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Abstract
Background: We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of 
combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as 
well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified 
reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even 
infinitely sized reaction network can be defined.

For our implementation (based on LAMMPS), we have chosen an already existing formalism (BioNetGen) for the 
implicit specification of the reaction network. This compatibility allows to import existing models easily, i.e., only 
additional geometry data files have to be provided.

Results: Our simulations show that the obtained dynamics can be fundamentally different from those simulations that 
use classical reaction-diffusion approaches like Partial Differential Equations or Gillespie-type spatial stochastic 
simulation. We show, for example, that the combination of combinatorial complexity and geometric effects leads to 
the emergence of complex self-assemblies and transportation phenomena happening faster than diffusion (using a 
model of molecular walkers on microtubules). When the mentioned classical simulation approaches are applied, these 
aspects of modeled systems cannot be observed without very special treatment. Further more, we show that the 
geometric information can even change the organizational structure of the reaction system. That is, a set of chemical 
species that can in principle form a stationary state in a Differential Equation formalism, is potentially unstable when 
geometry is considered, and vice versa.

Conclusions: We conclude that our approach provides a new general framework filling a gap in between approaches 
with no or rigid spatial representation like Partial Differential Equations and specialized coarse-grained spatial 
simulation systems like those for DNA or virus capsid self-assembly.

Background
Modeling and simulation of biochemical networks as well
as the integration of experimental data provide powerful
tools to gain insight into the complexity of living systems
[1]. Possibly even more important and seen as the next
step is the transition to a predictive biology [2-4], which
has been accomplished in physics long ago [5]. But many
biochemical networks are hard to treat and describe
explicitly. They are too complicated to be overseen just by
listing all the reactions. This happens especially fast when
effects of combinatorial complexity are involved, for
example, in cases of post-translational modification of

multiple sites on a protein or large multi-subunit com-
plexes [6-9]. A new species would then have to be used
for every state or combination of the molecules. Unfortu-
nately, this complexity seems to be an integral part in liv-
ing systems. Most important cellular functions like ATP
synthesis or transcription involve the cooperation of mul-
tiple proteins forming complexes [10,11]. Examples are
the death-inducing signaling complex (DISC) [6,12], the
epidermal growth factor receptor (EGFR) [13] with 9
phosphorylation sites or the tumor suppressor protein
p53 with 27 phosphorylation sites. The latter one could
theoretically assume up to 227 = 134, 217, 728 different
phosphorylation states [14]. Microtubules [15], viral
shells [16,17] or hybridizing DNA strands [18] constitute
additional examples for structures formed by complex
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interactions. To cope with this combinatorial complexity,
reactions systems have to be defined implicitly [6,19], i.e.,
by using implicit reaction rules operating on molecules
possessing a structure.

Rule-Based Modeling
Rule-based modeling approaches share the idea of subdi-
viding molecules into their components, denoting protein
domains, active sites or any other feature of the particle
[6,9]. These sites can then be modified post-translation-
ally or bind to subdomains of other molecules. This con-
cept is referred to as the domain-oriented approach
[20,21]. Among others, available software packages for
rule-based modeling are Moleculizer [22], Stochsim [23],
BioNetGen [24], Pathway Logic Assistant [25], BIO-
CHAM [26] or Cellucidate.

In this paper, we assume that a complex molecule is
described by a molecule graph, which consists of elemen-
tary molecules that are connected with each other. Each
elementary molecule can further possess a set of subdo-
mains called components (see Figure 1, a). Subdomains
serve either as connectors between elementary molecules
or can be modified, e.g., phosphorylated.

The set of all possible reactions is implicitly defined as
the rule-based reaction system (R, P, S) with the set of
rules R. R is based on the assumption, that there are
groups of chemical species s ∈ S, sharing a common
property (or pattern) p ∈ P. Hence they can be subject to
a related set of reactions, summarized by a reaction rule r
∈ R. In our case, the common property might be the con-
tainment of a similar subgraph structure, for example.
Each pattern p defines an equivalence class of species
from S by the function EqS(p) ⊆ S.

For a start, we return to a non rule-based reaction sys-
tem (R', S). For a simpler description, we will only con-
sider bimolecular reactions. Each reaction r' ∈ R' would
then consist of a quadruple of molecular species s  S.

An instance of this reaction r' happening in the simula-
tion of the reactor would then consume one molecule of
the species s1 and one molecule of the species s2. On the
other hand, it would produce one molecule of the species
s3 and one molecule of the species s4. The species partici-
pating in the reactions and the process of exchanging the
molecules are defined unambiguously. To define reaction
rules instead of the reactions themselves, we only have to
exchange the set of species S with the set of patterns P,
giving:

An instance of the reaction rule r happening in the sim-
ulation of the reactor would consume one molecule of a
species from the equivalence group EqS(p1) and one mol-
ecule of EqS(p2). In exchange, it would produce one mole-
cule of a species from EqS(p3) and one molecule of
EqS(p4). Now the product site of the reaction rule is not
specified unambiguously. The exact species to be pro-
duced has to be derived from the actually consumed spe-
cies and from the type of reaction rule.

Non rule-based reaction systems typically allow only
the one type of reaction that consumes one set of mole-
cules and/or creates another. These are called exchanging
rules in our approach. In contrast, there are more delicate
types of rules conceivable for rule-based systems. One
typically starts with the assumption that molecules do
not usually vanish or emerge. Instead, their components
are connected, disconnected or modified. Hence the

′ ∈ ′ ⊆ × × × ′ =
+ → +

r R S S S S r s s s s

s s s s
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Figure 1 Exemplary rule-based system: Two elementary molecule 
types (blue, green) with their subdomains (or components) are dis-
played (a). Each component can be bound to another component or 
can be modified, e.g. denoting a phosphorylation or a conformational 
change. Site names need not be unique and hence a wide spectrum 
of possibilities for the system's specification is offered. Multiple ele-
mentary molecules can be connected at their components to form 
complex molecule graphs (b). Reaction rules, for example the binding 
reaction (c), are specified by using patterns graphs (or reactant pat-
terns). A reactant pattern fits to a molecule graph, if it is contained as a 
subgraph in the molecule graph. Note that some components are 
missing in the reactant pattern's definition, which are then ignored in 
the matching process. Two different instances of the reaction rule are 
symbolized (d). In the upper realization, two independent molecule 
graphs are connected. For the lower example on the other hand, both 
of the rules' reactant patterns are found in a single connected mole-
cule graph.
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most important rules for our approach form or break
bonds between molecules' components or modify them
(see Figure 1). These rule types are called modifying-,
binding- and breaking rules.

