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Abstract

Background: Principal component analysis (PCA) has gained popularity as a method for the analysis of high-
dimensional genomic data. However, it is often difficult to interpret the results because the principal components are
linear combinations of all variables, and the coefficients (loadings) are typically nonzero. These nonzero values also reflect
poor estimation of the true vector loadings; for example, for gene expression data, biologically we expect only a portion
of the genes to be expressed in any tissue, and an even smaller fraction to be involved in a particular process. Sparse PCA
methods have recently been introduced for reducing the number of nonzero coefficients, but these existing methods are
not satisfactory for high-dimensional data applications because they still give too many nonzero coefficients.

Results: Here we propose a new PCA method that uses two innovations to produce an extremely sparse loading
vector: (i) a random-effect model on the loadings that leads to an unbounded penalty at the origin and (ii)
shrinkage of the singular values obtained from the singular value decomposition of the data matrix. We develop a
stable computing algorithm by modifying nonlinear iterative partial least square (NIPALS) algorithm, and illustrate
the method with an analysis of the NCI cancer dataset that contains 21,225 genes.

Conclusions: The new method has better performance than several existing methods, particularly in the
estimation of the loading vectors.

Background
Principal component analysis (PCA) or its equivalent
singular-value decomposition (SVD) is widely used for
the analysis of high-dimensional data. For such gene
expression data with an enormous number of variables,
PCA is a useful technique for visualization, analyses and
interpretation [1-4].
Lower dimensional views of data made possible, via

the PCA, often give a global picture of gene regulation
that would reveal more clearly, for example, a group of
genes with similar or related molecular functions or cel-
lular states, or samples of similar or connected pheno-
types, etc. PCA results might be used for clustering, but
bear in mind that PCA is not simply a clustering
method, as it has distinct analytical properties and utili-
ties from the clustering methods. Simple interpretation
and subsequent usage of PCA results often depends on
the ability to identify subsets with nonzero loadings, but
this effort is hampered by the fact that the standard

PCA yields nonzero loadings on all variables. If the low-
dimensional projections are relatively simple, many load-
ings are not statistically significant, so the nonzero
values reflect the high variance of the standard method.
In this paper our focus on the PCA methodology is con-
strained to produce sparse loadings.
Suppose X is an n × p data matrix centered across the

columns, where n and p are the number of observations
and the number of variables, respectively. Also, let SX =
XTX/n be the sample covariance matrix of X. In PCA,
the interest is to find the linear combination zk = Xvk,
for k = 1, ..., p, which maximizes

z z n v S vk
T

k k
T

X k/ ,= (1)

with the constraints v vk
T

k = 1 and vk ⊥ vh for all h <
k. PCA can be computed through the SVD of X. Let the
SVD of X be

X UDV T= , (2)
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where D is n × p matrix with (i, i )th element di; the
columns of Z = UD = XV are the principal component
scores, and the columns of the p × p matrix V are the
corresponding loadings. The vector vk in (1) is the k-th
column of V.
Each principal component in (2) is a linear combina-

tion of p variables, where the loadings are typically non-
zero so that PCA results are often difficult to interpret.
To get sparse loadings, [5] proposed to use L1-penalty,
which corresponds to the least-absolute shrinkage and
selection operator (LASSO; [6]). [7] proposed to use the
so-called elastic-net (EN) penalty. However, LASSO and
EN may not be satisfactory either, because it can still
gives too many nonzero coefficients. [8] proposed the
smoothly-clipped absolute deviation (SCAD) penalty for
oracle variable selection. Recently, in regression setting,
[9] proposed a new random-effect model using a
gamma scale mixture, which gives various types of pen-
alty, including the normal-type (bell-shaped for ridge
penalty), cusped-type (LASSO and SCAD-type), and a
new (singular) unbounded penalty at the origin. [9]
showed that the new unbounded penalty can yield very
sparse estimates that are better than LASSO both in
prediction and sparsity.
In this paper we use the random-effect model

approach of [9] for sparse PCA (SPCA); the model gives
unbounded gains for zero loadings at the origin, so it
forces many estimated coefficients to zero. We improve
the estimation further by shrinking the singular values
from the SVD of the data; the resulting procedure is
called super-sparse PCA (SSPCA). We provide some
simulation studies that indicate that these SPCA meth-
ods perform better than existing ones, and illustrate
their use using a cancer gene-expression dataset with
21,225 genes. We also show how to modify the ordinary
NIPALS algorithm [10] to implement these methods
computationally.

