
METHODOLOGY ARTICLE Open Access

L2-norm multiple kernel learning and its
application to biomedical data fusion
Shi Yu1*, Tillmann Falck2, Anneleen Daemen1, Leon-Charles Tranchevent1, Johan AK Suykens2, Bart De Moor1,
Yves Moreau1

Abstract

Background: This paper introduces the notion of optimizing different norms in the dual problem of support
vector machines with multiple kernels. The selection of norms yields different extensions of multiple kernel
learning (MKL) such as L∞, L1, and L2 MKL. In particular, L2 MKL is a novel method that leads to non-sparse optimal
kernel coefficients, which is different from the sparse kernel coefficients optimized by the existing L∞ MKL method.
In real biomedical applications, L2 MKL may have more advantages over sparse integration method for thoroughly
combining complementary information in heterogeneous data sources.

Results: We provide a theoretical analysis of the relationship between the L2 optimization of kernels in the dual
problem with the L2 coefficient regularization in the primal problem. Understanding the dual L2 problem grants a
unified view on MKL and enables us to extend the L2 method to a wide range of machine learning problems. We
implement L2 MKL for ranking and classification problems and compare its performance with the sparse L∞ and
the averaging L1 MKL methods. The experiments are carried out on six real biomedical data sets and two large
scale UCI data sets. L2 MKL yields better performance on most of the benchmark data sets. In particular, we
propose a novel L2 MKL least squares support vector machine (LSSVM) algorithm, which is shown to be an efficient
and promising classifier for large scale data sets processing.

Conclusions: This paper extends the statistical framework of genomic data fusion based on MKL. Allowing non-
sparse weights on the data sources is an attractive option in settings where we believe most data sources to be
relevant to the problem at hand and want to avoid a “winner-takes-all” effect seen in L∞ MKL, which can be
detrimental to the performance in prospective studies. The notion of optimizing L2 kernels can be straightforwardly
extended to ranking, classification, regression, and clustering algorithms. To tackle the computational burden of
MKL, this paper proposes several novel LSSVM based MKL algorithms. Systematic comparison on real data sets
shows that LSSVM MKL has comparable performance as the conventional SVM MKL algorithms. Moreover, large
scale numerical experiments indicate that when cast as semi-infinite programming, LSSVM MKL can be solved
more efficiently than SVM MKL.

Availability: The MATLAB code of algorithms implemented in this paper is downloadable from http://homes.esat.
kuleuven.be/~sistawww/bioi/syu/l2lssvm.html.

Background
In the era of information overflow, data mining and
machine learning are indispensable tools to retrieve
information and knowledge from data. The idea of
incorporating several data sources in analysis may be
beneficial by reducing the noise, as well as by improving

statistical significance and leveraging the interactions
and correlations between data sources to obtain more
refined and higher-level information [1], which is known
as data fusion. In bioinformatics, considerable effort has
been devoted to genomic data fusion, which is an emer-
ging topic pertaining to a lot of applications. At present,
terabytes of data are generated by high-throughput tech-
niques at an increasing rate. In data fusion, these tera-
bytes are further multiplied by the number of data
sources or the number of species. A statistical model
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describing this data is therefore not an easy matter. To
tackle this challenge, it is rather effective to consider the
data as being generated by a complex and unknown
black box with the goal of finding a function or an algo-
rithm that operates on an input to predict the output.
About 15 years ago, Vapnik [2] introduced the support
vector method which makes use of kernel functions.
This method has offered plenty of opportunities to solve
complicated problems but also brought lots of interdis-
ciplinary challenges in statistics, optimization theory,
and the applications therein [3].
Multiple kernel learning (MKL) has been pioneered by

Lanckriet et al. [4] and Bach et al. [5] as an additive
extension of single kernel SVM to incorporate multiple
kernels in classification. It has also been applied as a sta-
tistical learning framework for genomic data fusion [6]
and many other applications [7]. The essence of MKL,
which is the additive extension of the dual problem,
relies only on the kernel representation (kernel trick)
while the heterogeneities of data sources are resolved by
transforming different data structures (i.e., vectors,
strings, trees, graphs, etc.) into kernel matrices. In the
dual problem, these kernels are combined into a single
kernel, moreover, the coefficients of the kernels are
leveraged adaptively to optimize the algorithmic objec-
tive, known as kernel fusion. The notion of kernel fusion
was originally proposed to solve classification problems
in computational biology, but recent efforts have lead to
analogous solutions for one class [7] and unsupervised
learning problems (Yu et al.: Optimized data fusion for
kernel K-means clustering, submitted). Currently, most
of the existing MKL methods are based on the formula-
tion proposed by Lanckriet et al. [4], which is clarified
in our paper as the optimization of the infinity norm
(L∞) of kernel fusion. Optimizing L∞ MKL in the dual
problem corresponds to posing L1 regularization on the
kernel coefficients in the primal problem. As known, L1
regularization is characterized by the sparseness of the
kernel coefficients [8]. Thus, the solution obtained by
L∞ MKL is also sparse, which assigns dominant coeffi-
cients to only one or two kernels. The sparseness is use-
ful to distinguish relevant sources from a large number
of irrelevant data sources. However, in biomedical appli-
cations, there are usually a small number of sources and
most of these data sources are carefully selected and
preprocessed. They thus often are directly relevant to
the problem. In these cases, a sparse solution may be
too selective to thoroughly combine the complementary
information in the data sources. While the performance
on benchmark data may be good, the selected sources
may not be as strong on truly novel problems where the
quality of the information is much lower. We may thus
expect the performance of such solutions to degrade sig-
nificantly on actual real-world applications. To address

this problem, we propose a new kernel fusion scheme
by optimizing the L2-norm of multiple kernels. The L2
MKL yields a non-sparse solution, which smoothly dis-
tributes the coefficients on multiple kernels and, at the
same time, leverages the effects of kernels in the objec-
tive optimization. Empirical results show that the
L2-norm kernel fusion can lead to a better performance
in biomedical data fusion.

Methods
Acronyms
The symbols and notations used in this paper are
defined in Table 1 (in the order of appearance).

Formal definition of the problem
We consider the problem of minimizing a quadratic cost
of a real vector in function of  and a real positive
semi-definite (PSD) matrix Q, given by

minimize

subject to


 


 



TQ

∈  ,
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  , TQ 0 . We will show that many machine

learning problems can be cast in form (1) with addi-
tional constraints on


 . In particular, if we restrict

 
 T = 1 , the problem in (1) becomes a Rayleigh quoti-
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To bound the coefficients θj, we restrict that, for
example, ||θj||1 = 1, and (1) can be equivalently rewrit-
ten as a min-max problem, given by
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To solve (3), we denote t QT
j jj

p= ( )=∑ 
  

1 , the min-
max problem can be formulated in a form of quadraticly
constrained linear program (QCLP), given by
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The optimal solution

 * in (3) is obtained from the

dual variable corresponding to the quadratic constraints
in (4). The optimal t* is equivalent to the Chebyshev or
L∞-norm of the vector of quadratic terms, given by:

t Q Q QT
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The L∞-norm is the upper bound w.r.t. the constraint
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Apparently, suppose the optimal  * is given, optimiz-
ing the L∞-norm in (5) will pick the single term with
the maximal value, and the optimal solution of the coef-
ficients is more likely to be sparse. An alternative solu-
tion to (3) is to introduce a different constraint on the
coefficients, for example, ||θj||2 = 1. We thus propose a

Table 1 Acronyms

 RN the dual variable of SVM

Q RN × N a semi-positive definite matrix

C RN a convex set

Ω RN × N a combination of multiple semi-positive definite matrices

j N the index of kernel matrices

p N the number of kernel matrices

θ [0, 1] coefficients of kernel matrices

t [0, + ∞) dummy variable in optimization problem

s Rp      

s Q QT T
p

T
= { }   1 , ,

v Rp
v

T
K

T
Kp

T    
= { }   1 ,...,

w RD or RF the norm vector of the separating hyperplane

�(·) RD ® RF the feature map

i N the index of training samples
xi RD the vector of the i-th training sample

r R bias term in 1-SVM

ν R+ regularization term of 1-SVM

ξi R slack variable for the i-th training sample

K RN × N kernel matrix

k x xi j
 

,( ) RD × RD ® R kernel function, K k x xij i j= ( ) 
,


z RD the vector of a test data sample

yi -1 or +1 the class label of the i-th training sample

Y RN × N the diagonal matrix of class labels Y = diag(y1, ..., yN)

