla-
tions.

One problem with the set-centroid statistic is that for
small sets, there is a higher probability of observing an
extreme statistic by chance, since the variance of the sam-
ple mean decreases with set size. This implies that spuri-
ous set centroids (high absolute value) would be more
common in smaller sets, leading to a bias towards smaller
sets when ranking the sets. However, there does not seem
to be a monotonic relationship between log-size and rank
(see Additional File 1, Figure 10). Additionally, there is
reasonable concordance between the sets as indepen-
dently ranked by the five datasets. We conclude that
while spurious effects due to the set-size cannot be ruled
out, they does not seem to be a major factor in the set's
rank. In any case, as an alternative to the set centroid, the
set t-statistic can be used.

Prognostic Gene Sets in Breast Cancer Molecular Subtypes
Breast cancer is a heterogeneous disease, with gene
expression segregating the cases into different biological
and clinically relevant subgroups, perhaps implying dif-
fering biological mechanisms for tumour growth and
progression and suggesting separate cells of origin. It is
reasonable to ask the question whether there is different
aetiology related to breast cancer progression. The com-
mon molecular classification describes five classes --
basal-like, luminal A and B, normal breast tissue-like, and
ERBB2+ [50]. Our results above show a strong cell-cycle
signature as highly prognostic, supporting existing data
[51]. The association of cell-cycle genes to increased risk
of metastasis has been mainly attributed to the breast
cancer cases that are ER+ [26,52], which comprise the
majority of the breast cancer population. Therefore, we
explored whether different signatures could be found by
removing such cases and training the classifiers on the
remaining samples.

The triple-negative class, also called basal-like, is a
group of breast cancer that are ER (also known as ESR1),
PR (progesterone receptor), and HER2 (also known as
ERBB2) [53]. We sought to reproduce the same biological
results as previous reports which have identified subtype-
specific signatures that predict metastasis [51,54]. We fol-
lowed the procedure described by Desmedt et al. [51],

and assessed their list of gene modules which are
intended to represent different biological functions such
as tumor invasion, immune response, angiogenesis, apop-
tosis, proliferation, and ER and HER2 signaling (see Addi-
tional File 1 for details). We clustered the samples based
on their ER and HER2 module scores into three sub-
groups, ER-/HER2-, ER+/HER2-, and HER2+, shown in
Figure 7 and Table 3.

We reran our analysis, consisting of training the cen-
troid classifier on the MSigDB set statistics, on each sub-
group. Table 4 shows the top gene sets for each subgroup
for the set centroid statistic (see Additional File 1 for oth-
ers statistics). The set centroid, set medoid, and set
median show enrichment for genes from the AURKA
module in the ER+/HER2- as expected, and to a lesser
extent an immune response signature (STAT1 module) in
ER-/HER2-, manifesting as IFN-γ-related sets in Table 4.
Only in the ER-/HER- subgroup did these set statistics
result in substantially different top gene sets. We also
plotted the Kolmogorov-Smirnov statistics for how
enriched were all 5414 MSigDB sets in genes from each of

Table 3: Breakdown of samples for each cancer subtype

Class < 5 years ≥ 5 years Total

1 ER-/HER2- 35 80 115

2 ER+/HER2- 107 423 530

3 HER2+ 55 164 219

Figure 7 ER/HER2 subtypes. Expression of ESR1 (ER) versus ERBB2 
(HER2) for the combined dataset. A mixture of three Gaussians is fitted 
to the data. Clusters 1, 2, and 3 represent the ER-/HER2-, ER+/HER2-, 
and HER2+ subtypes, respectively.
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Table 4: Top gene sets for each ER/HER2 subtype