Results
Numerical studies
We first perform small simulation studies in order to
assess the performance of the proposed sparse PCA
methods and compare them against other methods. We
generate data matrix X = (X1,…,Xp) where Xi Î Rn, as
follows:

X u e ii i= + =, , , ,1 2 3 4 (3)

X e i pi i= =, , , ,5 (4)

where u MVN Iv n ( , )0 2 , ei ~ MVN(0, �In), In is the
identity matrix of order n and u and ei are independent
for all i. This gives the true covariance matrix,

∑ =
⎛

⎝
⎜

⎞

⎠
⎟

Σ
Σ

11

22

0

0
,

where Σ11
2

4 4= + v J I , Σ22 = �Ip-4 and Jk is the k ×
k matrix of ones. Here we consider cases (n, p) = (80,
20) for n >p and (n, p) = (50, 200) for n <p. Based on
100 simulated data, we compare our new sparse PCA
method using the h-likelihood (HL; See Methodology
section) with the LASSO and EN penalties for both
SPCA and SSPCA methods. We also tried the SCAD
method but the results are very similar to LASSO, so
we do not report results for SCAD.
From the SVD of Σ we have the true first loading vec-

tor v1 = (1/2,1/2,1/2,1/2,0,...,0)T. Let v
∧
1
be the estimate

of v1. To evaluate the performance in estimation of the
first loading vector, following [11], we use the sine
values of the angle between true loading and estimated
loading as the measure of the closeness of two vectors,
i.e.

dist( , ) sin ( , )v v v v v vT
1 1 1 1 1 1

21
∧ ∧ ∧

= ∠ = − ( ) .

When v1 = v∧1
, dist (v1, v∧1

) = 0.
The summary of estimation performance is given in

Table 1. Generally SPCA methods have much better esti-
mation than the ordinary PCA method. Among SPCA
methods, the condition-number constrained SSPCA
method with HL is generally the best, although the
improvement over the unconstrained method is not

Table 1 Simulation results: estimation

SPCA

n p  v
2  e

2 PCA HL LASSO EN

80 20 2.0 0.1 0.054
(0.010)

0.023
(0.011)

0.022
(0.010)

0.025
(0.013)

0.5 0.1 0.109
(0.021)

0.045
(0.021)

0.051
(0.022)

0.055
(0.029)

50 200 2.0 0.1 0.223
(0.022)

0.029
(0.014)

0.035
(0.015)

0.056
(0.028)

0.5 0.1 0.424
(0.041)

0.062
(0.032)

0.080
(0.033)

0.122
(0.058)

PCA* HL SSPCA
LASSO

EN

80 20 2.0 0.1 0.055
(0.010)

0.020
(0.009)

0.021
(0.010)

0.022
(0.010)

0.5 0.1 0.113
(0.020)

0.042
(0.020)

0.050
(0.023)

0.050
(0.026)

50 200 2.0 0.1 0.218
(0.025)

0.026
(0.013)

0.032
(0.014)

0.055
(0.030)

0.5 0.1 0.993
(0.010)

0.063
(0.030)

0.083
(0.044)

0.866
(0.000)

The median of dist(v1, v∧1
) and the median absolute deviation in

parentheses.

PCA*: PCA using X*
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substantial. The improvement performance of HL over
LASSO and EN is small when n >p, but it is substantial
when n <p and the underlying signal is not very strong
( v

2 = 0.5).
To evaluate the performance in variable selection, in

Table 2 we report the percentage of selecting the true
model (correctly identifying all of the true zero ele-
ments), the median number of correctly estimated zer-
oes divided by the number of true zeroes (true
negatives) and incorrect zero estimates divided by the
number of true nonzeroes (false negative). Because it
does not produce zeroes, the ordinary PCA method
never gets the true model and always gets 0 true nega-
tives and 0 false negatives. The HL penalty outperforms
the LASSO penalty and generally better than the EN
penalty, particularly in identification of the true model.
LASSO identifies fewer true negatives compared to HL.
The SSPCA methods with the HL and LASSO penalties
outperform the corresponding SPCA methods, but here
again HL is better than LASSO and EN. The EN per-
forms worst when n <p and the underlying signal is not
very strong ( v

2 = 0.5).
Finally, as a measure of the prediction power, we com-

pute the test sample variance,

z z n v S v
T T

X
∧ ∧ ∧ ∧

=1 1 1 1, , / ,test test
test

where v∧1
is the estimated loading using data matrix

X z X v S X X nX
T, , /,

∧ ∧
= =1 1test test test testtest

and Xtest is the
independent test data sets generated from (3) with same
sample size n. The results are in Table 3. SPCA meth-
ods give better prediction power than the ordinary PCA.
Except for the SSPCA method when n <p and the

underlying signal is not very strong ( v
2 = 0.5), six

SPCA methods have similar prediction power.