Different rule types that are not yet supported in our
simulator might for example exchange subsets of mole-
cule-graphs specifically or change some molecule's con-
formations.

Spatial Modeling
Spatio-temporal heterogeneous distributions of biomole-
cules have an important impact on the function of bio-
chemical systems [7,27-32].

For that reason, a variety of spatial simulation tech-
niques for reaction networks was developed ranging from
macroscopic systems like (Stochastic) Partial Differential
Equation [33] to Brownian Dynamics [34] and Molecular
Dynamics [35] approaches at the micro scale. A rich set
of software packages is available for the spatial simulation
of explicitly defined reaction networks. Examples are
MCell [36], Cell++ [37], Virtual Cell [38,39], SmartCell
[40], mesoRD [41], Smoldyn [42], Project Cybercell [43]
or ChemCell [44]. While our notion of "space" in this
paper focuses on the particle and macromolecule geome-
try, also the geometric aspects of the reactor might be of
interest [44,45].

But the combination of spatial and rule-based repre-
sentations has only been addressed by few approaches.
An interesting development is StochSim [23] that can
operate on a two-dimensional lattice and offers multistate
molecules but no multimerizations. Another system, the
event-based simulator for spatial assembly problems
[46,47] focuses on self-assembly mechanisms. Instead of
rules and reactant patterns as described before, it uses
"local rules" [48] to assign each type of binding site a set
of other site types it can bind to. Nonetheless, there is
more potential in the combination of spatially heteroge-
neous concentrations, spatially structured molecules and
rule-based modeling than covered by these methods. The
spatial features of the molecules, in particular the volume
exclusion, their geometrically constrained interactions
and hence also their ability to form three dimensional
structures, might severely influence various further
effects in a combinatorially complex reaction network.
Examples are molecular crowding [49], orientation
dependent reaction probabilities and steric effects
[50,51], various polymerizations and self-assembly pro-
cesses [15-17] including hierarchical assembly pathways
[47] or the function of molecular machines [10,11].

In the next section we will present our approach for
rule-based modeling in space and describe our actual
implementation called SRSim. Afterwards, results of our
in silico studies will be presented, revealing the qualitative
assets of the combination of rule-based and spatial mod-

eling. Finally, we discuss the implications for the analysis
of complex bio-chemical systems and open issues for
rule-based modeling in space.

Methods
Rule-Based Modeling in Space
Independent of our own implementation that is
described in the next section, we suggest the following
general features for a spatial, rule-based reaction system:
Similar to the domain-oriented [20,21] and rule-based
modeling approaches, a molecule consists of elementary
molecules (EM), that are compiled to a complex molecule
graph. Each EM belongs to an elementary species, which
we extend by further information, such as size, mass, dif-
fusion coefficients, geometry and orientation of binding
sites - dependent on the particular chosen spatial simula-
tion model. Note that we use space in a broader sense
than other approaches that utilize Partial Differential
Equations [38,39] or spatial variants of the Gillespie algo-
rithm [40,41,52] for the simulation of a heterogeneous
distribution throughout the reactor. In what we consider
a spatial, rule-based model, a complex molecule should
also have a form and volume due to the geometry of its
EM. This does not only imply possible geometries for the
complex molecule graphs, but also constrains the possi-
ble reactions. That is, only those molecules can undergo a
reaction that (i) are geometrically compatible and that (ii)
fit in the pattern of a reaction rule. In spite of that, the
definition of the reaction rules is the same as in "conven-
tional" rule-based modeling approaches. What has to be
provided additionally is the geometry of the EM and
parameters for the spatial simulation, such as diffusion
rates and reactor properties. If the number of complex
species is bounded, the set of all possible complex mole-
cule graphs (or complex species) and reactions can be
generated in advance. Alternatively, new complex species
can be generated just in time, when a reaction occurs that
generates this species. The dynamical simulation takes
place in Euclidean space, where each complex molecule
graph has a location and orientation that is given implic-
itly (by the locations of its constituting EM) or explicitly
(by an own position and orientation vector).

The Simulation Tool SRSim
We developed an integrated spatial and rule-based simu-
lation software called SRSim. It combines the modeling-
strengths of a rule-based software like BioNetGen [24] or
Stochsim [23] with a stochastic, diffusing-particle-based
simulator like Smoldyn [42] and force-mediated interac-
tions, which are possible in Molecular Dynamics software
packages like LAMMPS [53]. The supplied prototypic
software is meant as an exemplary and extensible imple-
mentation of this modeling approach and certainly has to
be adapted for particular problems.
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The description of the rule system is extracted from
files in the BioNetGen Language (BNGL) [6] to allow an
easy im- and export of models from BioNetGen. The
description of the reactor properties and the molecular
geometries are specified independently. Nonetheless,
since the reaction system operates on pattern subgraphs,
there is no need to generate all possible complex species
or reactions in advance, which saves computational res-
sources. The spatial model aimed at by SRSim is settled in
the meso-level, between microscopic all-atom Molecular
Dynamics simulations and the macroscopic use of Partial
Differential Equations. Similar to a viral shell model used
in [16], each complex molecule graph is composed of
spheric elementary molecules (EM). The species of the
EM then reveals information about the mass, radius, dif-
fusion rate, geometric properties and the set of compo-
nents that are attached to this EM.