C R+ the box constraint on dual variables of SVM

b R+ the bias term in SVM and LSSVM
 Rp      

    = { }T T
p

T
YK Y YK Y1 , ,

k N the number of classes
 Rp      

    = ( ) ( ){ }= =∑ ∑q
T

q q qq

k
q
T

q q qq

k T
Y K Y Y K Y11 11

, ,
 Rp variable vector in SIP problem

u R dummy variable in SIP problem

q N the index of class number in classification problem, q = 1, ..., k

A RN × N A Y K Yj q
T

q j q qq

k= ( )=∑  
 

1
l R+ the regularization parameter in LSSVM

ei R the error term of the i-th sample in LSSVM
 RN the dual variable of LSSVM,

 
 = Y

� R+ precision value as the stopping criterion of SIP iteration

τ N index parameter of SIP iterations
g Rp   


 

g K KT T
p

T
= { }   1 , ,
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new extension of the problem in (1), given by
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This new extension is analogously solved as a QCLP
problem with modified constraints, given by
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where      
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= { }   1 , , . The proof that (8)

is the solution of (7) is given in the following theorem.
Theorem 0.1 The QCLP problem in (8) equivalently

solves the problem in (7).
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Let us denote xj = θj and y Qj
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 ( )=∑ 1 is bounded by the L2-norm ||
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Moreover, it is easy to prove that when
  j

T
jQ s* /=

  
2
, the parametric combination reaches

the upperbound and the equality holds. Optimizing this
L2-norm results in a non-sparse solution in θj. In order
to distinguish this from the solution obtained by (3) and
(4), we denote it as the L2-norm approach. It can also
easily be seen (not shown here) that the L1-norm
approach is simply averaging the quadratic terms with
uniform coefficients.
The L2-norm bound is also generalizable to any posi-

tive real number n ≥ 1, defined as Ln-norm MKL.
Recently, the similar topic is also investigated by [9] and
a solution is proposed to solve the primal MKL pro-
blem. In this paper, we will show that our primal-dual
interpretation of MKL is also extendable to the n-norm.
Let us assume that


 is regularized by the Lm-norm as

||

 ||m = 1, then the Lm-norm extension of equation (7)

is given by
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In the following theorem, we prove that (13) can be
equivalently solved as a QCLP problem, given by
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is in Ln-norm, moreover, n m
m= −1

. The problem in (14)
is convex and can be solved by cvx toolbox [10,11].
Theorem 0.2 If the coefficient vector


 is regularized

by a Lm-norm in (13), the problem can be solved as a
convex programming problem in (14) with Ln-norm con-
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Due to the condition that 1 1 1m n+ = , so n m
m= −1 , we

prove that with the Lm-norm constraint posed on
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additive multiple kernel term   j
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In this section, we have explained the L∞, L1, L2, and
Ln-norm approaches to extend the basic problem in (1)
to multiple matrices Qj. These approaches differed
mainly on the constraints applied on the coefficients. To
clarify the difference of notations used in this paper
with the common interpretations of L1 and L2 regulari-
zation on


 , we illustrate the mapping of our L∞, L1,

L2, and Ln notations between the common interpreta-
tions of coefficient regularization. As shown in Table 2,
the notations used in this paper are interpreted in the
dual space and are equivalent to regularization of kernel
coefficients in the primal space. The advantage of dual
space interpretation is that we can easily extend the

analogue solution to various machine learning algo-
rithms. To keep the discussion concise, we will from
now on mainly focus on comparing the L∞, L1 and L2 in
the dual problems and present the solutions in the dual
space.
Next, we will investigate several concrete kernel fusion

algorithms and will propose the corresponding L2
solutions.

One class SVM kernel fusion for ranking
The primal problem of one class SVM (1-SVM) is
defined by Tax and Duin [12] and Schölkopf et al. [13] as
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where w is the norm vector of the separating hyper-
plane,


xi are the training samples, ν is the regulariza-

tion constant penalizing outliers in the training samples,
�(·) denotes the feature map, r is a bias term, ξi are
slack variables, and N is the number of training samples.
Taking the conditions for optimality from the Lagran-
gian, one obtains the dual problem, given by:
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where ai are dual variables, K represents the kernel
matrix obtained by the inner product between any pair
of samples specified by a kernel function
k x x x x i j Ni j i
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    , , , , ,( ) = ( ) ( ) =  1 . To incorpo-
rate multiple kernels in (19), De Bie et al. proposed a
solution [7] with the dual problem formulated as
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where p is the number of data sources and Kj is the
j-th kernel matrix. The formulation exactly corresponds
to the L∞ solution of the problem defined in the

Table 2 The notation used in this paper is based on the
dual problem and can be linked to a equivalent notation
in the primal problem

primal
problem

dual problem

variable θj
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previous section (the PSD constraint is implied in the
kernel matrix) with additional constraints imposed on
 . The optimal coefficients θj are used to combine
multiple kernels as
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and the ranking function is given by
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where ΩN is the combined kernel of training data

xi ,

i = 1, ..., N, z is the test data point to be ranked,
Ω
 
x xi,( ) is the kernel function applied on test data

and training data,

 is the dual variable solved as (20).

De Bie et al. applied the method in the application of
disease gene prioritization, where multiple genomic data
sources are combined to rank a large set of test genes
using the 1-SVM model trained from a small set of
training genes which are known to be relevant for cer-
tain diseases. The L∞ formulation in their approach
yields a sparse solution when integrating genomic data
sources (see Figure 2 of [7]). To avoid this disadvantage,
they proposed a regularization method by restricting the
minimal boundary on the kernel coefficients, notated as
θmin, to ensure the minimal contribution of each geno-
mic data source to be θmin/p. According to their experi-
ments, the regularized solution performed best, being
significantly better than the sparse integration and the
average combination of kernels.
Instead of setting the ad hoc parameter θmin, one can

also straightforwardly propose an L2-norm approach to
solve the identical problem, given by
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where
  


  

v K K vT T
p

T p={ } ∈   1 , , , . The
problem above is a QCLP problem and can be solved by
conic optimization solvers such as Sedumi [14]. In (23), the

first constraint represents a Lorentz cone and the
second constraint corresponds to p number of rotated Lor-
entz cones (R cones). The optimal kernel coefficients
θj correspond to the dual variables of the R cones with ||θ||
2 = 1. In this L2-norm approach, the integrated kernel Ω is
combined by different  j

∗ and the same scoring function as
in (22) is applied on the different solutions of  and Ω.

Support vector machine MKL for classification
The notion of MKL is originally proposed in a binary
SVM classification, where the primal objective is given
by
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where

xi are data samples, j(·) is the feature map, yi

are class labels, C > 0 is a positive regularization para-
meter, ξi are slack variables,


w is the norm vector of the

separating hyperplane, and b is the bias. This problem is
convex and can be solved as a dual problem, given by

D minimize
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where  are the dual variables, Y = diag(y1, ... , yN), K
is the kernel matrix, and C is the upperbound of the
box constraint on the dual variables. To incorporate
multiple kernels in (25), Lanckriet et al. [6,4] and Bach
et al. [5] proposed a multiple kernel learning (MKL)
problem as follows:

D minimize

subject to

:
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where p is the number of kernels. (26) optimizes the
L∞-norm of the set of kernel quadratic terms. Based on
the previous discussions, the L2-norm solution is analo-
gously given by
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where             = { } ∈T T
p

T pYK Y YK Y1 , , , . Both
formulations in (26) and (27) can be efficiently solved
as second order cone programming (SOCP) problems
by a conic optimization solver (i.e., Sedumi [14]) or as
QCQP problems by a general QP solver (i.e., MOSEK
[15]). It is also known that a binary MKL problem can
also be formulated as Semi-definite Programming
(SDP), as proposed by Lanckriet et al. [4] and Kim et
al. [16]. However, in a multi-class problem, SDP pro-
blems are computationally prohibitive due to the pre-
sence of PSD constraints and can only be solved
approximately by relaxation [17]. On the contrary, the
QCLP and QCQP formulations of binary classification
problems can be easily extended to a multi-class set-
ting using the one-versus-all (1vsA) coding, i.e., solving
the problem of k classes as k number of binary pro-
blems. Therefore, the L∞ multi-class SVM MKL is then
formulated as

D minimize

subject to

:
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The L2 multi-class SVM MKL is given by

D minimize

subject to

:
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where
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SIP formulation for SVM MKL on larger scale data
Unfortunately, the kernel fusion problem becomes
challenging on large scale data because it may scale up
in three dimensions: the number of data points, the
number of classes, and the number of kernels. When
these dimensions are all large, memory issues may
arise as the kernel matrices need to be stored in mem-
ory. Though it is feasible to approximate the kernel
matrices by a low rank decomposition (i.e., incomplete
Cholesky decomposition) and to reduce the computa-
tional burden of conic optimization using these low
rank matrices, conic problems involve a large amount
of variables and constraints and it is usually less effi-
cient than QCQP. Moreover, the precision of the low
rank approximation relies on the assumption that the
eigenvalues of kernel matrices decay rapidly, which
may not always be true when the intrinsic dimensions
of the kernels are large. To tackle the computational
burden of MKL, Sonnenburg et al. reformulated the
QP problem as semi-infinite programming (SIP) and
approximated the QP solution using a bi-level strategy
(wrapper method) [18]. The standard form of SIP is
given by

maximize

subject to


 








c

f t

T

t ( ) ≤ ∀ ∈0, ,ϒ
(30)

where the constraint functions in ft( )
→ can be either

linear or quadratic and there are infinite number of
them in ∀t Î ϒ. To solve it, a discretization method is
usually applied, which is briefly summarized as follows
[19-21]:

1. Choose a finite subset  ⊂ ϒ.
2. Solve the convex programming problem

maximize



 
c T (31)

subject to f tt ( ) , .