Analysis of NCI data
In the analysis of microarray data it is often of interest
to co-regulated genes, since they will point to some
common involvement in molecular functions or biologi-
cal processes or cellular states. PCA is a useful tool for
such analyses [1-4]; since interpretation depends on
comparing the relative sizes of the loading vectors, the
sparse loadings in SPCA are much easier to interpret

Table 2 Simulation results: model selection

SPCA SSPCA

n p  v
2  e

2 PCA HL LASSO EN PCA* HL LASSO EN

80 20 2.0 0.1 0 72 12 64 0 95 14 99

0/16 16/16 14/16 16/16 0/16 16/16 15/16 16/16

0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4

0.5 0.1 0 77 1 56 0 100 43 99

0/16 16/16 12/16 16/16 0/16 16/16 15/16 16/16

0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4

50 200 2.0 0.1 0 73 0 88 0 100 27 87

0/196 196/196 184.5/196 196/196 0/196 196/196 194/196 196/196

0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4

0.5 0.1 0 79 0 70 0 97 84 0

0/196 196/196 185.5/196 196/196 0/196 196/196 196/196 196/196

0/4 0/4 0/4 0/4 0/4 0/4 0/4 3/4

Percentages of selecting the true model, the median number of correct 0 divided by the number of zeroes and incorrect 0 divided by the number of non-zeroes.

PCA*: PCA using X*

Table 3 Simulation results: prediction

SSPCA

n p  v
2  e

2 PCA HL LASSO EN

80 20 2.0 0.1 7.979
(0.831)

7.998
(0.837)

7.996
(0.842)

7.970
(1.116)

0.5 0.1 2.050
(0.213)

2.057
(0.222)

2.055
(0.225)

2.088
(0.283)

50 200 2.0 0.1 7.907
(1.633)

8.242
(1.599)

8.242
(1.601)

8.149
(1.386)

0.5 0.1 1.769
(0.362)

2.143
(0.418)

2.140
(0.414)

2.071
(0.349)

SSPCA

PCA* HL LASSO EN

80 20 2.0 0.1 7.954
(1.125)

7.999
(0.849)

7.997
(0.850)

7.978
(1.115)

0.5 0.1 2.062
(0.292)

2.057
(0.226)

2.057
(0.225)

2.088
(0.280)

50 200 2.0 0.1 7.564
(1.718)

8.243
(1.593)

8.243
(1.597)

7.928
(1.755)

0.5 0.1 0.242
(0.075)

2.137
(0.452)

2.149
(0.424)

0.503
(0.316)

The median of test variance with the median absolute deviation in
parentheses.

PCA*: PCA using X*
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than ordinary PCA. Furthermore, the previous section
also shows that SPCA has better estimation characteris-
tics than the ordinary PCA. For illustrations we consider
the so-called NCI-60 microarray data downloaded from
the CellMiner program package, National Cancer Insti-
tute http://discover.nci.nih.gov/cellminer/. Only n = 59
of the 60 human cancer cell lines were used in the ana-
lysis, as one of the cell lines had missing microarray
information. The cell lines consist of 9 different cancers
and were used by the Developmental Therapeutics Pro-
gram of the U.S. National Cancer Institute to screen >
100,000 compounds and natural products. The number
of genes is p = 21,225.
Figure 1 in the Additional file 1 gives the plots of the

estimates of first loading of 21,225 variables (genes)
from five PCA methods, and Table 4 shows the propor-
tion of zero coefficients (< 0.00005) of first loading vec-
tor. The ordinary PCA has almost all nonzero loadings
(99%); to interpret the results, one must apply a thresh-
old value on the coefficients, but it is not obvious how
to choose the threshold. SPCA with LASSO penalty
gives only 3% zero loadings, so it is not sparse; HL pen-
alty give more sparse loadings (37.5% zeroes), but the
proportion of nonzero loadings are still quite large.
SSPCA with LASSO penalty is slightly improves, with
5.4% zeroes, but it is still far from sparsity with more
than 20,000 nonzero loadings. Here SSPCA with HL
penalty gives the most sparse loadings, with only 6%