EM move through continuous 3D space, while time is
discretized in small steps typical for Molecular Dynamics
simulators. An EM's movement is influenced by Brown-
ian Motion using Langevin Dynamics [54] as well as by
forces arising from interactions with other EM through
bonds and volume-exclusion effects. The positions of
complex molecule graphs are not considered explicitly in
the spatial simulation but move implicitly with the move-
ment of their constituting elementary molecules' parti-
cles.
Software Layout
SRSim is realized as extension to the open source Molec-
ular Dynamics simulator LAMMPS [53]. The new set of
C++ classes uses a self-contained part for the treatment
of the implicit reaction system, called the Rule System.
The other part is a simulator dependent set of connecting
LAMMPS Modules. Therefore a possible later adaption of
SRSim based on different spatial simulators is already
prepared. The sources for the Rule System and the LAM-
MPS Modules are released under the GPL and are
included in the additional file 1 - SRSimSrc.zip. The most
recent versions of the simulator will be available on our
website http://www.biosystemsanalysis.de.
Geometry Model
From the broad range of possibilities to implement a spa-
tial simulation (see [30,31] for reviews), we chose an indi-
vidual representation of each elementary molecule in
continuous space and discretized time steps, typical for
Molecular Dynamics simulations. The location, form and
orientation of complex molecule graphs are not described
but are given by the positions of their elementary mole-
cules. Similarly it would not be necessary to describe the
position and form of a house if the position of every brick
was known. The simulation is running in a cuboid box of
selectable dimensions and boundary conditions. Even so,
more elaborated reactor geometries can be defined
through the scripting language of the molecular dynam-

ics simulator. Every elementary molecule (EM) mi of the
elementary species Mi is represented by a single sphere
with a given mass gi, radius ri and position xi. Each com-
ponent cij of an EM mi can be imagined as a vector start-
ing from the center of the sphere xi. It is given in polar
coordinates, by a distance dij and two angles θij, φij (see
Figure 2, left). Bonds between two EM are the straight
connection of two component vectors cij and ckl with the
length dij + dkl. By forming bonds between the compo-
nents of the EM, complex molecule graphs can be assem-
bled. We plan to introduce the option to use further
geometric features like dihedral angles or rotational ori-
entations for the EM as well, at the price of more complex
computations and more possibly unknown parameters.
Implications of the current detail level are described in
the Discussion Section.

The basic cycle of Molecular Dynamics simulations
propagates the time by the small time step Δt in the fol-
lowing way: Starting from a time t with known positions
x(t), forces f(t) and velocities v(t) of all particles, the posi-
tions x(t + Δt) at the time t + Δt are calculated as a func-
tion of f(t) and v(t). Then the forces f(t + Δt) and velocities
v(t + Δt) for the next time step are computed.

Several force calculations are employed to sustain the
bond radii and bond angles as undamped harmonic
springs. So for each connected component, there's a har-
monic force term with the potential

E K d d dd d ij kl= − −( )2

Figure 2 Exemplary SRSim geometry: On the left, a molecule mi 

with two components cij and cik, given in polar coordinates, is depicted. 
The angle θ can be imagined as descending from an imaginary polar 

component , while φ rotates the component in the equatorial 

plane from the imaginary zero-meridian φ0. The lengths from the cen-
ter are given with dij and dik. The angle α that is not specified but calcu-
lated from the polar coordinates is the effective angle between the 
components j and k. Three molecules and two bonds are shown on the 
right side. Because the middle molecule is connected with two other 
molecules (thick red arrows), the angle α would be realized under ideal 
conditions.
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added to LAMMPS' force calculation. Where Kd is the
spring constant and d is the current distance between the
connected elementary molecules. Imagine the following
molecule graph built from three elementary molecules mi
- mj- mk. When two or more connections to the mole-
cules mi, mk set out from one central elementary mole-
cule mj, a harmonic angular force term with the potential

is added to LAMMPS' force calculations for each com-
bination of two connected elementary molecules mi and
mk. Here, Kα is the spring constant, α is the current angle
between the EM mi, mj and mk. αijk is the ideal angle cal-
culated from the geometry definition. So the central EM

mj with n attached EM implies a set of  angular
force terms. Kα and Kd can only be set generally for all
bond types together at the moment but will be set per ele-
mentary species in the next SRSim version. The ideal
bond angles αijk are calculated by SRSim from the speci-
fied components' polar coordinates (see Figure 2, right) in
the initialization phase of the simulation.

The minimal distances between two EM are main-
tained by a soft-sphere potential:

with the distance r between two molecules mi and mj,
the cutoff distance rc and the maximal potential A. (See
the LAMMPS documentation for more information).
The result of this potential is a repulsion between mole-
cules, once they move closer together than the sum of
their radii. To simulate the Brownian movement of a par-
ticles mi, Langevin Dynamics [54,55] is employed by add-
ing a term for random FR and a term for viscous FD forces

to the systematic forces  of the model.

where  is the friction coefficient, vi is the par-
ticle velocity, kB is the Boltzmann constant, T is the tem-
perature, ξi(t) is a gaussian random function and D is the
diffusion coefficient. While the magnitude of the random
and viscous forces are correlated by the fluctuation-dissi-
pation theorem, the strength of the repulsive, bond and
angular forces can be varied independently. The diffusion
rate can be adjusted for each EM individually, whereas

the diffusion of complex molecule graphs will emerge
from the diffusional behavior of its compounds and the
bond forces. As the EM cannot pass through each other,
larger complexes' volume-exclusion behavior is also
accounted for, given that no large free spaces are left
between connected EM.
Reaction Model and Kinetics
After each update of the particle positions x(t) in the spa-
tial simulator, the Rule System evaluates the reactor for
possible reactions that can happen in the interval [t, t +
Δt). Please note that the movement of the particles within
this time is not considered for the calculation of reaction
probabilities (See the Discussion Section for implica-
tions). Our simulator currently supports mono- and
bimolecular modifying, binding and breaking reactions
(see Section Background for a description of the different
rule types). Here, even reactions happening inside of one
complex molecule graph may be seen as bimolecular
reactions, if different subgraphs of the complex are con-
sidered (see Figure 1d). We renounced from implement-
ing exchange rules that would delete one set of reactants
while creating another so far. Hence all reactants have to
be present in the simulator from the beginning. Sets of
new molecules can be added at predefined time steps, but
cannot be annihilated yet. This restriction is not an impli-
cation of our simulation approach but was simply not
needed in our examples so far. It will be implemented in
the next version of our software. We do not pre-generate
all possible reactions and species but directly apply the
reaction rules to the molecules in the reactor that belong
to certain reactant patterns. This procedure saves mem-
ory and computation time, especially when potentially
infinite reaction systems are involved and when the spec-
ified geometries constrain the subset of reactions that is
actually possible (see Figure 3). Similar to BioNetGen [24]
versions later than 2.0, SRSim internally uses a graph-
based representation [56] of reactant patterns and mole-
cule graphs. Basically, all choices whether and what reac-
tions are to be executed are performed on the set of
reactant patterns instead of the actual species. Therefore,
all reactant patterns that are present in the rule defini-
tions are enumerated and associated with indices, during
the initialization phase. In the running simulation, each
elementary molecule stores the indices of the reactant
patterns that it currently belongs to.