 ≤ ∈0  (32)

3. If the solution of 2 is not satisfactorily close to the
original problem then choose a larger, but still finite
subset  and repeat from Step 2.

The convergence of SIP and the accuracy of the dis-
cretization method have been extensively described (see
[19-21]). As proposed by Sonnenburg et al. [18], the
multi-class SVM MKL objective in (26) can be formu-
lated as a SIP problem, given by
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The SIP problem above is solved as a bi-level algo-
rithm for which the pseudo code is presented in Algo-
rithm 1 in the Appendix. In each loop τ, Step 1
optimizes


 ( ) and u(τ) for a restricted subset of con-

straints as a linear programming. Step 3 is an SVM pro-
blem with a single kernel and generates a new 

 ( ) . If

 ( ) is not satisfied by the current


 ( ) and u(τ), it

will be added successively to step 1 until all constraints
are satisfied. The starting points


 q

0( ) are randomly
initialized and SIP always converges to a identical result.
Algorithm 1 is also applicable to the L2-norm situa-

tion of SVM MKL, whereas the non-convex constraint


2
1= in Step 1 needs to be relaxed as
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the fj(

 ) term in (32) is modified as only containing the

quadratic term. The SIP formulation for L2-norm SVM
MKL is given by

maximize
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With these modifications, Step 1 of Algorithm 1
becomes a QCLP problem given by

max

,
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,
imize u
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where A Y K Yj q
T

q j q qq

k= ( )=∑  
 

1
and 

 is a given
value. Moreover, the PSD property of kernel matrices
ensures that Aj ≥ 0, thus the optimal solution always
satisfies




2
1= .

In the SIP formulation, the SVM MKL is solved itera-
tively as two components. The first component is a sin-
gle kernel SVM, which is solved more efficiently when
the data scale is larger then thousands of data points
(and smaller than ten thousands) and, requires much
less memory than the QP formulation. The second com-
ponent is a small scale problem, which is a linear pro-
blem in L∞ case and a QCLP problem in the L2
approach. As shown, the complexity of the SIP based
SVM MKL is mainly determined by the burden of a sin-
gle kernel SVM multiplied by the number of iterations.
This has inspired us to adopt more efficient single SVM
learning algorithms to further improve the efficiency.
The least squares support vector machines (LSSVM)
[22] is known for its simple differentiable cost function,
the equality constraints in the separating hyperplane
and its solution based on linear equations, which is pre-
ferable for large scaler problems. Next, we will investi-
gate the MKL solutions issue using LSSVM
formulations.

Least squares SVM MKL for classification
In LSSVM, the primal problem is given by [22]

P minimize e
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(36)

where most of the variables are defined in a similar
way as in (24). The main difference is that the nonnega-
tive slack variable ξ is replaced by a squared error term
 
e eT and the inequality constraints are modified as
equality ones. Taking the conditions for optimality from
the Lagrangian, eliminating

 
w e, , defining


y y yN

T
= ⎡⎣ ⎤⎦1, = [y1, ..., yN] and Y = diag(y1, ..., yN),

one obtains the following linear system [22]:
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where

 are unconstrained dual variables. Without

the loss of generality, we denote
 
 = Y and rewrite

(37) as
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In (38), we add an additional constraint as Y-2 = I then
the coefficient becomes a static value in the multi-class
case. In 1vsA coding, (37) requires to solve k number of
linear problems whereas in (38), the coefficient matrix is
only factorized once such that the solution of


q w.r.t.

the multi-class label vectors

yq is very efficient to

obtain. The constraint Y-2 = I can be simply satisfied by
assuming the class labels to be -1 and +1. Thus, from
now on, we assume Y-2 = I in the following discussion.
To incorporate multiple kernels in LSSVM classifica-

tion, the L∞-norm approach is a QP problem, given by
(assuming Y-2 = I)

minimize

subject to
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The L2-norm approach is analogously formulated as

minimize

subject to
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where  


  g K K gT T
p

T p= { } ∈   1 , , , . The l
parameter regularizes the squared error term in the pri-

mal objective in (36) and the quadratic term
 
 T in the

dual problem. Usually, the optimal l needs to be selected

empirically by cross-validation. In the kernel fusion of
LSSVM, we can alternatively transform the effect of regu-
larization as an identity kernel matrix in

1
2 11

 
  T

j pj

p
K I+( )+=∑ , where θp + 1 = 1/l. Then the

MKL problem of combining p kernels is equivalent to
combining p + 1 kernels where the last kernel is an iden-
tity matrix with the optimal coefficient corresponding to
the l value. This method has been mentioned by Lanck-
riet et al. to tackle the estimation of the regularization
parameter in the soft margin SVM [4]. It has also been
used by Ye et al. to jointly estimate the optimal kernel
for discriminant analysis [17]. Saving the effort of validat-
ing l may significantly reduce the model selection cost in
complicated learning problems. By this transformation,
the objective of LSSVM MKL becomes similar to that of
SVM MKL with the main difference that the dual vari-
ables are unconstrained. Though (39) and (40) can in
principle both be solved as QP problems by a conic sol-
ver or a QP solver, the efficiency of a linear solution of
the LSSVM is lost. Fortunately, in a SIP formulation, the
LSSVM MKL can be decomposed into iterations of the
master problem of single kernel LSSVM learning, which
is an unconstrained QP problem, and a coefficient opti-
mization problem with very small scale.
SIP formulation for LSSVM SVM MKL on larger scale data
The L∞-norm approach of multi-class LSSVM MKL is
formulated as

maximize
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(41)

In the formulation above, Kj represents the j –th ker-
nel matrix in a set of p + 1 kernels with the p + 1-th
kernel being the identity matrix. The L2-norm LSSVM
MKL is formulated as
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The pseudocode of L∞ -norm and L2-norm LSSVM
MKL is presented in Algorithm 2 in the Appendix. In L∞
approach, Step 1 optimizes


 as a linear programming.

In L2 approach, Step 1 optimizes

 as a QCLP problem.

Since the regularization coefficient is automatically esti-
mated as θp + 1, Step 3 simplifies to a linear problem as
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=
+ ( )= ∑ j

p
j jK1

1 .

Summary of algorithms
As discussed, the dual L2 MKL solution can be extended
to many machine learning problems. In principle, all
MKL algorithms can be formulated in L∞, L1, and L2
forms and lead to different solutions. To validate the
proposed approach, we implemented and compared 20
algorithms on various data sets. The summary of all
implemented algorithms is presented in Table 3. These
algorithms combine L∞, L1, and L2 MKL with 1-SVM,
SVM, and LSSVM. Moreover, to cope with imbalanced
data in classification, we also extended Weighted SVM
[23,24] and Weighted LSSVM [25,26] to their MKL for-
mulations (presented in Additional file 1). Though we
mainly focus on L∞, L1, and L2 MKL methods, we also
implement the Ln-norm MKL for 1-SVM, SVM, LS-
SVM and Weighted SVM. These algorithms are applied
on the four biomedical experimental data sets and the
performance is reported in section 8 of Additional file 1.
Moreover, the Ln-norm algorithms are also available on
the website of this paper.

Experimental setup and data sets
The performance of the proposed L2 MKL method was
systematically evaluated and compared on six real

benchmark data sets. The computational efficiency was
compared on two UCI data sets. On each data set, we
compared the L2 method with the L∞, L1 and regular-
ized L∞ MKL method. In the regularized L∞, we set the
minimal boundary of kernel coefficients θmin to 0.5,
denoted as L∞ (0.5). We also compared the three differ-
ent optimization formulations SOCP, QCQP and SIP on
the UCI data sets. The experiments were categorized in
five groups as summarized in Table 4.
Experiment 1
In the first experiment, we demonstrated a disease gene
prioritization application to compare the performance of
optimizing different norms in MKL. The computational
definition of gene prioritization is mentioned in our
earlier work [7,27,28]. In this paper, we applied four
1-SVM MKL algorithms to combine kernels derived
from 9 heterogeneous genomic sources (shown in sec-
tion 1 of Additional file 1) to prioritize 620 genes that
are annotated to be relevant for 29 diseases in OMIM.
The performance was evaluated by leave-one-out (LOO)
validation: for each disease which contains K relevant
genes, one gene, termed the “defector” gene, was
removed from the set of training genes and added to 99
randomly selected test genes (test set). We used the
remaining K - 1 genes (training set) to build our priori-
tization model. Then, we prioritized the test set of 100
genes with the trained model and determined the rank
of that defector gene in test data. The prioritization
function in (22) scored the relevant genes higher and
others lower, thus, by labeling the “defector” gene as
class “+1” and the random candidate genes as class “-1”,
we plotted the Receiver Operating Characteristic (ROC)
curves to compare different models using the error of
AUC (one minus the area under the ROC curve).
The kernels of data sources were all constructed using

linear functions except the sequence data that was
transformed into a kernel using a 2-mer string kernel
function [29] (details in section 1 of Additional file 1).
In total 9 kernels were combined in this experiment.
The regularization parameter ν in 1-SVM was set to 0.5
for all comparing algorithms. Since there was no hyper-
parameter needed to be tuned in LOO validation, we
reported the LOO results as the performance of general-
ization. For each disease relevant gene, the 99 test genes
were randomly selected in each LOO validation run
from the whole human protein-coding genome. We
repeated the experiment 20 times and the mean value
and standard deviation were used for comparison.
Experiment 2
In the second experiment we used the same data sources
and kernel matrices as in the previous experiment to
prioritize 9 prostate cancer genes recently discovered by
Eeles et al. [30], Thomas et al. [31] and Gudmundsson et
al. [32]. A training set of 14 known prostate cancer genes

