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Abstract

Background: Selective pressure in molecular evolution leads to uneven distributions of amino acids and nucleotides.
In fact one observes correlations among such constituents due to a large number of biophysical mechanisms (folding
properties, electrostatics, ..). To quantify these correlations the mutual information -after proper normalization - has
proven most effective. The challenge is to navigate the large amount of data, which in a study for a typical protein
cannot simply be plotted.

Results: To visually analyze mutual information we developed a matrix visualization tool that allows different views on
the mutual information matrix: filtering, sorting, and weighting are among them. The user can interactively navigate a
huge matrix in real-time and search e.g,, for patterns and unusual high or low values. A computation of the mutual
information matrix for a sequence alignment in FASTA-format is possible. The respective stand-alone program
computes in addition proper normalizations for a null model of neutral evolution and maps the mutual information to
Z-scores with respect to the null model.

Conclusions: The new tool allows to compute and visually analyze sequence data for possible co-evolutionary signals.
The tool has already been successfully employed in evolutionary studies on HIV1 protease and acetylcholinesterase.
The functionality of the tool was defined by users using the tool in real-world research. The software can also be used
for visual analysis of other matrix-like data, such as information obtained by DNA microarray experiments. The package
is platform-independently implemented in Java and free for academic use under a GPL license.
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easily grasp structures, scales, etc. in such large amounts

of data.

Visual-Interactive Approach and Matrix Visualization
Recently, visualization has been widely recognized as a
promising approach to help analysts and researchers to
better understand such large amounts of complex data.
The approach suggests to have visual-interactive displays
appropriately encode information using visual mappings;
and let the user interactively manipulate these displays to
navigate, drill-down, and explore [7-9].

According to the structure of the data to be visualized,
different visual mappings are appropriate. Matrix visual-
ization [10] is appropriate for large amounts of data ele-
ments for which pairwise relationships with quantitative
attributes are given. By representing the quantitative
value of each relationship by color, matrix visualization is
highly scalable, ultimately representing each relationship
by a single pixel.

Important problems to address in designing effective
matrix visualization systems involve choosing an appro-
priate color scale [11], data preprocessing steps, and
applying suitable sorting on the matrices to be visualized.
The latter is specifically important, as is allows to make
assessments on the overall structure of the relationships.
Matrix sorting usually arranges rows and columns of the
matrix by similarity, with an appropriate similarity func-
tion defined on the row and column vectors of the
matrix.

Matrix visualization as a technique is well-known and
to date has found its way into software systems such as
R[12] or Matlab[13]. However, many implementations
are focused on producing static images, offering only lim-
ited support for interactive parameter change and naviga-
tion in the matrix display by the user. We therefore
developed a fully interactive matrix visualization system
in Java. It allows the user to change important parame-
ters and navigate the data on the fly by means of a two-
stage zooming mechanism. Furthermore, we support the
joint visualization of two matrices, supporting our spe-
cific analysis problem.

Implementation

Visualization

The implemented application generically supports two
data matrices: one data and one weight matrix (see sec-
tion Normalization & Weighting) which can be inspected
individually or jointly. The general approach is to map the
normalized matrix values to an appropriate color map
and display it as a grid. While using color is typically not
the first choice for representing absolute values, it allows
comparative analysis of value ranges and provides a
highly compact view of the overall data distribution. Spe-
cifically in the case of large data matrices and in conjunc-
tion with an appropriate matrix sorting mechanism it
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allows the assessment of the features of the matrix. The
application supports detailed visualization of either one
of the two matrices. Detailed information is available by
interactively zooming into parts of the matrix and restrict-
ing the displayed data to specific value ranges. Thereby,
the approach follows Shneiderman's Information Visual-
ization Mantra ("Overview first - zoom, filter, refine -
details on demand" [14]). Sorting the matrix by arranging
rows and columns by similarity reduces its complexity
and allows identification of systematic (similar) relation-
ships between entities of the experiment by homoge-
neous colors [10].

Our sorting algorithm works by finding a so-called seed
row according to the maximum of the sum of contained
values. This row is made the top row. Then, the sorting
algorithm among the remaining rows finds the one that is
most similar to the seed row, where the degree of
(dis)similarity is measured by the /; norm between the
respective row vectors. The algorithm places the found
row just below the seed row, makes the found row the
new seed row, and iteratively continues until all rows have
been processed. The same approach is then applied on
the columns of the matrix. This sorting algorithm is
rather simple, yet provides a useful starting point for the
visual analysis. The algorithm has quadratic runtime
complexity. For an overview of the application design,
please see the system illustration and description pro-
vided in section Results and Discussion.

Mutual information computation

The stand-alone program micato (mutual information
calculation tool) reads a sequence file in FASTA format
and calculates the MI of the sequence contained therein.
By separation from the visualization tool micato can be
run on e.g., clusters using job-scheduling systems. This is
useful in particular for sampling large instances of null
models for normalization.