Eventually two neighboring elementary molecules mi
and mj can quickly be checked against bimolecular reac-
tion rules that could possibly happen between them, once
they are positioned closer together than a threshold
sigma in the current time step. If their assigned reactant
patterns allow the application of at least one reaction
rule, both molecules are tested for their "geometric com-
patibility", which is depending on the values of their com-
ponent tolerances. A reaction may occur only, if the
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relative positions of mi and mj are deviating less than the
given component tolerances tdist and tang from the ideal
bond distance and bond angle. Hence, for each molecule
mi there exists a defined reactive volume  that a possi-
ble reaction partner mj can lie in (see Figure 4) and vice
versa. This concept is similar to the model of "reactive
patches" [27] on spheric molecules or the existence of
energy funnels for protein docking [57]. When both mol-
ecules are lying in each others reactive volumes, we treat
these molecules like existing in a microscopic, non-spa-
tial reactor on their own. The probability of a reaction
between mi and mj in the infinitesimal small time interval
dt is then k2micdt. Considering the current time step of the
length Δt, the probability is then exponentially distrib-
uted and sampled from P(mi reacts with mj) = 1 -

[58,59]. See the additional file 2--Kinetic-
sAndApplicability.pdf for a discussion on how to convert
macroscopic reaction rates to the microscopic reaction
rates that are employed here.

When a reaction occurred, the reactant pattern indices
for all involved molecule graphs have to be updated. This

might sound like a huge computational effort for each
reaction, when large polymers or complex molecular net-
works are considered. The actual work necessary to per-
form this operation is mostly quite tractable, though: The
important value here is the maximum graph diameter
dmax of all the reactant pattern graphs. There can be no
two elementary molecules in one reactant pattern that
are more than dmax nodes apart. Hence it suffices to recal-
culate the reactant pattern indices up to a distance of dmax
from the elementary molecules that were modified by the
reaction.

For monomolecular reactions, Gillespie's algorithm
[58,60] is operating on the vector of occurrences of the
reactant patterns. At the beginning of time step t, the
time τ until the next monomolecular reaction happens is
sampled in dependence on the monomolecular reaction
propensities . If τ is smaller than the time step Δt, an
arbitrary molecule that belongs to the reaction's reactant
pattern is selected and modified according to the reaction
rule. This procedure is repeated until τ is greater than the
spatial simulation's time step Δt, in which no reaction
occurs in this time step. Even if no reaction occurs over
several time steps Δt, this fragmented execution of
Gillespie's algorithm is equivalent to the original, since
the process is "memoryless".

While we calculate the time until first order reactions
happen independent from the spatial simulation, the
effective macroscopic reaction rates of second order reac-

Vmi

e k tmic− 2 Δ

k
i1

Figure 3 Dependence of Geometry: Starting from a molecular spe-
cies with two binding sites (a), the polymerizations following the sim-
ple complexation rule (b) may lead to very different molecule 
complexes. When assuming a linear conformation of both binding 
sites (c), linear, rod-like structures will assemble. Using a 90 degree an-
gle between both components (d) would mostly lead to closed qua-
dratic structures. Other geometries including inclinations out of the 
plane (e) can create helices of different radii and helicities, etc. Please 
note, that the geometry model that is necessary to distinguish closed 
quadratic structures and helices from a worm-like chain in (d) and (e) 
requires the use of dihedral angles (See Section Discussion for details). 
While dihedral angles are not yet implemented in our software SRSim, 
similar effects can be achieved by using slightly more complex ele-
mentary molecules, as it was done in out spheric self-assembly simula-
tion.

Figure 4 Creation of Reactive Volumes through Geometric Toler-
ances: This graphic is a projection of the three-dimensional system in 
two dimensions and hence only uses one torsional angle instead of 
two. Given the molecule graph of the two blue elementary molecules, 
a reaction with a third, yellow molecule would ideally occur under an 
angle of α and the distance of d (the sum of both involved site lengths). 
But since the exact combination of angles and distances would hardly 
ever be satisfied in the time-discretized simulation, the bond toleranc-
es tang and tdist were introduced. They describe a volume Vreact (or an 
area in this two dimensional graphic) that can accommodate a possi-
ble partner for a reaction. Here, Vreact is only shown from the blue mol-
ecule graph's point of view, while the yellow molecules would create 
another reactive volume. A reaction between two molecules is only al-
lowed if they both are situated in each other's reactive volumes.
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tions depend on further parameters: To begin with, the
diffusion rate D influences the movement of the simu-
lated particles and thus determines the collision probabil-
ity causing an upper bound for the macroscopic reaction
rates. We introduced another parameter, the refractory
time, to solve a problem in the interaction between bind-
ing- and breaking rules. After a breaking reaction
occurred, two molecules will still be located very close to
each other and a secondary binding reaction might
reconnect the molecules again quickly in most cases.
Thus, to reach a single net dissociation, a series of many
successive breaking and binding reactions would have to
occur ineffectively. The same problem is encountered in
the stochastic spatial simulator Smoldyn [42] and solved
by placing both molecules a certain distance apart after
cleaving the connection. Because this approach would
lead to nonlinear particle movement, which is impractical
when the forms and structures of assembling complex
molecule graphs are constantly considered, a different
solution is used in SRSim. We assign a refractory time to
a molecule after one of its bonds is deleted. For this
period, the molecule cannot undergo a new binding reac-
tion and has time to move away by diffusion. Please see
the additional file 2--KineticsAndApplicability.pdf for a
closer analysis of possible influences of the refractory
time on the system behavior.