Yu et al. BMC Bioinformatics 2010, 11:309
http://www.biomedcentral.com/1471-2105/11/309

Page 10 of 24



was compiled from the reference database OMIM includ-
ing only the discoveries prior to January 2008. This train-
ing set was then used to train the prioritization model. For
each novel prostate cancer gene, the test set contained the
newly discovered gene plus its 99 closest neighbors on the
chromosome. Besides the error of AUC, we also compared
the ranking position of the novel prostate cancer gene
among its 99 closet neighboring genes. Moreover, we

compared the MKL results with the ones obtained via the
Endeavour application.
Experiment 3
The third experiment is taken from the work of Daemen
et al. about the kernel-based integration of genome-wide
data for clinical decision support in cancer diagnosis
[33]. Thirty-six patients with rectal cancer were treated
by combination of cetuximab, capecitabine and external

Table 4 Summary of data sets and algorithms used in five experiments

Nr. Data Set Problem Samples Classes Algorihtms Evaluation

1 disease relevant genes ranking 620 1 1-4 LOO AUC

2 prostate cancer genes ranking 9 1 1-4 AUC

3 rectal cancer patients classification 36 2 5-8,13-16 LOO AUC

4 endometrial disease classification 339 2 5-8,13-16 3-fold AUC

miscarriage classification 2356 2 5-8,13-16 3-fold AUC

pregnancy classification 856 2 9-12,17-20 3-fold AUC

5 UCI pen digit and optical digit classification 1000-3000 10 1A,1B,5B,5C,13B,13C CPU time

Table 3 Summary of algorithms implemented in the paper

Algorithm Nr. Formulation Nr. Name References Formulation Equations

1 1-A 1-SVM L∞ MKL [7] SOCP (20)

1 1-B 1-SVM L∞ MKL [7] QCQP (20)

2 2-A 1-SVM L∞ (0.5) MKL [7] SOCP (20)

2 2-B 1-SVM L∞ (0.5) MKL [7] QCQP (20)

3 3-A 1-SVM L1 MKL [12,13] SOCP (19)

3 3-B 1-SVM L1 MKL [12,13] QCQP (19)

4 4-A 1-SVM L2 MKL novel SOCP (23)

5 5-B SVM L∞ MKL [4,6,5] QCQP (26)

5 5-C SVM L∞ MKL [18] SIP (33)

6 6-B SVM L∞ (0.5) MKL novel QCQP (26)

7 7-A SVM L1 MKL [2] SOCP (25)

7 7-B SVM L1 MKL [4] QCQP (25)

8 8-A SVM L2 MKL novel SOCP (27)

8 8-C SVM L2 MKL [40] SIP (34)

9 9-B Weighted SVM L∞ MKL novel QCQP Suppl. (3)

10 10-B Weighted SVM L∞ (0.5) MKL novel QCQP Suppl. (3)

11 11-B Weighted SVM L1 MKL [25] QCQP Suppl. (2)

12 12-A Weighted SVM L2 MKL novel SOCP Suppl. (4)

13 13-B LSSVM L∞ MKL [17] QCQP (39)

13 13-C LSSVM L∞ MKL [17] SIP (41)

14 14-B LSSVM L∞ (0.5) MKL novel QCQP (39)

15 15-D LSSVM L1 MKL [22] linear (38)

16 16-B LSSVM L2 MKL novel SOCP (40)

16 16-C LSSVM L2 MKL novel SIP (42)

17 17-B Weighted LSSVM L∞ MKL novel QCQP Suppl. (8)

18 18-B Weighted LSSVM L∞ (0.5) MKL novel QCQP Suppl. (8)

19 19-D Weighted LSSVM L1 MKL [25] linear Suppl. (6)

20 20-A Weighted LSSVM L2 MKL novel SOCP Suppl. (9)

Summary of algorithms implemented in the paper. Because a same algorithm can be solved via different formulations. The different formulation numbers
correspond to a same algorithm number and represent multiple formulations. In total 20 different algorithms were implemented, which were solved through 28
different formulations. For an algorithm with different formulations, the solutions are identical and only differ by computational efficiency. Some algorithms have
already been proposed in the literature as shown in the reference column. The novel algorithms and formulations proposed in this paper are labeled as “novel”.
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beam radiotherapy and their tissue and plasma samples
were gathered at three time points: before treatment
(T0); at the early therapy treatment (T1) and at the
moment of surgery (T2). The tissue samples were hybri-
dized to gene chip arrays and after processing, the
expression was reduced to 6,913 genes. Ninety-six pro-
teins known to be involved in cancer were measured in
the plasma samples, and the ones that had absolute
values above the detection limit in less than 20% of the
samples were excluded for each time point separately.
This resulted in the exclusion of six proteins at T0 and
four at T1. “Responders” were distinguished from “non-
responders” according to the pathologic lymph node
stage at surgery (pN-STAGE). The “responder” class
contains 22 patients with no lymph node found at sur-
gery whereas the “non-responder” class contains 14
patients with at least 1 regional lymph node. Only the
two array-expression data sets (MA) measured at T0

and T1 and the two proteomics data sets (PT) measured
at T0 and T1 were used to predict the outcome of can-
cer at surgery.
Similar to the original method applied on the data

[33], we used R BioConductor DEDS as feature selection
techniques for microarray data and the Wilcoxon rank
sum test for proteomics data. The statistical feature
selection procedure was independent to the classifica-
tion procedure, however, the performance varied widely
with the number of selected genes and proteins. We
considered the relevance of features (genes and proteins)
as prior knowledge and systematically evaluated the per-
formance using multiple numbers of genes and proteins.
According to the ranking of statistical feature selection,
we gradually increased the number of genes and pro-
teins from 11 to 36, and combined the linear kernels
constructed by these features. The performance was
evaluated by LOO method, where the reason was two
folded: firstly, the number of samples was small (36
patients); secondly, the kernels were all constructed with
a linear function. Moreover, in LSSVM classification we
proposed the strategy to estimate the regularization
parameter l in kernel fusion. Therefore, no hyperpara-
meter was needed to be tuned so we reported the LOO
validation result as the performance of generalization.
Experiment 4
Our fourth experiment considered three clinical data
sets. These three data sets were derived from different
clinical studies and were used by Daemen and De Moor
[34] as validation data for clinical kernel function devel-
opment. Data set I contains clinical information on
402 patients with an endometrial disease who underwent
an echographic examination and color Droppler [35].
The patients are divided into two groups according
to their histology: malignant (hyperplasia, polyp, myoma,
and carcinoma) versus benign (proliferative

endometrium, secretory endometrium, atrophia). After
excluding patients with incomplete data, the data con-
tains 339 patients of which 163 malignant and 176
benign. Data set II comes from a prospective observa-
tional study of 1828 women undergoing transvaginal
sonography before 12 weeks gestation, resulting in data
for 2356 pregnancies of which 1458 normal at week 12
and 898 miscarriages during the first trimester [36]. Data
set III contains data on 1003 pregnancies of unknown
location (PUL) [37]. Within the PUL group, there are
four clinical outcomes: a failing PUL, an intrauterine
pregnancy (IUP), an ectopic pregnancy (EP) or a persist-
ing PUL. Because persisting PULs are rare (18 cases in
the data set), they were excluded, as well as pregnancies
with missing data. The final data set consists of 856 PULs
among which 460 failing PULs, 330 IUPs, and 66 EPs. As
the most important diagnostic problem is the correct
classification of the EPs versus non-EPs [38], the data
was divided as 790 non-EPs and 66 EPs. To simulate a
problem of combining multiple sources, for each data we
created eight kernels and combined them using MKL
algorithms for classification. The eight kernels included
one linear kernel, three RBF kernels, three polynomial
kernels and a clinical kernel. The kernel width of the first
RBF kernel is selected by empirical rules as four times
the average covariance of all the samples, the second and
the third kernel widths were respectively six and eight
times the average covariance. The degrees of the three
polynomial kernels were set to 2, 3, and 4 respectively.
The bias term of polynomial kernels was set to 1. The
clinical kernels were constructed as proposed by Daemen
and De Moor [33]. All the kernel functions are explained
in section 3 of Additional file 1. We noticed that the class
labels of the pregnancy data were quite imbalanced (790
non-EPs and 66 EPs). In literature, the class imbalanced
problem can be tackled by modifying the cost of different
classes in the objective function of SVM. Therefore, we
applied weighted SVM MKL and weighted LSSVM MKL
on the imbalanced pregnancy data. For the other two
data sets, we compared the performance of SVM MKL
and LSSVM MKL with different norms.
The performance of classification was benchmarked