Class # MSigDB Set Cat. Description Sign

ER-/HER2- 1 chr7q12 Cl Genes in cytogenetic band chr7q12 1

2 COLLER_MYC_DN C2 Genes down-regulated by MYC in 293T (transformed 
fetal renal cell).

-1

3 IFNGPATHWAY C2 IFN gamma signaling pathway 1

4 GRANDVAUX_IFN_NOT_IRF3_UP C2 Genes up-regulated by interferon-alpha, beta but not 
by IRF3 in Jurkat (T cell)

1

5 GNF2_ST13 C4 Neighborhood of ST13 -1

6 GNF2_CD48 C4 Neighborhood of CD48 1

7 GNF2_GLTSCR2 C4 Neighborhood of GLTSCR2 -1

8 MENSE_HYPOXIA_DN C2 List of Hypoxia-suppressed genes found in both 
Astrocytes and HeLa Cells

-1

9 HSA03010_RIBOSOME C2 Genes involved in ribosome -1

10 GCM_TPT1 C4 Neighborhood of TPT1 -1

ER+/
HER2-

1 GNF2_MKI67 C4 Neighborhood of MKI67 -1

2 GNF2_TTK C4 Neighborhood of TTK -1

3 GNF2_HMMR C4 Neighborhood of HMMR -1

4 GNF2_CCNA2 C4 Neighborhood of CCNA2 -1

5 GNF2_SMC2L1 C4 Neighborhood of SMC2L1 -1

6 GNF2_ESPL1 C4 Neighborhood of ESPL1 -1

7 GNF2_CDC20 C4 Neighborhood of CDC20 -1

8 GNF2_H2AFX C4 Neighborhood of H2AFX -1

9 GNF2_RRM2 C4 Neighborhood of RRM2 -1

10 ZHAN_MM_CD138_PR_VS_ REST C2 50 top ranked SAM-defined over-expressed genes in 
each subgroup_PR

-1

HER2+ 1 chr4p Cl Genes in cytogenetic band chr4p -1

2 chrlqll Cl Genes in cytogenetic band chrlqll 1

3 DAC_FIBRO_DN C2 Downregulated by DAC treatment in LD419 fibroblast 
cells

-1

4 GNF2_MKI67 C4 Neighborhood of MKI67 -1

5 GNF2_CCNA2 C4 Neighborhood of CCNA2 -1

6 GNF2_TTK C4 Neighborhood of TTK -1

7 GNF2_H2AFX C4 Neighborhood of H2AFX -1

8 GNF2_HMMR C4 Neighborhood of HMMR -1

9 CROONQUIST_L6_RAS_DN C2 Genes dowmregulated in multiple myeloma cells 
exposed to the pro-proliferative cytokine IL-6 versus 
those with N-ras-activating mutations.

-1

10 CROONQUIST_L6_STARVE_UP C2 Genes upregulated in multiple myeloma cells exposed 
to the pro-proliferative cytokine IL-6 versus those that 
were IL-6-starved.

-1

Top 10 MSigDB sets for ER/HER2 molecular subtypes, chosen by the centroid classifier using the set centroid statistic. Sign = -1 if expression 
is negatively associated with long-term survival, and vice versa.
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the modules from [51] (Additional File 1, Figure 11),
showing that in contrast to the other set statistics, the set
PC, set t-statistic and to some extent the set U statistic,
exhibit more pronounced enrichment of Desmedt's mod-
ule genes at the top and bottom of the sorted set list, indi-
cating that the sets with large weight, either positive or
negative, contain more of the genes defined in Desmedt's

modules, and suggesting the same underlying biology as
the modules.

Do the Gene Sets Point to the Same Biology As the Genes?
In this section we investigate whether the top gene sets
reflect the same underlying biology as the top genes. In
the combined data, we trained three types of classifier:

Table 5: Overlap between top genes and gene sets for different classifiers

Classifier # MSigDB set p-value matches set size

CC 1 GNF2_MKI67 < l.00 × l0-40 31 47

2 GNF2_TTK < l.00 × l0-40 29 57

3 GNF2_CCNA2 < l.00 × 10-40 48 99

4 GNF2_HMMR < 1.00 × 10-40 42 78

5 GNF2_SMC2L1 < 1.00 × 10-40 26 51

6 GNF2_CDC20 < 1.00 × 10-40 46 91

7 GNF2_ESPL1 < 1.00 × 10-40 27 58

8 GNF2_H2AFX < 1.00 × 10-40 24 54

9 GNF2_RRM2 < 1.00 × 10-40 32 68

10 chrlqll 2.32 × 10-6 2 4

SVM 1 chr7q12 6.23 × 104 1 1

2 chr3qll 1.00 0 8

3 chrxq 1.00 0 2

4 BYSTRYKH_RUNX1_TARGETS_GLO-CUS 8.06 × 10-3 1 13

5 TESTIS_EXPRESSED _GENES 7.28 × 10-7 4 107

6 chr22q 1.00 0 6

7 REGULATION_OF_G_PROTEIN_COU-
PLED_RECEPTOR_PROTEIN_SIGNAL-ING_PATHWAY

4.28 × 10-4 2 48

8 chr11p14 1.00 0 20

9 TERCPATHWAY 1.00 0 15

10 chrlq41 2.02 × 10-4 2 33

LR 1 chrSqll 1.00 0 8

2 chr22q 1.00 0 6

3 TERCPATHWAY 1.00 0 15

4 chrxq 1.00 0 2

5 BYSTRYKH_RUNX1_TARGETS_GLO-CUS 8.06 × 10-3 1 13

6 HSA00130_UBIQUINONE_BIOSYNTHE-SIS 1.00 0 8

7 chr20p 1.00 0 2

8 chrlq41 1.29 × 10-6 3 33

9 chr3q12 1.00 0 23

10 BETA_TUBULIN_BINDING 1.00 0 12

Top 10 sets using the set centroid statistic using different classifiers, and the p-value for the number of top genes belonging to each of them 
(Fisher's exact test, one sided). CC is centroid classifier, LR is logistic regression.
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<2-penalised logistic regression (R package penal-

ized[55]), SVM with linear kernel (R package kern-
lab[56]), and the centroid classifier. Each classifier was
trained on the genes and the gene set statistics (set cen-
troids, see Additional File 1 for others), for a total of six
models.

For each model, we ranked the features by the absolute
value of their weights. We then selected the top 512
genes, which is a high enough number of genes produc-
ing a high AUC after which AUC does not increase much,
and is a much higher number of genes than many
published metastatic signatures. Other cutoffs (256, 1024,
2048) exhibited similar results (not shown). For each of
the top ranked sets, we then checked how many of the
top ranked genes belonged to that set, using the same
classifier (i.e., centroid genes to centroid sets, logistic
regression genes to logistic regression sets, SVM genes to
SVM sets). The number of genes belonging to each set
was quantified using a one-sided Fisher exact test.

As shown in Table 5, there is significant overlap
between the top sets and top genes found by the centroid
classifier. In comparison, both logistic regression and the
SVM show very little overlap. In other words, the top sets
ranked by the centroid classifier, using the set centroid
statistic, are over-represented in the top genes selected by
the centroid classifier, indicating the same underlying
biological processes associated with metastasis.

Conclusions
We have shown that classifiers based on sets, rather than
individual genes, have equivalent predictive power but
are more stable, and as a result may facilitate increased
understanding of the biological mechanism relating to
breast cancer prognosis. The likely explanation is that the
expression of any given gene is a function of both its con-
textual regulation -- regulation under varying conditions
both observed and unobserved (such as noisy transcrip-
tion) -- as well as inherent variability due to germ-line
variations and differences in host-tumour response
between individuals [57]. The former variability can be
used for prognostic purposes. However, the latter reduces
the prognostic accuracy since patient-level variability is
typically not considered when building prognostic mod-
els.

Furthermore, the C4 sets tended to produce better clas-
sifiers than the other MSigDB categories. This difference
may be due to the fact that C4 sets are based on datasets
with a large number of samples; however, other factors
cannot be ruled out. Our results suggest that there is
prognostic value in large-scale systematic efforts to com-
pile sets of coexpressed genes [10,58].

Importantly, our results are in agreement with current
understanding of the drivers of metastasis in breast can-
cer -- proliferation for ER+/HER2-, immune response for
ER-/HER2-, and tumour invasion and immune response
for HER2+ [51] -- suggesting our approach could be a
useful one. Apart from patient prognosis, there is also
potential for understanding the biological mechanisms
responsible for response and resistance to anti-cancer
therapies.

We have used simple set statistics to represent gene set
activity. These statistics are computationally tractable
and depend on predefined set memberships. Some set
statistics are not always sensible; for example, the average
expression of a gene set of may not be meaningful when
the genes are negatively correlated or uncorrelated; dif-
ferent statistics may be optimal for different gene sets.
Moreover, these statistics ignore the structure and
dynamics of the genetic networks, which could be impor-
tant in deciphering causal relationships between genes
and phenotypes. However, reliable information about the
detailed structure of human genetic networks is currently
limited.
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