Results
To demonstrate the emergent effects arising when diffus-
ing, geometrically constrained particles are used in rela-
tive simple models, four exemplary applications will be
presented. These models were engineered to test and
demonstrate our approach, rather than to deliver a highly
detailed representation of a special biological system.
Consequently, the parameters are kept as simple as possi-
ble with arbitrary units. In order to allow rapid experi-
mentation, kinetic parameters, diffusion rates and
concentrations are chosen high enough to create results
in short simulated times, leading to experiments which
can be calculated on a single workstation in computation
times of some minutes to hours.

The input files for the presented experiments are
included in the additional file 3--ExamplesSrc.zip and
short avi movies showing the simulated reactor can be
found at http://users.minet.uni-jena.de/~dittrich/tmp/
srsim/.

Scaffold Proteins
Scaffold proteins bind other proteins and are thought to
help isolating different signaling pathways but also to cat-
alyze reactions by co-localizing their ligands (For reviews
see [61,62]). The following example is not intended to be
an exact simulation of the biological process, but to pres-

ent the potential impact of spatial features on a reaction
network model.

Simulations were carried out with two different molec-
ular species. Particles of the first species A can phospho-
rylate each other's components when they meet in the
reactor. Phosphorylations are lost over time. Larger
spheric scaffold proteins S can bind up to four particles A
with a rate of ks (see Figure 5). While unphosphorylated
proteins A stick to the scaffold, phosphorylated particles
dissociate quickly. To allow a smaller protein to bind from
any direction onto S, we set the angular tolerance to 180°.
Since geometrically all the component vectors of S face
towards one pole, all bound particles A would be forced
to this one pole as well. To facilitate free diffusion for the
molecules A on the surface of S, we initially reduce the
angular force term to zero.

By choosing a high ks value now, several particles A
bind to the scaffold proteins. Since their diffusion is lim-
ited to the surface of the scaffold protein, they can phos-
phorylate each other with a higher probability than when
diffusing in the whole reactor. A higher concentration of
phosphorylated A can thus be measured. When switch-
ing on angular forces that push scaffold-bound proteins A
to one pole, the effect is further amplified. A zero value
for ks results in slower phosphorylation of A. When simu-
lating the same model without the inclusion of space in
BioNetGen [24], the level of phosphorylation is indepen-
dent of ks (see Figure 6).

Certainly the same effect could be achieved in non-spa-
tial simulations by adding reactions with higher rates for
scaffold bound species. The important difference here is
that in the spatial, rule-based approach, a higher phos-
phorylation rate for bound molecules emerges from the
given rules, but is not explicitly defined. It can also be
argued, that a phosphorylation occurring between two
molecules A that are already part of a complex with the
scaffold S, is actually an intra molecular reaction. Hence
it would constitute a monomolecular reaction with a

Figure 5 Simple Scaffold Protein Model: The system is populated 
with two types of molecules. The proteins to be phosphorylated A and 
the scaffold proteins S are shown in the left panel. All four components 
of S are directed to one of its poles, but since angular tolerances are 
chosen very high in this example, new bonds are accepted from any 
angle. When angular forces are turned on, the particles A are forced to-
wards one pole of the scaffold (right panel).

http://users.minet.uni-jena.de/~dittrich/tmp/srsim/
http://users.minet.uni-jena.de/~dittrich/tmp/srsim/
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completely different reaction rate. However, in our
approach, the same bimolecular reaction rate that is mea-
sured from freely diffusing particles A can even be
applied to the related reaction that happens in a larger
complex. Two subgraphs of a complex molecule graph
then behave like independently diffusing molecules to the
reaction executing algorithm of SRSim (see Figure 1d).
Simultaneously, they are linked together for the spatial
simulator, which leads to higher interaction frequencies.
Ultimately, the effective monomolecular reaction rate is a
function of the bimolecular reaction rate and the correct
description of the particle geometries and the diffusion
on the scaffold molecule's surface. Practically, it might
still be at least as complicated to determine the correct
geometry parameters as to measure the monomolecular
reaction rate experimentally. The other way round, geo-
metric properties might be estimated from bimolecular
reaction rates or might even be reusable for different
molecular species.

Growth of Filaments and Active Transportation
ATP driven transportation of cargo molecules along the
tracks constituted by microtubules (MTs) or actin fila-
ments has an important impact on the function of many
processes from intracellular material transport to muscle
contraction and cell division [15,63-65]. In this context, a
simplified model demonstrates the possibility of using the
SRSim system to describe the self-assembly and function
of complex intracellular structures and molecular
machines. A hollow tube representing a microtubule is
first grown in the simulation and then used as a track for
motor proteins like kinesin- or dynein proteins, which
move cargoes from one end of the reactor to the other
(Figure 7).

In the first simulation phase, α- and β-tubulin heterodi-
mers are assembled to form a tube of 13 protofilaments,
starting from a cyclic set of capping molecules at the
minus end. The biological counterpart to this structure is

the γ-Tubulin-Containing Ring Complex (γTuRC) in the
Microtubule-Organizing Centers (MTOCs) [66]. Eventu-
ally, a 3-start helix is formed with a seam as it can be
observed in vivo and in vitro [15,67,68].

In the second phase, motor proteins are added to the
simulator, which can bind to the microtubules and to a
heavier freight molecule. Like kinesin [69], the motor
proteins move along the MTs in the direction of the
growing plus-end of the MT. Motion is generated by
binding and breaking bonds between the tubulin and
kinesin dimers. One part of the motor always stays
attached to the MT, while the other part diffuses to bind
to the next position of the MT lattice [63,70-72].

The model description comprises 27 rules: 13 of them
for the polymerization of the microtubule including the
seam, four to allow the processive steps of the kinesin
motors and another 10 rules to control the binding and
release of cargo and the microtubule lattice by the
motors.

Elaborate spatial simulations concerning MT dynamics
have already been carried out by others [68,73], whereas
our microtubule/kinesin simulation was kept simple and
was rather used as a toy model to test the simulation soft-
ware and show its versatility. Nonetheless, it might easily
be extended to include effects like dynamic instability
[15] or ATP and GTP turnover. It might also serve to
evaluate the effect of divergent protein geometries and
different models for the assembly and decay of MT lat-
tices on various levels of detail.