nonzero loadings, so we have managed to force almost
20,000 loadings to zero.
To select the number of principal components, we use a
permutation approach as follows. First, we randomly
permute the expression values within each sample (row)
of X to create permuted data Xperm. Then PCA is per-
formed on Xperm to get the singular values
d dperm

n
perm

1 ≥ ≥ . We perform P = 1000 permutations,
from which we can compute the p-values of the
observed dk’s. The number of principal components, k0,
is such that the p-value of dk’s is less than 0.001 when
k ≤ k0.
For NCI data, we get k0 = 8 (eight significant princi-

pal components). The numbers of nonzero elements in
the eight loading vectors (v1…v8) are given in Table 5.
We also report the adjusted variance and cumulative
adjusted variance as suggested by [7] to get the
explained variance properly when the principal compo-
nent scores are correlated. Note that the adjusted var-
iance is equal to the variance in the ordinary PCA
because the principal components of PCA are uncorre-
lated. Despite the sparsity, in comparison with the
ordinary PCA, both of SPCA and SSPCA method give
higher cumulative adjusted variance. In fact the SSPCA
method gives extremely sparse results, with only 1,260,
681 and 375 nonzero loadings for the first 3 principal
components, compared to 13,259, 4,086 and 15,362 for
the SPCA method. Up to the third principal compo-
nent the latter has only slightly larger cumulative
variance.
Figure 2 in the Additional file 1 shows the scatter-

plot matrix of the first 3 SSPCA scores. Except for
breast cancer, the different cancer types appear in
recognizable clusters in the plot. This means that the
sparse vector loadings capture some underlying bio-
logical differences between the cancers. To find

Table 4 Analyses of NCI data: number of zero loadings

PCA SPCA SSPCA

HL LASSO HL LASSO

214/21225 7966/21225 650/21225 19965/21225 1144/21225

(1.01) (37.53) (3.06) (94.06) (5.39)

The proportion (percentage) of zero elements of first loading in NCI data
analysis.

Table 5 Analysis of NCI data: number of zero loadings

Principal component scores Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8

PCA

Number of nonzero loadings 21011 20385 19226 21099 20948 20817 20945 20997

Adjusted Variance (%) 12.3 10.2 6.6 4.1 3.6 3.2 2.9 2.6

Cumulative adjusted Variance (%) 12.3 22.5 29.1 33.2 36.8 40.0 42.9 45.5

SPCA - HL

Number of nonzero loadings 13259 4086 15362 13547 13946 10445 9890 10958

Adjusted Variance (%) 20.6 13.4 11.5 6.4 6.1 4.9 4.0 4.1

Cumulative adjusted Variance (%) 20.6 34.0 45.5 51.9 58.0 62.9 66.9 71.0

SSPCA - HL

Number of nonzero loadings 1260 681 375 290 47 58 33 3434

Adjusted Variance (%) 22.3 8.7 6.1 6.5 1.3 0.4 0.0 1.6

Cumulative adjusted Variance (%) 22.3 31.0 37.1 43.6 44.9 45.3 45.3 46.9

Number of nonzero loadings and cumulative variance for different methods.
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biological explanation, Table 6 shows the Gene Ontol-
ogy (GO) [12] biological processes enrichment analyses
of the nonzero loadings from the first 3 principal com-
ponents from SSPCA. Only the top 20 most enriched
categories with P-values < 10-5 are shown. The results
indicate that the greatest variation in gene expression
are associated with structure development, cell prolif-
eration and cell death (apoptosis), and cell adhesion.
These processes are closely related to the hallmarks of
cancer progression such as angiogenesis (development
of blood vessels), abnormal cell growth and eventually
metastasis (cell migration made possible by abnormally
low cell adhesion).
Comparative GO analyses from the ordinary PCA are

given in the Additional file 1. We use the same number
of top-ranking nonzero loadings as for the SSPCA,
which are 1,260, 681 and 375 for the first 3 principal
components, respectively. Out of these, the number of
overlapping probes between the SSPCA and PCA are
462, 194 and 60. These overlaps are substantially more
(up to 8 times more) than expected under random re-
arrangement. However, there is sufficiently large number
of distinct probes in the two methods, so the GO ana-
lyses could be different. The P-values from the SSPCA-
based GO analyses are more significant than those from
the ordinary PCA; this may be due to better estimation
of the loadings, so that the SSPCA has better power
than the ordinary PCA in revealing biologically-impor-
tant grouping of genes.