To this end micato calculates in a first step the
sequence entropies of each column of the sequence align-
ment and stores it. Then the joint entropy of each pairing
of two columns is calculated and by equation 1 the MI is
calculated and stored in a matrix MI,; for a pair of posi-
tions (i, /). Then micato runs a user defined number of
independent column shuffles to generate a statistically
significant number of instances of the null model (see
section Normalization & Weighting for details). The MI
matrix is exported as a CSV file, as well as the Z-scores of
those MI values with respect to the statistics of the null
model. The CSV format can be read by the MIMatrix-
Viz program without further conversion.

Methods

Information-theoretical measure

To measure co-evolution among residues one frequently
uses the mutual information (MI), defined as [15]:
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where x and y are outcomes for random variables X;and
Y; drawn from a symbol set A, taken from a multiple
sequence alignment as columns i and j. The symbols
H(x), H;(y) are the column sequence entropies and H; (x,
y) is the entropy computed by the joint probability func-
tion p;;(x, ). Repeated application of the equation leads to
a symmetric MI matrix (MI, ) for all pairings (i, j).

In studies on proteins the symbol set consists of the 20
standard amino acids .A,, , which has to be expanded to

include the gap character and an extra character for non-
standard amino acids A = Ay, = Ay, U{"=","X"}. We
set the probabilities pi(x),pj(y), and pij(x, y) to the
observed frequencies of amino acids within the columns
of a multiple sequence alignment. This can be done with

the supplied routines in the program micato.

Normalization & Weighting

Although in the post-genomic era [16] we have access to
huge databases of sequences, in a typical setting the num-
ber of sequences available is still only of the order 102. We
have previously shown that this limitation might lead to
substantial finite-size effects in the computed MI values
[2]. These effects can be compensated by normalizing the
obtained MI values to a null model of evolution [17].

We have implemented such a normalization by com-
puting the MI for shuffled columns: while maintaining
the one-column sequence entropies with this procedure
we destroy any correlation between any two columns i
and j and therefore obtain distributions for MI; with
respect to naturally occurring, independent symbol fre-
quencies. From this distribution we can easily compute Z
values for any MI;; value by

MIi—MIj
j=—2 U (2)
o(MIjj)
where MIj; is the average of the MI values for the shuf-
fled columns i and j, and o{(MI}) the standard deviation of

this sample. Note that this has to be done for each col-
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umn pair (i, j) independently. This protocol is also imple-
mented in the program micato and it can be loaded into

our visualization program as a weighting scheme.

Results and Discussion

Figure 1 shows a screenshot of the matrix visualization
tool we implemented. To support the flexible usage of the
system, an intuitive user interface is provided. Two side
panels (1,2) visualize a preview of the two matrices. The
user can zoom into any of these, with the zoomed areas
being continuously updated in the zoom display area (3).
Again, from this a region can be selected for further drill-
down (4). While both matrices can be browsed individu-
ally, it is also possible to combine them in a joint image by
multiplication. The display can also be filtered to show
only data falling into user-defined intervals. To this end, it
is possible to specify the filtering intervals directly in the
histograms accompanying the two matrix previews in the
left panel. To maintain context, the selected areas in the
histograms are highlighted. Finally, an option panel (5)
offers to select from a choice of color scales, select or de-
select multiplication of the matrices, and optionally, sort
the rows and columns of the display. Numeric values are
shown in textual form by mouse-over.

The implementation of all components like user inter-
face, data storage and algorithms is kept modular, so it is
easy to adopt the system to upcoming needs. This
includes e.g., additional matrix ordering methods, color
schemes or data filtering mechanisms. Currently, filtering
can be done in two steps. Firstly, by setting a maximum
and minimum value of the mutual information. Secondly,
by doing the same for the Z-score. By this the Z-score can
be used as filter or additionally as a weight for controlling
the color saturation of the corresponding matrix entries.

The visualization system can be used additionally with
any matrix valued data set beyond co-evolutionary stud-
ies. This is achieved by specification of a simple file for-
mat for matrix data. The software assumes the raw
matrix and weight data to be contained in plain ASCII
files, where each row in the file contains one matrix cell
entry of the form <row column value >.

Example Protocol

Codorier et al. [1], as well as other authors [17] have
argued that intramolecular co-evolution typically results
from a superposition of various biological and biochemi-
cal influences, which depend highly on the system under
investigation. In fact, the decomposition is the key analy-
sis task in co-evultionary studies. Explorative analysis can
then be used for hypothesis creation [18] on the origin of
such influences. We applied the software package to a
sequence set of variants of the acetylcholinesterase
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Figure 1 Matrix Visualization Tool. This image shows the visualization application we implemented. It basically follows a zoomable user interface

(ZUl) approach. (1,2): Overview images of the raw and weight matrix data using color coding. Histograms shown below allow interactive data selec-

tion. (5): options for selecting which matrix to show enlarged; selection from choice of color mapping schemes; application of sorting algorithm. Draw-
ing a rectangle in either (1) oder (3) shows the selected matrix area enlarged in (4).