Figure 6 Effect of Scaffold Proteins: Each line corresponds to the 
number of phosphorylated particles of species A in a different simula-
tion. Simulation in SRSim and BioNetGen enabled and disabled the 
binding of molecules A to scaffold molecules S through a change in the 
ks rate. "w-Scf" means a high ks rate whereas "wo-Scf" means a zero ks 

rate. The angular forces were excluded for the simulations plotted in 
the left panel. When the scaffold proteins are active and thus bind to 
molecules A, a higher concentration of phosphorylated A is only mea-
sured in the spatial simulation (red line).

Figure 7 Active transportation along microtubules: 600 filament 
dimers (green/light green) and a nucleating structure (pink) are initially 
added equally distributed to the reactor (a). These self-assemble into a 
microtubule (MT) with a 13_3 helix, meaning there are 13 protofila-
ments and a helicity of three dimers per turn. As a result, a seam forms 
where α-tubulins bind to β-tubulins laterally (b). Association and disso-
ciation processes constantly happen at the plus end of the MT (c). 50 
motor protein dimers (cyan) and 50 cargo particles (purple) are added 
in the second phase of the simulation. Initially the cargo is equally dis-
tributed in the reaction volume (d, top). Finally, a high concentration of 
cargo particles is created by active transportation at the plus end of the 
MT (d, bottom). Motor proteins that have already bound to cargoes 
can bind to the MT as well and start moving to the plus end (e).
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Spheric Self-Assembly
Self assembling, spherical structures in real living cells
are for example viral shells [16,17] or PML-Bodies
[74,75]. Though the simulations presented here are not
intended to be realistic representations of these biological
entities, related processes might still be involved in their
formation. Hence, this exemplary application focuses on
the emergence of macroscopic spherical, self-assembling
structures as a result of diffusing, geometrically con-
strained molecules.

The employed "monomers" are more complex now,
being composed of six elementary molecules of two dif-
ferent types (see Figure 8, a). We use the notion of mono-
mers here, because there is no reaction rule in this
simulation that can further disassemble the basic com-
plex of six elementary molecules. Consequently, to save
computational resources, the compounds of our mono-
mers are treated as rigid bodies by the spatial simulator.
When two monomers are connected, this can only hap-
pen between two components of the same type. Hence, to
obtain the curvature of the spheres, the bond lengths (x)
of the "outer" components are set to a distance of 1.4
units, while the bond distances for the inner components
(y) are set to 1.0. Varying these distances, different sized
spheric structures can be obtained. Due to the modeled
flexibility of the molecules, the resulting sphere diame-
ters are not fixed, but lie within a certain range of values.

To describe the self-assembly process, eight rules and
four parameters are used in this example. They are orga-
nized in pairs, as there is always one rule for the "inner"
and one for the "outer" components. While the first pair
of rules describes the coupling of two free monomers, the
next pair handles the more likely event of the addition of
a monomer to an already formed complex. The two
remaining rule pairs specify the dissociation behavior.

When the on- and off-rates are chosen carefully, the
dynamic formation of cyclic pentamers and hexamers can
be observed in an early simulation phase (Figure 8, d).
Later on, larger assemblies close into spherical complexes
(Figure 8, b, c), which occasionally form and close fis-
sures, leading to the exchange of particles with the envi-
ronment. While a regular hexagonal lattice would create a
planar structure and a regular assembly of pentagons cre-
ated an dodecahedron, the spheres observed here irregu-
larly accommodated cycles of five, six or seven
monomers.

In contrast to the tubular structure of the microtubules
in the last example that was predetermined by the cap-
ping molecules, the formation of these spheric structures
is an emergent effect of the monomer geometry and flexi-
bility. The spatial rule-based approach might be used to
help in the analysis and formation of hypotheses concern-
ing the assembly pathways, kinetics and geometries of
related problems.
DNA Sierpinski Triangles
Another short example from the area of biomolecular
computing [76] shows a simplified in silico reproduction
of the self-assembly of Sierpinski triangles from DNA-
tiles [77]. The original experiments were conducted by
Rothemund and co-workers [18], highlighting the simi-
larity of the process to the function of a cellular automa-
ton calculating the XOR function ⊕.

The calculation happens by asynchronous addition of
layers of DNA-tiles on "top" of a one-dimensional nucle-
ating structure (see Figure 9). Considering the binary
XOR function ⊕, there are four types of DNA-tiles corre-
sponding to the truth table entries (0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1
⊕ 0 = 1, 1 ⊕ 1 = 0, see Figure 10).

Basically every DNA tile to be added to a present
assembly should be connected to two other tiles. But
since we can only form one new connection in a single
reaction step (see Section Methods), the effective trimo-
lecular reaction is separated into two distinct bimolecular
reactions (see Figure 10, b).

Although there are simulation techniques more special-
ized in tile-based DNA self-assembly [78], we think that
spatial rule-based simulation might help planning experi-
ments also from the field of biomolecular computing by
examining various sources for errors in silico on different
levels of detail.

Figure 8 Self-assembly of spheric structures: The used monomer 
geometry is displayed in panel (a). All six components of the complex 
are handled together as a rigid body, so no force calculations have to 
be performed among the components themselves. It is composed of 
a triangle of "outer" components of type A, which will later be at the 
outer side of the spheres and a triangle of "inner" components of type 
B forming the sphere's inside. Some assembled spheres of approxi-
mately the same size can be observed (b). Viewing one of them closer, 
the forming pentagons and hexagons are visible (c). When using dis-
sociation rates a bit too high, small cyclic assemblies decay too fast to 
form whole spheres (d). On the other hand, when the dissociation rates 
are chosen too low, static, mal-formed complexes emerge (e). Occas-
sionally, the separation of a big sphere into two smaller ones can be 
observed (f).
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While the possible interactions between the DNA-tiles
are described on the level of rules in the presented simu-
lation, it might for example be interesting to use individ-
ual nucleotides. Only two rules would then be necessary
to implement a Watson-Crick complementarity at the
expense of more detailed DNA-tiles.

Discussion
Higher Order Reaction Kinetics
Because we simulate individual, diffusing particles, the
number of collisions between the particles approximately
leads to mass action kinetics. But how could more elabo-
rated kinetic laws like Hill or Michaelis-Menten kinetics
be realized? Though these would not typically be used in
particle simulations, many biomodels are specified rely-

ing on these laws. Higher order kinetics also constitute a
valuable tool to simplify reaction systems, e.g. by saving
the trouble of explicitly simulating otherwise irrelevant
enzymes. The main problem for the use of these kinetics
is probably the measurement of concentrations that are
included in the kinetic law's formula. While our approach
uses information about individual particle's (stochastic)
behavior, a concentration dependent law would need the
particle density counted in a subvolume. The size of this
volume lies in between the two extremes of the whole
reactor and tiny volume elements hardly containing sin-
gle particles. Then, the elaborated kinetic laws could
dynamically change the propensities of the dependent
reactions.