Discussions and Conclusions
PCA is one of the most important tools in multivariate
statistics, where it has been used, for example, in data
reduction or visualization of high-dimensional data. The
emergence of ultra-high dimensional data such as in
genomics, involving 10,000s of variables but with only a
few samples has brought new opportunities for PCA
applications. However, there are new challenges also,
particularly on the interpretation of results. If we treat
PCA quantities such as the loading vectors as parameter
estimates, the large-p-small-n applications typically pro-
duce very noisy estimates. This is obvious since the
loading vectors are a statistic derived from the sample
covariance matrix, and the latter is not well estimated.
It is well known that improved estimation can come

by imposing constraints, and in this case sparsity con-
straint is natural. As PCA scores capture some underly-
ing biological processes, we do not expect every gene in
the genome to be involved. Out of possibly 30,000 genes
we can expect only a small fraction, probably less than
1,000, to be involved in a cellular process. Hence spar-
sity constraint can help in reducing the number of load-
ing parameters to estimate.
Imposing statistical constraints can be achieved by

applying a penalty approach as used by the ridge regres-
sion or the LASSO methods [6]. In this paper we have
investigated a random-effect model approach using a
gamma scale mixture, which leads to a class of penalties
that includes the ridge and LASSO penalties as special

Table 6 Gene Ontology analysis

Number GO ID GO Term P-value(1) P-value(2) P-value(3)

1 GO:0048856 anatomical structure development 1.6e-10 1.5e-09 4.5e-07

2 GO:0009653 anatomical structure morphogenesis 2.9e-10 4.8e-06

3 GO:0008283 cell proliferation 1.3e-09

4 GO:0050793 regulation of developmental process 1.7e-09 9.4e-06

5 GO:0032502 developmental process 3.8e-09 8.1e-08 4.9e-06

6 GO:0042127 regulation of cell proliferation 5.8e-08 3.9e-06

7 GO:0048513 organ development 6.6e-08

8 GO:0048869 cellular developmental process 1e-07

9 GO:0048731 system development 1.1e-07 3.6e-07 5.3e-06

10 GO:0007155 cell adhesion 1.3e-07 7.6e-07

11 GO:0022610 biological adhesion 1.3e-07 7.6e-07

12 GO:0051093 negative regulation of developmental process 1.9e-06

13 GO:0048519 negative regulation of biological process 2.8e-06

14 GO:0048523 negative regulation of cellular process 3.4e-06

15 GO:0009605 response to external stimulus 2.8e-07

16 GO:0043065 positive regulation of apoptosis 7.4e-06

17 GO:0043068 positive regulation of programmed cell death 8.6e-06

18 GO:0042981 regulation of apoptosis 9.6e-06

19 GO:0032501 multicellular organismal process 1.3e-06

20 GO:0007275 multicellular organismal development 4.3e-06

The top 20 most enriched biological process GO terms and the associated P-values for the first three principal components from SSPCA.
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cases. One significant property is that it can produce
unbounded penalties on the origin, which leads to
stronger constraints and more sparse estimates. From
our results it seems clear that the penalty approach
alone is not able to yield sufficiently sparse PCA for
high-dimensional genomic data. Additionally we also
need the shrinkage on the singular values of the data
matrix. In simulation studies we show that the proposed
methods outperform existing methods both in estima-
tion and model selection. Hence we believe that the new
SPCA methods are promising tools for high-dimensional
data analyses.
For future works, it will be of interest to apply super-

sparse technique in this paper to locally-linear methods
of dimensionality reduction (e.g. [13]]), partial-least
squares (PLS) regression and classification methods (e.g.
[14]), or other high-throughput data analysis method
where dimensionality reduction is used (e.g. [15]).