using 3-fold cross validation. Each data set was randomly
and equally divided into 3 parts. As introduced in the
Methods section, when combining multiple pre-con-
structed kernels in LSSVM based algorithms, the regulari-
zation parameter l can be jointly estimated as the
coefficient of identity matrix. In this case we don’t need to
optimize any hyper-parameter in the LSSVM. In the esti-
mation approach of LSSVM and all approaches of SVM,
we therefore could use both training and validation data to
train the classifier, and test data to evaluate the perfor-
mance. The evaluation was repeated three times, so each
part was used once as test data. The average performance
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was reported as the evaluation of one repetition. In the
standard validation approach of LSSVM, each dataset was
partitioned randomly into three parts for training, valida-
tion and testing. The classifier was trained on the training
data and the hyper-parameter l was tuned on the valida-
tion data. When tuning the l, its values were sampled uni-
formly on the log scale from 2-10 to 210. Then, at optimal l,
the classifier was retrained on the combined training and
validation set and the resulting model is tested on the test-
ing set. Obviously, the estimation approach is more efficient
than the validation approach because the former approach
only requires one training process whereas the latter needs
to perform 22 times an additional training (21 l values plus
the model retraining). The performance of these two
approaches was also investigated in this experiment.
Experiment 5
As introduced in the Methods section, a same MKL pro-
blem can be formulated as different optimization problems
such as SOCP, QCQP, and SIP. The accuracy of the dis-
cretization method for solving SIP is mainly determined
by the tolerance value ε predefined in the stopping criter-
ion. In our implementation, ε was set to 5 × 10-4. These
different formulations yield the same result but mainly dif-
fer on computational efficiency. In the fifth experiment we
compared the efficiency of these optimization techniques
on two large scale UCI data sets. The two data sets are
digit recognition data for pen based handwriting recogni-
tion and optical based digit recognition. Both data sets
contain more than 6000 data samples thus they were used
as real large scale data sets to evaluate the computational
efficiency. In our implementation, the optimization pro-
blems were solved by Sedumi [14], MOSEK [15] and the
Matlab optimization toolbox. All the numerical experi-
ments were carried on a dual Opteron 250 Unix system
with 16 G memory and the computational efficiency was
evaluated by the CPU time (in seconds).

Results
Experiment 1: disease relevant gene prioritization by
genomic data fusion
In the first experiment, the L2 1-SVM MKL algorithm
performed the best (Error 0.0780). As shown in Table 5,
the L∞ and L1 approaches all performed significantly

worse than the L2 approach. For example, in the current
experiment, when setting the minimal boundary of the
kernel coefficients to 0.5, each data source was ensured
to have a minimal contribution in integration, thereby
improving the L∞ performance from 0.0923 to 0.0806,
although still lower than L2. In Figure 1 we illustrate the
optimal kernel coefficients of different approaches. As
shown, the L∞ method assigned dominant coefficients to
Text mining and Gene Ontology data, whereas other
data sources were almost discarded from integration. In
contrast, the L2 approach evenly distributed the coeffi-
cients over all data sources and thoroughly combined
them in integration. When combining multiple kernels,
sparse coefficients combine the model only with one or
two kernels, making the combined model fragile with
respect to the uncertainty and novelty. In real problems,
the relevance of a new gene to a certain disease may not
have been investigated thus a model solely based on
Text and GO annotation is less reliable. L2 based inte-
gration evenly combines multiple genomic data sources.
In this experiment, the L2 approach showed the same
effect as the regularized L∞ by setting some minimal
boundaries on kernel coefficients. However, in the regu-
larized L∞, the minimal boundary θmin usually is prede-
fined according to the “rule of thumb”. The main
advantage of the L2 approach is that the θmin values are
determined automatically for different kernels and the
performance is shown to be better with the manually
selected values.

Experiment 2: Prioritization of recently discovered
prostate cancer genes by genomic data fusion
In the second experiment, recently discovered prostate
cancer genes were prioritized using the same data
sources and algorithms as in the first experiment. As
shown in Table 6, the L2 method significantly outper-
formed other methods on prioritization of gene CDH23,
and JAZF1. For 5 other genes (CPNE, EHBP1, MSMB,
KLK3, IL16), the performance of the L2 method was
comparable to the best result. In section 4 of Additional
file 1, we also presented the optimal kernel coefficients
and the prioritization results for individual sources. As
shown in Additional file 1, the L∞ algorithm assigned

Table 5 Results of experiment 1: prioritization of 620 disease relevant genes by genomic data fusion

Error of AUC (mean) Error of AUC (std.) p-value corr corr corr corr

L∞ 0.0923 0.0035 2.98 · 10-17 - 0.94 0.66 0.82

L∞(0.5) 0.0806 0.0033 2.66 · 10-06 0.94 - 0.82 0.92

L1 0.0908 0.0042 1.92 · 10-16 0.66 0.82 - 0.90

L2 0.0780 0.0034 - 0.82 0.92 0.90 -

Results of experiment 1: disease relevant gene prioritization by genomic data fusion. The error of AUC values is evaluated by LOO validation in 20 random
repetitions. The best performance (L2) is shown in bold. The p-values are compared with the best performance using a paired t-test. As shown, the L2 method is
significantly better than other methods. The paired Spearman correlation scores compare similarities of rankings obtained by different approaches when
compared with the target rankings (denoted as -). Higher Spearman correlation values mean that the two ranking results are much similar.
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Figure 1 Optimal kernel coefficients for disease gene prioritization. Optimal kernel coefficients assigned on genomic data sources in
disease gene prioritization. For each method, the average coefficients of 20 repetitions are shown. The three most important data sources
ranked by L∞ are Text, GO, and Motif. The coefficients on other six sources are almost zero. The L2 method shows the same ranking on these
three best data sources as L∞, moreover, it also shows ranking for other six sources. Thus, as another advantage of L2 method, it provides more
refined ranking of data sources than L∞ method in data integration.
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most of the coefficients to Text and Microarray data.
Text data performs well in the prioritization of known
disease genes, however, does not always work the best
for newly discovered genes. This experiment demon-
strates that when prioritizing novel prostate cancer rele-
vant genes, the L2 MKL approach evenly optimized the
kernel coefficients to combine heterogeneous genomic
sources and its performance was significantly better
than the L∞ method. Moreover, we also compared the
kernel based data fusion approach with the Endeavour
gene prioritization software: for 6 genes the MKL
approach performed significantly better than Endeavour.

Experiment 3: Clinical decision support by integrating
microarray and proteomics data
One of the main contributions of this paper is that the
L2 MKL notion can be applied on various machine
learning problems. The first two experiments demon-
strated a ranking problem using 1-SVM MKL to priori-
tize disease relevant genes. In the third experiment we
optimized the L∞, L1, and L2 -norm in SVM MKL and
LSSVM MKL classifiers to support the diagnosis of
patients according to their lymph node stage in rectal
cancer development. The performance of the classifiers
greatly depended on the selected features, therefore, for
each classifier we compared 25 feature selection results
(as a grid of 5 numbers of genes multiplied by 5 num-
bers of proteins). As shown in Table 7, the best perfor-
mance was obtained with LSSVM L1 (error of AUC =

0.0325) using 25 genes and 15 proteins. The L2 LSSVM
MKL classifier was also promising because its perfor-
mance was comparable to the best result. In particular,
for the two compared classifiers (LSSVM and SVM), the
L1 and L2 approaches significantly outperformed the L∞
approach. We also tried to regularize the kernel coeffi-
cients in L∞ MKL using different θmin values. Nine dif-
ferent θmin were tried uniformly from 0.1 to 0.9 and the
changes in performance is shown in Figure 2. As shown,
increasing the θmin value steadily improves the perfor-
mance of LSSVM MKL and SVM MKL on the rectal
cancer data sets. However, determining the optimal θmin

was a non-trivial issue. When θmin was smaller than 0.6,
the performance of LSSVM MKL L∞ remained
unchanged, meaning that the “rule of thumb” value 0.5
used in experiment 1 is not valid here. In comparison,
when using the L2 based MKL classifiers, there is no
need to specify θmin and the performance is still com-
parable to the best performance obtained with regular-
ized L∞ MKL.
In LSSVM kernel fusion, we estimated the l jointly as a

coefficient assigned to an identity matrix. Since the num-
ber of samples is small in this experiment, the standard
cross-validation approach to select the optimal l on vali-
dation data was not tried. To investigate whether the esti-
mated l value is optimal, we set l to 51 different values
uniformly sampled on the log2 scale from -10 to 40. We
compared the joint estimation result with the optimal clas-
sification performance among the sampled l values. The