Analyzing Simulation Runs
How can simulation runs of spatial and rule-based sys-
tems be analyzed? Next to counting the numbers of mole-
cules in the reactor or regions of it, also the appearance of
certain reactant patterns seems important. Different
approaches as well as our own use this technique up to a
certain extent [21,79]. For example, one might be inter-
ested in the amount of tubulin dimers, that have bound
GTP and both lateral neighboring tubulin proteins. How-
ever, many different modes of counting patterns are con-
ceivable, as for instance imagine a complex molecule
being composed of three elementary molecules mA - mB -
mA from two elementary species. Dependent on the mode
of counting, the observed pattern mA - mB can now be
found either once or twice in the complex molecule
graph. Hence combinatorial effects have to be considered
carefully.

Simulation Timescales
At the moment, when using single desktop PCs, we can
achieve simulated times in the order of some millisec-
onds. When assuming a system of about 10 thousand par-
ticles, a simulation for 3 * 106 time steps took one of our
desktop PCs about four hours.

When we consider a protein in the size of the hemoglo-
bin tetramer with a diameter of about 5.5 nm, its diffu-

sion coefficient should be in the range of .

Here we used the Stokes-Einstein relation [27],

with the Boltzmann constant kB, the absolute tempera-
ture T, the solvent's viscosity η and the particle's radius r.
The error in the kinetics should be quite low when we
choose our time step Δt so that the mean expected trans-
lation of a particle  is about a 10th of the
particle diameter. That would result in a time step of
about 0:5ns and a total simulated time of 1.5 milliseconds.

8 10 11 2
* − m

s

D kBT
r= 6ph

< >=r D t6 Δ

Figure 9 Results of a tile assembly simulation with SRSim: Sierpin-
ski triangle structures can be observed as well as an assembly error in 
the marked circle. The cyan molecules at the bottom line represent the 
nucleation structure. Molecules in green and light-green represent '0' 
tiles, while the red ones denote '1' tiles. Green and light-green mole-
cules are different, as the first ones can only dock to two '0' tiles, while 
the latter ones can dock only to two '1' molecules.

Figure 10 Monomers representing DNA tiles: Each DNA tile can 
have four connections to other tiles. They are made of single stranded 
sticky ends in Rothemund's experiment using hybridization of real 
DNA and are represented as binding sites in our experiment with SR-
Sim. Two binding sites d are oriented downwards, two other compo-
nents u upwards (a). Green arrows set out upwards from a '0' tile, 
whereas red arrows leave '1' molecules (b). To connect two tiles, a 
component u from a lower tile can bind to a component d from an up-
per tile if they are in the same color. The attachment of a new tile (c) 
happens in two steps. When a '1' tile A has bound to a '0' tile B, it can 
bind to a '1' tile later. But if the other tile C represents a '0' tile, no sec-
ond connection stabilizes the bond between A and B, leading to a soon 
dissociation of tile A.
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Though the scale of some thousand particles and some
milliseconds may be sufficient only for special problems,
the SRSim approach will be applicable in more complex
situations as well. In our simulations, the bottleneck of
the computations is the calculation of forces and the dis-
placement of the particles, but not performing the reac-
tions. Given we do not want to simplify the spatial model,
computers are still becoming faster and use dedicated
hardware like parallel graphic processors (GPUs). Molec-
ular dynamics systems are predestined for parallel com-
putations since the processes in the reactor can be split
up into independent, local sub-problems. The simulator
LAMMPS that underlies SRSim is already fully parallel-
ized via the Message Passing Interface (MPI) and can be
run on large computer clusters.

Another means to speed up the computations is to
abstract away aspects of the simulation that do not seem
important for a certain system. Inflexible molecule
graphs and delocalized particles can be used in an event-
based simulation as done in the self assembly simulator
by Zhang et al. [46]. The focus is on the formation and
structure of complex macromolecules instead of the posi-
tioning or the elasticity of the molecules. A different
approach would be to preserve information about local
dynamics within a complex molecule, but speeding up
the calculations by running embedded simulations. That
would lead to an efficient stochastic model for the confor-
mations of large but stable complexes. Larger time steps
might also be used by sacrificing the detailed brownian
movement of every particle. Green's Function Reaction
Dynamics [80] calculates the time until the next reaction
occurs from the positions of all molecules at a time step.
Then all the particles can be displaced by this dynamic
time step instead of having many smaller time steps that
involve no reactions. Nonetheless, this technique would
ignore the effects of steric hindrance between complex
molecules. Systems involving small molecules like ATP
occurring in high amounts could be simulated as contin-
uous concentrations in the background to relieve the par-
ticle-based simulation engine of high particle numbers.
Similar separations of scales were used in the simulator
Cell++ [37].

Implications of the Chosen Geometric Level of Detail
In our current exemplary implementation of a spatial,
rule-based reaction system, we chose a level of detail that
allows angles but no dihedral angles. Here, with angles we
denote the angle between a central molecule mi and two
further molecules mj, mk adjacent to mi. Dihedral angles
describe the torsion around the axis mj - mk , if the mole-
cules mi, mj, mk, ml are linearly connected. Alternatively,
dihedral angles can be imagined as the angle between a
plane p1 through the first three molecules mi, mj, mk and

another plane p2 through the second three molecules mj,
mk, ml. Consequently, it is not trivially possible to specify
or inhibit the torsion around a bond. This would for
example be necessary to distinguish a helix as displayed
in Figure 3(e) from a circle in a single plane. To specify
complicated geometries in the present level of detail, one
could employ combinations of elementary molecules as
building blocks, as it was done in our spheric self-assem-
bly simulation.