(AChE) (Held S, Hoffgaard F, Hamacher K: Biophysical residues belong to the peripheral anionic site (PAS) site of
Annotation of Molecular Coevolution of Acetylcholinest- ~ AChE, which is important for establishing contact with
erase, submitted). the substrate [19]. Also, various AChE inhibitors bind to
Figure 2 illustrates this example application of the sys-  this site, suggesting a partial explanation why evolution-
tem and the steps undertaken to identify an important ary signals occur at these spots. The involved residues are
subset of highly co-evolving residues. Figure 2(a) shows  subject to a co-evolutionary pressure, the origin of which
the input mutual information matrix. A sorted version of  one can now start to investigate based on the insight we
the matrix is shown in Figure 2(b). The user can detectan  gained from the application of MIMatrixViz to the
interesting cluster of residues in an area that is extracted =~ AChE sequence data.
by filtering for high Z scores and high MI values as illus-
trated in Figure 2(c). We show how the software can be = Future Trends & Intended Use
used to restrict the display to the supposedly important The implemented routines can be used in studies on
ranges of MI and Z scores. In part (d) of the same figure = molecular (co-)evolution by working on provided
we show the residues marked in the molecular structure. =~ FASTA-files. The MI computation can be run in batch-
These are (for the sequence of T. californica) Y70, V236, mode to allow for compute cluster usage. The output of
N280, F284, F288, G335, S345, V360, Q374. Most of these ~ computed mutual information values and their weighting
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Figure 2 Matrix Sorting & Filtering for AChE. A workflow using the software package decomposed into sequential steps a)-d). The sorting and fil-
tering algorithms are the important steps to extract evolutionary signals. (a) shows the mutual information matrix in its generic order; (b) shows the
matrix sorted with our quadratic sorting algorithm. Rows and columns are reordered, so that similar ones are next to each other; (c) shows a screenshot
of thefiltered and sorted data, revealing an interesting portion of residues in the molecule (small box), which are known to form the peripheral anionic
site. Filtering was done by setting ranges to be displayed to appropriate values (in the two histograms on the left); (d) the residues found in step (c)

by Z-scores can be opened by the interactive matrix visu-
alization software provided. There, as described above
the user can navigate the vast amount of data, applying
filters in sequence space and in value space, and using Z-
scores (or other externally provided weights) to estimate
and visualize the statistical significance of the mutual
information values.

Typically, the visual analytics approach does not guar-
antee to reveal all relevant features of empirical data.
However, in a generic biological application one does not
know beforehand what signals to look for. This renders
automatic processing ineffective and one has to resort to
visual and interactive inspection. Future work includes
extending the functionality of the visualization software
with additional functionality. First, additional matrix
sorting algorithms with user-settable sorting criteria
should be included, allowing the user to take suitable
views on the data set. The matrix display should be
extended by side views showing the similarity of rows and
columns as well as the reordering (confusion) index in
case the matrix has been sorted. In the long run, the sys-

tem should be integrated with additional relevant meta
data, and linked with additional viewing components
such as 3D molecular viewers. Our software is provided
as Java Bytecode. The sourcecode can be made available
upon request. We are also open for collaboration aiming
at improving the functionality of the software and apply-
ing it to new use cases.

Conclusions
In the MIMatrixviz package we provide routines to
compute mutual information of evolutionary dynamics in
molecules. The package is capable of normalizing those
values and therefore accounts for finite-sized data sets.
The visualization part is separated from this to allow
batch-usage on servers and clusters for sufficient statis-
tics. The visual approach allows to interactively explore
the data, and investigate patterns, structures, and partic-
ular interesting spots within the mutual information
matrices.

The user can generate graphics and filtered data sets
with the package in publication ready quality. To this end,
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the application allows the user to export matrix images in
the lossless PNG file format, and to export selected data
subsets as plain ASCII files.

Other matrix-oriented data, as e.g., obtained by DNA
microarray experiments, can be visually analyzed with
the tool, too. External knowledge can be incorporated by
the weight matrix to augment the insight one gains from
the expression levels detected at the feature sites. Poten-
tial scenarios include phylogenetic likelihoods for partic-
ular hits on reporters, gauging bias to cope with potential
shortcomings in the production and/or binding pro-
cesses.

Availability and Requirements
Project name: MIMatrixViz

Project home page: http://www.gris.informatik.tu-
darmstadt.de/projects/vsa/matrixvis/

Operating system: Platform independent (Requires a
Java Virtual Machine (JVM) on the target system)

Programming language: Java

Requirements: Java Runtime Environment > 1.6

License: GPL for academic users.

Any restrictions to use by non-academics: For com-
mercial applications of MIMatrixViz, please contact
the authors.
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