Table 6 Results of experiment 2: prioritization of prostate cancer genes by genomic data fusion

Name Ensemble id References L∞ L∞(0.5) L1 L2 Endeavour

CPNE ENSG00000085719 Thomas et al. 0.3030 0.2323 0.1010 0.1212 -

31/100 24/100 11/100 13/100 70/100

CDH23 ENSG00000107736 Thomas et al. 0.0606 0.0303 0.0202 0.0101 -

7/100 4/100 3/100 2/100 78/100

EHBP1 ENSG00000115504 Gudmundsson et al. 0.5354 0.5152 0.3434 0.3939 -

54/100 52/100 35/100 40/100 57/100

MSMB ENSG00000138294 Eeles et al. 0.0202 0.0202 0.0505 0.0303 -

Thomas et al. 3/100 3/100 6/100 4/100 69/100

KLK3 ENSG00000142515 Eeles et al. 0.3434 0.3535 0.2929 0.2929 -

35/100 36/100 30/100 30/100 28/100

JAZF1 ENSG00000153814 Thomas et al. 0.0505 0.0202 0.0202 0.0202 -

6/100 3/100 3/100 3/100 7/100

LMTK2 ENSG00000164715 Eeles et al. 0.3131 0.4646 0.8081 0.7677 -

32/100 47/100 81/100 77/100 31/100

IL16 ENSG00000172349 Thomas et al. 0 0.0101 0.0303 0.0101 -

1/100 2/100 4/100 2/100 72/100

CTBP2 ENSG00000175029 Thomas et al. 0.8283 0.5758 0.6364 0.6869 -

83/100 58/100 64/100 69/100 38/100

Results of experiment 2: prioritization of prostate cancer genes by genomic data fusion. For each novel prostate cancer gene, the first row shows the error of
AUC values and the second row lists the ranking position of the prostate cancer gene among its 99 closet neighboring genes.
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joint estimation results were found as optimal for most of
the results. An example is illustrated in Figure 3 for the
integration of four kernels constructed by 27 gene features
and 17 protein features. The coefficients estimated by the
L∞-norm were almost 0 thus the l values were very big. In
contrast, the l values estimated by the non-sparse L2
method were at reasonable scales.

Experiment 4: Clinical decision support by integrating
multiple kernels
In the fourth experiment we validated the proposed
approach on three clinical data sets containing more
samples. On the endometrial and miscarriage data sets,
we compared eight MKL algorithms with various norms.
For the imbalanced pregnancy data set, we applied eight
weighted MKL algorithms. The results are shown in

Table 8, 9, and 10. On endometrial data, the difference
of performance was rather small. Though the two L2
methods were not optimal, they were comparable to the
best result. On miscarriage data, the L2 methods per-
formed significantly better than comparing algorithms.
On pregnancy data, the weighted L2 LSSVM MKL and
weighted L1 LSSVM MKL performed significantly better
than others. We also regularized the kernel coefficients
using different θmin values on LSSVM L∞ and SVM L∞
MKL classifiers. The results are presented in Figure 4,
Figure 5 and Figure 6. As shown, the optimal θmin value
differs across data sets thus the “rule of thumb” value of
0.5 may not work for all the problems. For the endome-
trial and miscarriage data sets, the optimal θmin for both
MKL classifiers is 0.2. For pregnancy data set, the opti-
mal θmin value for LSSVM is 1 and for SVM 0.9. In

Table 7 Results of experiment 3: classification of patients in rectal cancer clinical decision using microarray and
proteomics data sets

LSSVM L∞ SVM L∞

14 p 15 p 16 p 17 p 18 p 14 p 15 p 16 p 17 p 18 p

24 g 0.0584 0.0519 0.0747 0.0812 0.0812 0.1331 0.1331 0.1331 0.1331 0.1364

25 g 0.0390 0.0390 0.0519 0.0617 0.0649 0.1136 0.1104 0.1234 0.1201 0.1234

26 g 0.0487 0.0487 0.0812 0.0844 0.0877 0.1266 0.1136 0.1234 0.1299 0.1364

27 g 0.0617 0.0649 0.0812 0.0877 0.0942 0.1429 0.1364 0.1364 0.1331 0.1461

28 g 0.0552 0.0487 0.0617 0.0747 0.0714 0.1429 0.1331 0.1331 0.1364 0.1396

LSSVM L∞ (0.5) SVM L∞ (0.5)

14 p 15 p 16 p 17 p 18 p 14 p 15 p 16 p 17 p 18 p

24 g 0.0584 0.0519 0.0747 0.0812 0.0812 0.1266 0.1006 0.1266 0.1299 0.1331

25 g 0.0390 0.0390 0.0519 0.0617 0.0649 0.1136 0.1071 0.1234 0.1201 0.1234

26 g 0.0487 0.0487 0.0812 0.0844 0.0877 0.1136 0.1136 0.1201 0.1266 0.1331

27 g 0.0617 0.0649 0.0812 0.0877 0.0942 0.1364 0.1364 0.1364 0.1331 0.1461

28 g 0.0552 0.0487 0.0617 0.0747 0.0714 0.1299 0.1299 0.1299 0.1331 0.1364

LSSVM L1 SVM L1

14 p 15 p 16 p 17 p 18 p 14 p 15 p 16 p 17 p 18 p

24 g 0.0487 0.0487 0.0682 0.0682 0.0747 0.0747 0.0584 0.0714 0.0682 0.0747

25 g 0.0357 0.0325 0.0422 0.0455 0.0455 0.0584 0.0519 0.0649 0.0714 0.0714

26 g 0.0357 0.0357 0.0455 0.0455 0.0455 0.0584 0.0519 0.0682 0.0682 0.0682

27 g 0.0357 0.0357 0.0455 0.0487 0.0519 0.0617 0.0584 0.0714 0.0682 0.0682

28 g 0.0422 0.0325 0.0487 0.0487 0.0519 0.0584 0.0584 0.0649 0.0649 0.0682

LSSVM L2 SVM L2

14 p 15 p 16 p 17 p 18 p 14 p 15 p 16 p 17 p 18 p

24 g 0.0552 0.0487 0.0747 0.0779 0.0714 0.0909 0.0877 0.0974 0.0942 0.1006

25 g 0.0390 0.0390 0.0487 0.0552 0.0552 0.0747 0.0649 0.0812 0.0844 0.0844

26 g 0.0390 0.0455 0.0552 0.0649 0.0649 0.0747 0.0584 0.0812 0.0779 0.0779

27g 0.0422 0.0487 0.0552 0.0584 0.0649 0.0779 0.0812 0.0844 0.0812 0.0812

28 g 0.0455 0.0325 0.0487 0.0584 0.0552 0.0812 0.0714 0.0812 0.0779 0.0812

The table shows the error of AUC in patient classification using microarray and proteomics data. In LSSVM L∞, L∞ (0.5), and L2, the regularization parameter l was
estimated jointly as the kernel coefficient of an identity matrix. In LSSVM L1, l was set to 1. In all SVM approaches, the C parameter of the box constraint was set
to 1. In the table, the row and column labels represent the numbers of genes (g) and proteins (p) used to construct the kernels. The genes and proteins were
ranked by feature selection techniques (see text). The AUC of LOO validation was evaluated without the bias term b (as the implicit bias approach) because its
value varied by each left out sample. In this problem, considering the bias term decreased the AUC performance. The performance was compared among eight
algorithms for the same number of genes and proteins, where the best values (the smallest Error of AUC) are represented in bold, the second best ones in italic.
The best performance of all the feature selection results is underlined. The table presents the 25 best feature selection results of each method. The complete
experimental results containing 26 different numbers of genes and 26 numbers of proteins is available at http://homes.esat.kuleuven.be/~sistawww/bioi/syu/
l2lssvm.html.
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comparison, on the miscarriage and pregnancy data set,
the performance of the L2 algorithm is comparable or
even much better than the best regularized L∞ algo-
rithm. For the endometrial data set, though the optimal
regularized L∞ LSSVM and SVM MKL classifiers out-
perform L2 classifiers, L2 methods still perform better
than or as equal as the unregularized L∞ method.

To investigate whether the combination of multiple
kernels performs as well as the best individual kernel,
we evaluated the performance of all the individual ker-
nels in section 5 of Additional file 1. As shown, the clin-
ical kernel proposed by Daemen and De Moor [33] has
better quality than linear, RBF and polynomial kernels
on endometrial and pregnancy data sets. For the

Figure 2 The effect of θmin on LSSVM MKL and SVM MKL classifier in rectal cancer diagnosis. The effect of θmin in LSSVM MKL and SVM
MKL classifiers for rectal cancer diagnosis. Figure on the top: the performance of LSSVM MKL. Figure on the bottom: the performance of SVM
MKL. In each figure we compare three feature selection results. The performance of L2 MKL is shown as dashed lines.
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miscarriage data set, the first RBF kernel has better
quality than the other seven kernels. Despite the differ-
ence in individual kernels, the performance of MKL is
comparable to the best individual kernel, demonstrating
that MKL is also useful to combine candidate kernels
derived from a single data set.
The effectiveness of MKL can also be justified by

investigating the kernel coefficients optimized on all the

data sets and classifiers. As shown in section 6 of Addi-
tional file 1, the kernel coefficients optimized by L∞
MKL algorithms were sparse whereas the L2 ones were
more evenly assigned to different kernels. The best indi-
vidual kernels of all data sets usually get dominant coef-
ficient, explaining why the performance of MKL
algorithms is comparable to the best individual kernels.