Methodology
NIPALS algorithm for PCA
Standard algorithms for SVD (e.g. [16]) give the PCA
loadings, but if p is large and we only want to obtain a
few singular vectors, the computation to obtain the
whole set of singular vectors may be impractical.
Furthermore, with these algorithms it is not obvious
how to impose sparsity on the loadings. [10] described a
NIPALS algorithm that works like a power method
([17], p.523) for obtaining the largest eigenvalue of a
matrix and its associated eigenvector. The NIPALS algo-
rithm computes only a singular vector at a time, so it is
efficient if we only want to extract a few singular vec-
tors. Also the steps are recognizable in regression terms,
so the algorithm is immediately amenable to random-
effect modification as needed to obtain the various
SPCA methods proposed in this paper.
First we review the ordinary NIPALS algorithm: Set

the initial value of z1 as the first column of X, then

1. Find v v X z z zT T
1 1 1 1 1: / ( )←

2. Normalize v v v v vT1 1 1 1 1: /←
3. Find z1: z1 ¬ XTv1
4. Repeat steps 1 to 3 until convergence.
To obtain the second-largest singular value, first
compute residual X X z vT2 1 1= − , then apply the
NIPALS algorithm above by replacing X by X2.

Sparse PCA via random-effect models
To impose sparseness on the PCA loadings we first
introduce the regression framework into step 1 of the
NIPALS algorithm. Denoting Xj as the jth column of X,
following [18] we have

X z vj j j= +1 1 ε ,

where v1j is the jth element of the p × 1 vector v1 (the
first loading vector), and ∊j is an error term. If z1 is
assumed to be known, the ordinary least square (OLS)
estimate for v1 is given by

v z z X z
OLS

T T∧ −=1 1 1
1

1( ) .

Consider the penalized least-squares (PLS) estimation
that minimizes

Q v X X z v X z v p vT T T
j

j

p

 ( , ) (| |),1 1 1 1 1 1

1

1
2

= − −
=

∑trace[( ) ( )]+ (5)

where pl(·) is a penalty function. For example, pl(|v1j|)
= l|v1j| gives LASSO, p v vj j (| |)1 1

2= gives ridge, and
p v v vj j j  (| |) | |1 1 1 2 1

2= + gives EN, where l, l1 and
l2 are tuning parameters. For the prediction the ridge-
type penalty is effective and for sparse estimation the
LASSO-type penalty is recommended, so that EN [19]
has been recommended as a compromise between the
ridge and LASSO methods. [7] proposed to use EN for
sparse (SPCA), but it gives less sparse estimates than
LASSO.
[9] recently proposed the use of random-effect models

to generate new penalty functions for sparse regression
estimation. Suppose that v1j is a random variable such
that

v u N uj j j1 0| ( , ),  (6)

where θ is the dispersion parameter and uj follows the
gamma distribution with a parameter w and density

f u w
w

u ew j
w

j
w u wj( ) ( / )

( / )
,/ / /= − −1

1
1

1 1 1

Γ

such that E(uj) = 1 and Var(uj) = w. This model leads
to a rather complex marginal distribution for v1j, charac-
terized by parameter w and with density

f v f v u f u du

w w

w
u e

w j j j w j j

j
w v

,

/ /

( ) ( | ) ( )

/

( / )

 



1 1

1 3 2
1

1 2
1

=

=
−

∫
− −

Γ
jj j ju u w

jdu
2 2/( ) / . −∫

This model involves a computationally difficult inte-
gral, and its direct optimization is problematic due to
the nonconvexity of -log fw, θ(v1j). To overcome these
problems, first note that the random-effect model (6)
can be written as
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v ej j j1 =  , (7)

where τj = ujθ and ej ~ N(0,1). This is the double hier-
archical generalized linear model [20]. With the log link,
we have an additive model

log log log . j ju= +

This leads to the h-likelihood (HL) of [21]

h h h= +1 2, (8)

where

h f X v

h f v u f u

j

j

p

j j w j

j

p

1 1

1

2 1

1

=

= +

=

=

∑

∑

log ( | )

{log ( | ) log (log )}

lo





gg ( | ) log( ) ( ) ( )

log ( |

f X v
n

X z v X z v

f v u

j j j
T

j j

j






1 1 1 1 1

1

2
2

1
2

= − − −

jj j j j

w j

u v u

f u w w

) {log( ) log / ( )}

log (log ) (log ) / l

= − + +

= − −

1
2

2 1
2 

oog ( / ) (log ) / / ,Γ 1 w u w u wj j+ −

and fθ(v1j|uj) and fw(log uj) are the density functions of
u1j|uj and log uj, respectively. Given (w, �, θ), for the
estimation of v1, [9] proposed to use the profile h-likeli-
hood

h h hp
u u u u

= +
= =

∧ ∧1 2| | ,

where u
∧ solves dh/du = 0.