Another aspect of our chosen level of detail is that
unbound elementary molecules (EM) do not posses a
rotational orientation. Hence, the molecule is expected to
rotate diffusively so that all possible orientations are con-
sidered to be equally possible for the calculation of geo-
metric compatibilities. This treatment of single EM is
similar to orientation-less particle models as used in
approaches by Gillespie [59] or ChemCell [44]. As soon
as an EM mi is bound in a complex molecule graph, there
are bonds that realize component vectors of mi. When a
new bond to an EM mj should be formed, this is only
allowed if the angles between the present component
vectors of mi and a potentially new component vector
pointing towards mj are deviating less than the tolerance
value tang from the ideal bond angles. In other words, this

means that the reactive volume  to bind another EM
mj can change, dependent on other EM that are con-
nected to mi. This has to be considered when specifying
reaction rates.

Conclusions
The spatial, rule-based simulation approach, represented
by our exemplary tool SRSim, constitutes a versatile, rule-
based simulation system, which accounts for inhomoge-
neous distributions, volume-exclusion, structure and
geometry of diffusing particles. It is able to tackle a vari-
ety of problems from the scope of self-assembling
biomolecules and molecular processes exhibiting combi-
natorial complexity. For some of these areas problem-
specific simulation systems have already been developed
[16,17,68,73,78,81]. Our approach might help to integrate
the description and treatment of many such problems
under a common, effective formalism.

Though molecular dynamics studies of interacting pro-
teins are considered the most physically accurate repre-
sentation of biochemical processes [10,82], they are not
always achievable or desirable. The computational effort
is immense even for only two involved macromolecules,
and high resolution 3D structures have to be known for
each involved particle. In contrast, the level of geometric
detail in spatial rule-based models can be chosen depen-
dent on the present level of knowledge and the aspired
scale of the system under consideration. Similar to

Vmi
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Coarse Grained Molecular Dynamics [83,84], one spheric
particle of the simulation can represent anything from a
single atom to a big macromolecular complex.

Another important point of our approach is the fact
that the dynamics of reaction networks can quantitatively
and qualitatively change as an effect of heterogeneous
spatial concentrations as well as in dependence of the
employed particle geometries. Combinations of struc-
tural parameters for the involved particles as component
angles, distances, component tolerances and reaction
rates can be varied, trying to reproduce observed macro-
scopic behavior. Thus, possible candidates for macromol-
ecule geometries and hypotheses on the cooperation of
complex system's compounds are generated for an effi-
cient experimental evaluation. Let us assume a simple
polymerization of identical monomers with two binding
sites. In each step, any two monomers could be con-
nected. But whether they form complexes as cycles, rod
shapes, helices or something unstructured depends on
the geometries of the particle's binding sites (see Figure
3). When considering all reactions that were possible
based on the rule-based system, the geometric properties
can implicitly disallow or inhibit a subset of reactions and
favor others. Some binding sites may be blocked by parti-
cles, while others may be co-localized or brought close
together, practically forcing a reaction. Though this is not
the focus of this paper, also the shape of the reaction con-
tainer can severely influence the reaction kinetics [45].

Eventually, the dynamics may then diverge drastically
from reaction-diffusion systems that consider space by
using Partial Differential Equations or spatial variants of
Gillespie's algorithm [40,41,52]. In particular, a set of
chemical species that can in principle form a stationary
state in a reaction-diffusion model derived from a rule-
based reaction system may not have this property when
geometry is considered. This implies that applying alge-
braic methods like elementary mode analysis [85] or
chemical organization theory [86] to the reaction rules
while neglecting geometric information can lead to mis-
leading results. The organization theory operates on the
binary presence or absence of species in a reaction sys-
tem. An organization is formed by a subset of all possible
species, if this subset cannot generate new species but
can replenish its own species from itself by means of the
system's reactions. For example, a set of species reversibly
forming tetrameres as displayed in Figure 3, d) that is not
an organization with respect to the reaction rules, is an
organization when geometry is also considered, because
the geometric effects hinder the formation of further spe-
cies but allow the formation of the tetramers and their
preliminary compounds. Note that, obviously, also a set
of species that is an organization given just the reaction
rules can become no organization when considering
geometry.

In addition to pure geometry, the flexibility of the pro-
teins [68,87] to strain, torsion and bending will influence
the rates, pathways and structures of formed complexes.
For example in the experiment of spheric self-assembly,
the exact structure is not pre-determined but emerges
dynamically as a function of geometries and flexibilities.

While we have been highlighting the assets of only the
spatial features of SRSim so far, it is the combination with
the rule-based reaction system that leads to the modeling
strength of our approach. In a conventional but spatial
reaction system, it would not be possible to easily model
complex and highly structured self-assembly reactions
including an almost infinite number of species like in the
example of growing sierpinski triangles. Also it would not
be possible to describe elaborated processes as the suc-
cessive binding and dissociation reactions that are neces-
sary for the dynamic description of molecular machines
like in the example of our molecular walkers along the
microtubules. We want to point out in this paper, that it is
necessary to combine both, the flexibility of the rule-
based reaction system as well as the spatial simulation
technique to describe and model a variety of complex
biochemical systems.

Further work will also address the incorporation of
more powerful rule types. Patterns that allow wildcards
for subsets of molecule types might constitute valuable
helpers for the model description as well as rules allowing
the exchange of whole subgraphs in molecule complexes.

Next to enhancements concerning the rule evaluation
and execution system, also different levels of spatial and
geometric detail should be considered. Different ways to
a more abstract but faster system were shown in the Dis-
cussion Section. When, on the other hand, the level of
detail should be elevated, there is a range of conceivable
changes to the SRSim system. Torsional angles and bind-
ing energies might be included in the geometric model,
for instance, or the possibility to break bonds not only
because of reaction rates but also as a result of applied
forces.

The authors believe that advanced modeling of biomo-
lecular systems in future will necessitate both, the treat-
ment of spatial aspects as well as the ubiquitous
combinatorial complexities arising from multiprotein
complexes and multistate molecules. Therefore, in addi-
tion to more corse-grained or analytic approaches [79],
we advocate the use of versatile, spatial rule-based simu-
lation systems like SRSim, specifically designed for these
modelling demands.

Additional material

Additional file 1 C++ source files to compile SRSim, including the 
slightly modified LAMMPS sources.

http://www.biomedcentral.com/content/supplementary/1471-2105-11-307-S1.ZIP
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