Figure 3 Benchmark of various l values in LSSVM MKL classifiers in rectal cancer diagnosis. Benchmark of various l values in LSSVM MKL
classifiers for rectal cancer diagnosis. The four kernels were constructed using 27 gene features and 17 protein features (see text). For each fixed
l value, the error of AUC was evaluated by LOO validation. The maximal and minimal estimated l in L∞ and L2 MKL are shown.

Table 8 Results of experiment 4 data set I: classification
of endometrial disease patients using multiple kernels
derived from clinical data

Classifier Mean - error of
AUC

Std. - error of
AUC

pvalue

LSSVM L∞ (0.5)
MKL

0.2353 0.0133 -

SVM L∞ (0.5)
MKL

0.2388 0.0178 0.4369

SVM L∞ MKL 0.2417 0.0165 0.2483

LSSVM L2 MKL 0.2456 0.0124 0.0363

SVM L2 MKL 0.2489 0.0178 0.0130

SVM L1 MKL 0.2513 0.0144 0.0057

LSSVM L1 MKL 0.2574 0.0189 9.98 · 10-5

LSSVM L∞ MKL 0.2678 0.0130 1.53 · 10-6

Results of experiment 4 data set I: classification of endometrial disease
patients using multiple kernels derived from clinical data. The classifier with
the best performance is shown in bold. The p-values are compared with the
best performance using a paired t-test. The performance of classifiers is sorted
from high to low according to the p-values.

Table 9 Results of experiment 4 data set II: classification
of miscarriage patients using multiple kernels derived
from clinical data

Classifier Mean - error of
AUC

Std. - error of
AUC

pvalue

SVM L2 MKL 0.1975 0.0037 -

LSSVM L2 MKL 0.2002 0.0049 0.0712

LSSVM L∞ (0.5)
MKL

0.2027 0.0045 9.77 · 10-4

SVM L∞ MKL 0.2109 0.0040 9.55 · 10-12

SVM L∞ (0.5) MKL 0.2168 0.0040 1.79 · 10-12

LSSVM L1 MKL 0.2132 0.0029 1.11 · 10-13

SVM L1 MKL 0.2297 0.0038 1.10 · 10-15

LSSVM L∞ MKL 0.2319 0.0015 3.42 · 10-21

Results of experiment 4 data set II: classification of miscarriage patients using
multiple kernels derived from clinical data. The classifier with the best
performance is shown in bold. The p-values are compared with the best
performance using a paired t-test. The performance of classifiers is sorted
from high to low according to the p-values.
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In this paper, the regularization parameter l in LSSVM
classifiers was jointly estimated in MKL. Since the clinical
data sets contain a sufficient number of samples to select
the l by cross validation, we systematically compared the
estimation approach with the standard validation approach
to determine the l values. As shown in Table 11, the esti-
mation approach based on L∞ performed worse than the
validation approach. This is probably because the esti-
mated l values are either very big or very small when the
kernel coefficients were sparse. In contrast, the L2 based
estimation approach yielded comparable performance as
the validation approach. We also benchmarked the perfor-
mance of LSSVM MKL classifiers using 21 different static
l values on the data sets and the results are shown in sec-
tion 7 of Additional file 1. In real problems, to select the
optimal l value in LSSVM is a non-trivial issue and it is
often optimized as a hyper-parameter on validation data.

The main advantage of L2 MKL is that the estimation
approach is more computational efficient than cross vali-
dation and yields a comparable performance.

Experiment 5: Computational complexity and numerical
experiments on large scale problems
Overview of the convexity and complexity
We concluded the convexity and the time complexity
of all proposed methods in Table 12. All problems
proposed in this paper are convex or can be trans-
formed to a convex formulation by relaxation. The
LSSVM SIP formulation has the lowest time complex-
ity thus it is more preferable for large scale problems.
We verified the efficiency in numerical experiments,

which adopts two UCI digit recognition data sets (pen-
digit and optical digit) to compare the computational
time of the proposed algorithms.

Table 10 Results of experiment 4 data set III: classification of PUL patients using multiple kernels derived from clinical
data

Classifier Mean - error of AUC Std. - error of AUC pvalue

Weighted LSSVM L2 MKL 0.1165 0.0100 -

Weighted LSSVM L1 MKL 0.1243 0.0171 0.0519

Weighted LSSVM L∞ (0.5) MKL 0.1290 0.0206 0.0169

Weighted SVM L2 MKL 0.1499 0.0248 4.79 · 10-5

Weighted SVM L∞ MKL 0.1552 0.0210 1.02 · 10-6

Weighted SVM L∞ (0.5) 0.1551 0.0153 3.87 · 10-6

Weighted SVM L1 MKL 0.1594 0.0162 2.29 · 10-9

Weighted LSSVM L∞ MKL 0.1651 0.0174 4.41 · 10-10

Results of experiment 4 data set II: classification of PUL patients using multiple kernels derived from clinical data. The classifier with the best performance is
shown in bold. The p-values are compared with the best performance using a paired t-test. The performance of classifiers is sorted from high to low according
to the p-values.

Figure 4 The effect of θmin in LSSVM MKL and SVM MKL classifier on endometrial disease data set. The effect of θmin in LSSVM MKL and
SVM MKL classifiers on endometrial disease data set. Figure on the left: performance of the regularized LSSVM L∞ MKL with various θmin values.
Figure on the right: performance of the regularized SVM L∞ MKL. The black dashed lines represent the performance of the L2 MKL classifiers. The
error bars are standard deviations of 20 repetitions.
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QP formulation is more efficient than SOCP
We investigated the efficiency of various formulations to
solve the 1-SVM MKL. As mentioned, the problems
presented in (15) can be solved either as QCLP or as
SOCP. We applied Sedumi [14] to solve it as SOCP and
MOSEK to solve it as QCLP and SOCP. We found that
solving the QP by MOSEK was most efficient (142 sec-
onds). In contrast, the MOSEK-SOCP method costed
2608 seconds and the Sedumi-SOCP method took 4500
seconds. This is probably because when transforming a
QP to a SOCP, a large number of additional variables
and constraints are involved, thus becoming more
expensive to solve.
SIP formulation is more efficient than QCQP
To compare the computational time of solving MKL
classifiers based on QP and SIP formulations, we scaled
up the kernel fusion problem in three dimensions: the
number of kernels, the number of classes and the num-
ber of samples. As shown in Figure 7, the SIP

formulation of LSSVM MKL increases linearly with the
number of samples and kernels, and is barely influenced
by the number of classes. Solving the SIP based LSSVM
MKL is significantly faster than solving SVM MKL
because the former optimizes through iterations on a
linear systems whereas the latter iterates over quadratic
systems. For LSSVM MKL, the SIP formulation is also
more preferable than the quadratic formulation. A quad-
ratic system is a memory intensive problem and its
complexity increases exponentially with the number of
kernels and the number of samples in MKL. In contrast,
the SIP formulation separates the problem into a series
of linear systems, whose complexity is only determined
by the number of samples and less affected by the num-
ber of kernels or classes. As shown in step 3 of Algo-
rithm 5.2, the coefficient matrix of the linear system is a
combined single kernel matrix and is constant with
respect to multiple classes, thus it can be solved very
efficiently. We have also compared the CPU time of L∞

Figure 5 The effect of θmin in LSSVM MKL and SVM MKL classifier on miscarriage data set. The effect of θmin in LSSVM MKL and SVM MKL
classifiers on miscarriage data set. Figure on the left: performance of the regularized LSSVM L∞ MKL with various θmin values. Figure on the right:
performance of the regularized SVM L∞ MKL. The black dashed lines represent the performance of the L2 MKL classifiers. The error bars are
standard deviations of 20 repetitions.

Figure 6 The effect of θmin in weighted LSSVM MKL and weighted SVM MKL classifier on pregnancy data set. The effect of θmin in
LSSVM MKL and SVM MKL classifiers on pregnancy data set. Figure on the left: performance of the regularized LSSVM L∞ MKL with various θmin

values. Figure on the right: performance of the regularized SVM L∞ MKL. The black dashed lines represent the performance of the L2 MKL
classifiers. The error bars are standard deviations of 20 repetitions.
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and L2 LSSVM MKL on large data sets and their effi-
ciency is very similar to each other.