[9] showed that

u u v w wj j j j
∧ ∧

≡ = − +( ) {( / ) } /1 2 1 4 (9)

with  j jv w w= + −{ / ( ) ( / ) } /8 2 11
2 2 1 2 , and the esti-

mate of v1 can be found using the iterative weighted
least squares (IWLS) by solving

( ) ˘ ,z z I W v X zT
p

T
1 1 1 1+ = (10)

using W u j = ∧diag( / ) and l = �/θ. In random-
effect model approach, the penalty function pl(|v1j|)
stems from a probabilistic model

p v f v u f uj j j w j u uj j
 (| |) {log ( | ) log (log )} |1 1= − +

=∧ .

As noted previously the proposed penalty pl(|v1 j|)
is nonconvex. However, by expressing the model for
pl(|v1j|) hierarchically as (i) v1j|uj is normal and (ii) uj
is gamma, both models can be fitted by convex GLM
optimizations. Thus, the proposed IWLS algorithm

overcomes the difficulties of a nonconvex optimization
by solving two-interlinked convex optimizations [22].
Figure 1 shows HL penalties pl(|v1j|) at w = 0, 2, and

30, and SCAD penalty at l = 1. The form of the penalty
changes from a quadratic shape (w = 0) for ridge regres-
sions to a cusped form (w = 2) for LASSO and then to
an unbounded form (w > 2) at the origin. In the case of
w >2, it allows an infinite gain at zero. Bell-shaped
penalties have been proposed for better prediction (e.g.,
[23]), and cusped ones for simultaneous variable selec-
tion and estimation as in LASSO [6] or SCAD [24].
Until now, however, only finite penalties have been
investigated. [9] proposed to use the unbounded penalty
with w = 30, which we shall call the HL method. They
illustrated the advantage of using this unbounded pen-
alty to enhance sparse coefficient estimation. Singulari-
ties in LASSO and SCAD occur as the penalty functions
have no derivatives at the origin. However, both penal-
ties have |pl(0)| < ∞ and | ( ) |′ < ∞+p 0 , while the new
unbounded penalty has |pl(0)| < ∞ and | ( ) |′ = ∞+p 0 .
In general, the minimizer of the penalized least-

squares (5) can be found using the IWLS (10) with
u v p vj j j
∧ = ′ | | / (| |)1 1 . The derivative ′p v j(| |)1 for
LASSO, SCAD and HL penalties are summarized in
Table 7. When v1j = 0, then u j

∧ = 0 and the jth element
of Wl is not defined. [9] employed a perturbed random-
effect estimate u v p vj j j

∧ = + ′  , (| | ) / (| |)1 1 for a
small positive δ = 10-8. Then, W u j  , ,≡ ∧diag( / ) is
always defined. As long as δ is small, the diagonal ele-
ments of Wl,δ are close to those of Wl and the resulting
estimates are nearly identical to those of the original
IWLS (10). In this paper, we report v∧1

= 0 when v∧1
<

0.00005.

Other methods for sparse principal component analysis
[7] also exploit the regression property of PCA in order
to obtain sparse loadings. They proposed an alternating
minimization algorithm to minimize the criterion

1
2 1 1 1 1

2
2

1

1

1

trace sub[( ) ( )] | | | |X Xv X Xv v vT T T
j

j

p

j

j

p

− − + +
= =

∑ ∑    jject to  T = 1 (11)

for deriving the first sparse loading vector v1. Given θ,
this optimization problem becomes a naive elastic net
problem for v1. Given v1 , θ can updated from SVD of
XTX v1. These two steps are repeated until v1 converges.
Following [25], (11) is different from our objective func-
tion (5) even when we use the same penalty function. In
fact, (5) is very close to the objective function of [26],
but we put the normalization constraint of the loading
inside iterated procedure so that it could make a differ-
ent result. In this paper, we used the function spca()
in the R-package elasticnet for the EN method in
the simulation studies.
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Condition-number constraint for SPCA
As shown in the previous examples, the SPCA
approaches above may not produce sufficient sparsity.
For the moment suppose n ≥ p; the case where n <p
can be dealt with by transposing the data; see the note
below. From (2) we have the eigenvalue decomposition
of the sample covariance matrix as

S V VX
T= Λ ,

where Λ = diag(l1, ..., lp and l d ni i= 2 / for i = 1, ..., p
is the eigenvalues of SX in non-increasing order (l1 ≥ …
≥ lp ≥ 0). Let the p × 1 random vectors x1,...,xn be rows
of X that have zero mean vector and true covariance
matrix Σ with the non-increasing eigenvalues, l1 ≥ ... ≥
lp. When our goal is to estimate Σ, the sample covar-
iance matrix SX can be used. Many applications require
a covariance estimate that is not only invertible but also
well-conditioned. An immediate problem arises when n
<p, where the estimate SX is singular. Even when n >p,
the eigen-structure tends to be systematically distorted
unless p/n is small [27], resulting in ill-conditioned esti-
mator for Σ.
[28] showed that the eigenvalues of SX are more dis-

persed than those of the true covariance matrix, i.e. l1
tends to be larger than l1 and lp tends to be smaller
than lp. To overcome this difficulty, [29] proposed a
constraint on the condition number to achieve a better
covariance estimation. The optimization problem with
the condition-number constraint can be formulated as

Figure 1 HL penalty functions associated with the ridge (w = 0), LASSO (w = 2), SCAD and when w = 30.

Table 7 The derivatives of the penalty functions

Types ′p v j(| |)1

LASSO l

SCAD

I v I vj j
a v j

a(| | ) (| | )
( | |)

( )1 1
1
1< + >⎧

⎨
⎩

⎫
⎬
⎭

− +
− 




HL

 

 

| | /{ {( / ) } / }

{ / ( ) ( / ) } /

v w w

v w w

j j

j

1

1
2 2 1 2

2 1 4

8 2 1

− +

= + −where j
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minmize trace  

subject to

( ) log det

,max

Σ Σ

Σ

− −

−

−1 1

1

S

tI tI

X

  
(12)

where A ≼ B denotes that B - A is positive semidefi-
nite and t >0. Given �max, for t [29] proposed to use

t
p

lii i
p li

*
max

,= + − +

=∑ + =∑

 
 

1

1

where a Î {1,...p} is the largest index such that 1/la
<t* and b Î {1,...,p} is the smallest index such that 1/lb
>�maxt*. Their covariance estimators are

Σ
∧ ∧ ∧

=c p
TV Vdiag( , , ) 1  , (13)

where the eigenvalues  
∧

=i it l tmin(max( / ( *), ), / *)max1 1 .
To estimate the shrinkage parameter �max, they pro-
posed to use the K-fold cross validation.
From (2) and (13), we can reconstruct X* with same

singular vectors but shrunken singular values, i.e.

X UD V T* * ,= (14)

where D* is n × p matrix with (i, i)th diagonal element

d ni i
* /( )=

∧
 1 2 . Thus, for condition-number constrained

PCA we use X* instead of the original data matrix X. As
the procedure yields extremely sparse loading vectors,
we call it SSPCA, for super-sparse PCA.
[29] considered the estimation of covariance matrix

when p is not very large. However, for large p such as
over 10,000 in gene expression data, it becomes compu-
tationally too intensive. Because the aim is to obtain a
few singular vectors, not whole p singular vectors, when
p >n in this paper we propose to apply the above algo-
rithm to XT and the results are transformed back
appropriately.

Modified NIPALS algorithm for SPCA and SSPCA
For SPCA we replace step 1 in the NIPALS algorithm
by

v z z I u X zT
p

T
1 1 1

1
1← +

∧ −( ( / )) ,diag 

where u
∧ is defined in (9). For SSPCA we also apply

this modified step, but replace X by X* defined in (14).

Tuning parameter selection
To complete the proposed algorithm we need to esti-
mate the tuning parameters θ and l = �/θ in (9) and
(10), respectively. First we note that from (7), margin-
ally, v1 has mean zero and variance θ, so we use


∧ ∧ ∧ ∧ ∧= − − −( ) ( ) / ( ), , , ,v v v v pO O

T
O O1 1 1 1 1 , where v O

∧
1, is the

estimated first loading vector from ordinary PCA and

v O
∧
1, is the sample mean of v O

∧
1, . We use K-fold cross-

validation for l. Following [30], we select l which maxi-
mizes the test sample variance

1 1

1
1

/ ,[ ]
[ ] [ ]

K v Sk
T

X k v k
k

K
∧

∧−
−

=
∑

where v k
∧

−1[ ] is the estimated loadings from the kth
training sets (the whole data without the kth validation
set) and SX[k] is the sample variance based on the kth
validation set. For the numerical studies in Section we
use K = 5.

Additional material

Additional file 1: The supplementary report documents details on
plot of the SSPCA scores, and Gene Ontology analysis of ordinary
PCA.
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