Discussion
In this paper we propose a new L2 MKL framework as
the complement to the existing L∞ MKL method pro-
posed by Lanckriet et al. The L2 MKL is characterized
by the non-sparse integration of multiple kernels to
optimize the objective function of machine learning pro-
blems. On four real bioinformatics and biomedical
applications, we systematically validated the perfor-
mance through extensive analysis. The motivation for L2
MKL is as follows. In real biomedical applications, with
a small number of sources that are believed to be truly
informative, we would usually prefer a nonsparse set of
coefficients because we would want to avoid that the
dominant source (like text mining or Gene Ontology)
gets a coefficient close to 1. The reason to avoid sparse

coefficients is that there is a discrepancy between the
experimental setup for performance evaluation and “real
world” performance. The dominant source will work
well on a benchmark because this is a controlled situa-
tion with known outcomes. We for example set up a set
of already known genes for a given disease and want to
demonstrate that our model can capture the available
information to discriminate between a gene from this
set and randomly selected genes (for example, in a
cross-validation setup). Given that these genes are
already known to be associated with the disease, this
information will be present in sources like text mining
or Gene Ontology in the gene prioritization problem.
These sources can then identify these known genes with
high confidence and should therefore be assigned a high
weight. However, when trying to identify truly novel
genes for the same disease, the relevance of the informa-
tion available through such data sources will be much
lower and we would like to avoid anyone data source to
complete dominate the other. Given that setting up a
benchmark requires knowledge of the association
between a gene and a disease, this effect is hard to
avoid. We can therefore expect that if we have a
smoother solution that performs as well as the sparse
solution on benchmark data, it is likely to perform bet-
ter on real discoveries.
For the specific problem of gene prioritization, an

effective way to address this problem is to setup a
benchmark where information is “rolled back” a number
of years (e.g., two years) prior to the discovery of the
association between a gene and a disease (i.e., older
information is used so that the information about the
association between the gene and the disease is not yet
contained in data sources like text mining or Gene
Ontology). Given that the date at which the association
was discovered is different for each gene, the setup of
such benchmarks is notoriously difficult. In future work,
we plan to address this problem by freezing available
knowledge at a given data and then collecting novel dis-
coveries and benchmarking against such discoveries in a
fashion reminiscent of CASP (Critical Assessment of
protein Structure Prediction) [39].
The technical merit of the proposed L2 MKL lay in

the dual form of the learning problems. Though in the
literature the issue of using different norms in MKL is
recently investigated by Kloft et al. [40,9] and Kowalski
et al. [41], their formulations are based on the primal
problems. In our paper, the notion of the proposed L2
method is discussed in the dual space, which differs
from regularizing the norm of coefficients term in the
primal space. We have theoretically proven that opti-
mizing the L2 regularization of kernel coefficients in the
primal problem corresponds to solving the L2-norm of
kernel components in the dual problem. Clarifying this

Table 11 Comparison of the performance obtained by
joint estimation of l and standard cross-validation in
LSSVM MKL

Data Set Norm Validation
Approach

Estimation
Approach

endometrial
disease

L∞ 0.2625 ± 0.0146 0.2678 ± 0.0130

L2 0.2584 ± 0.0188 0.2456 ± 0.0124

miscarriage L∞ 0.1873 ± 0.0100 0.2319 ± 0.0015

L2 0.1912 ± 0.0089 0.2002 ± 0.0049

pregnancy L∞ 0.1321 ± 0.0243 0.1651 ± 0.0173

L2 0.1299 ± 0.0172 0.1165 ± 0.0100

Comparison of the performance obtained by joint estimation of l and
standard cross-validation using LSSVM MKL. As shown, the estimation
approach based on L2 MKL is better than L∞ MKL. This is because when the
kernel coefficients are sparse, the estimated regularization parameters l are
either very big or very small, which are usually not optimal values in LSSVM.
In contrast, the l values estimated by L2 method are at normal scale and
often close to the optimal values.

Table 12 Convexity and complexity of all methods

Method convexity complexity

1-SVM SOCP L∞, L2 convex O((p + n)2n2.5)

1-SVM QCQP L∞ convex O(pn3)

SVM SOCP L∞, L2 convex O((p + n)2(k + n)2.5)

SVM QCQP L∞ convex O(pk2n2 + k3n3)

SVM SIP L∞ convex O(τ(kn3 + p3))

SVM SIP L2 relaxation O(τ(kn3 + p3))

LSSVM SOCP L∞, L2 convex O((p + n)2(k + n)2.5)

LSSVM QCQP L∞, L2 convex O(pk2n2 + k3n3)

LSSVM SIP L∞ convex O(τ(n2 + p3))

LSSVM SIP L2 relaxation O(τ(n2 + p3))

Convexity and complexity of all methods. n is the number of samples, p is the
number of kernels, k is the number of classes, τ is the number of iterations in
SIP. The complexity of LSSVM SIP depends on the algorithms used to solve
the linear system. For the conjugate gradient method, the complexity is
between O(n1.5) and O(n2) [22].
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dual solution enabled us to directly solve the L2 problem
as a convex SOCP. Moreover, the dual solution can be
extended to various other machine learning problems.
In this paper we have shown the extensions of 1-SVM,
SVM and LSSVM. As a matter of fact, the L2 dual solu-
tion can also be applied in kernel based clustering analy-
sis and regression analysis for a wide range of
applications. Another main contribution of our paper is
the novel LSSVM L2 MKL proposed for classification
problems. As known, when applying various machine
learning techniques to solve real computational biologi-
cal problems, the performance may depend on the data
set and the experimental settings. When the perfor-
mance evaluations of various methods are comparable,
but with one method showing significant computational
efficiency over other methods, this would be a “solid”
advantage of this method. In this paper, we have shown
that the LSSVM MKL classifier based on SIP formula-
tion can be solved more efficiently than SVM MKL.
Moreover, the performance of LSSVM L2 MKL is always
comparable to the best performance. The SIP based

LSSVM L2 MKL classifier has two main “solid advan-
tages": the inherent time complexity is small and the
regularization parameter l can be jointly estimated in
the experimental setup. Due to these merits, LSSVM L2
MKL is a very promising technique for problems per-
taining to large scale data fusion.

Conclusions
This paper compared the effect of optimizing different
norms in multiple kernel learning in a systematic frame-
work. The obtained results extend and enrich the statis-
tical framework of genomic data fusion proposed by
Lanckriet et al. [4,6] and Bach et al. [5]. According to
the optimization of different norms in the dual problem
of SVM, we proposed L∞, L1, and L2 MKL, which are
respectively corresponding to the L1 regularization, aver-
age combination, and L2 regularization of kernel coeffi-
cients addressed in the primal problem.
Six real biomedical data sets were investigated in this

paper, where L2 MKL approach was shown advanta-
geous over the L∞ method. We also proposed a novel

Figure 7 Comparison of QP formulation and SIP formulation on large scale data. Comparison of QP formulation and SIP formulation on
large scale data. Figure on the top left: comparison of SOCP and QCQP formulations to solve 1-SVM MKL using two kernels. To simulate the
ranking problem in 1-SVM, 3000 digit samples were retrieved as training data. Two kernels were constructed respectively for each data source
using RBF kernel functions. The computational time was thus evaluated by combining the two 3000 × 3000 kernel matrices. Figure on the top
right: comparison of SVM and LSSVM MKL on problems with increasing number of samples. The benchmark data set was made up of two linear
kernels and labels in 10 digit classes. The number of data points was increased from 1000 to 3000. Figure on the bottom left: comparison of
SVM and LSSVM MKL on problems with increasing number of kernels. The benchmark data set was constructed by 2000 samples labeled in
2 classes. We used different kernel widths to construct the RBF kernel matrices and increase the number of kernel matrices from 2 to 200. The
QCQP formulations had memory issues when the number of kernels was larger than 60. Figure on the bottom right: comparison of SVM and
LSSVM on problems with increasing number of classes. The benchmark data was made up of two linear kernel matrices and 2000 samples. The
samples were equally and randomly divided into various number of classes. The class number gradually increased from 2 to 20.
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and efficient LSSVM L2 MKL classifier to learn the opti-
mal combination of multiple large scale data sets. All
the algorithms implemented in this paper are freely
accessible on http://homes.esat.kuleuven.be/~sistawww/
bioi/syu/l2lssvm.html.

Appendix
Algorithm 0.1: SIP-SVM-MKL(Kj, Yq, C, ε)
Obtain the initial guess    
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Algorithm 0.2: SIP-LSSVM-MKL(Kj, Yq, ε)
Obtain the initial guess
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Additional material

Additional file 1: The supplementary material contains (1) Genomic data
sources used in experiment 1 and 2; (2) MKL extensions for Weighted
SVM and Weighted LSSVM; (3) Kernel functions used in the paper; (4)
Optimal kernel coefficients and performance of individual data sources in
prostate cancer genes prioritization; (5) Performance of individual kernels
in experiment 4; (6) Optimal weights assigned on each individual kernels
in Experiment 4; (7) The effect of cost function regularization parameter
l of LSSVM in experiment 4; (8) Experimental results using MKL
algorithms based on other norms.
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