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Abstract

Background: Phylogenetic analysis can be used to divide a protein family into subfamilies in the absence of
experimental information. Most phylogenetic analysis methods utilize multiple alignment of sequences and are
based on an evolutionary model. However, multiple alignment is not an automated procedure and requires human
intervention to maintain alignment integrity and to produce phylogenies consistent with the functional splits in
underlying sequences. To address this problem, we propose to use the alignment-free Relative Complexity Measure
(RCM) combined with reduced amino acid alphabets to cluster protein families into functional subtypes purely on
sequence criteria. Comparison with an alignment-based approach was also carried out to test the quality of the
clustering.

Results: We demonstrate the robustness of RCM with reduced alphabets in clustering of protein sequences into
families in a simulated dataset and seven well-characterized protein datasets. On protein datasets, crotonases,
mandelate racemases, nucleotidyl cyclases and glycoside hydrolase family 2 were clustered into subfamilies with
100% accuracy whereas acyl transferase domains, haloacid dehalogenases, and vicinal oxygen chelates could be
assigned to subfamilies with 97.2%, 96.9% and 92.2% accuracies, respectively.

Conclusions: The overall combination of methods in this paper is useful for clustering protein families into
subtypes based on solely protein sequence information. The method is also flexible and computationally fast
because it does not require multiple alignment of sequences.

Background
Proteins that evolve from a common ancestor can
change functionality over time [1] and produce highly
divergent protein families that can be divided into subfa-
milies with similar but distinct functions (i.e., functional
subfamilies or subtypes) [2]. Identification of subfamilies
using protein sequence information can be carried out
using phylogenetic methods that can reveal the evolu-
tionary relationship between proteins by clustering simi-
lar proteins together in a phylogenetic tree [3-5]. The
most common method for identifying similarities
in sequences through phylogenetic analysis starts with
the construction of a multiple alignment of homologous
sequences using a substitution matrix. Multiple

alignment scores are then transformed into a distance
matrix to construct a phylogenetic tree. Often the
branching order of a phylogenetic tree exactly matches
the known functional split between proteins [1] and
branch lengths are proportional to the extent of evolu-
tionary changes since the last common ancestor.
Multiple sequence alignment (MSA) is constructed

using a scoring scheme which reward or penalize each
substitution, insertion and deletion to get an optimum
alignment of the given sequences. The quality of an
MSA is connected to the chosen parameters that are
entered manually and an expert handling is almost
always required to maintain alignment integrity by
observing general trends in each protein family. As such
different alignment parameters may yield different
phylogenetic trees that are only as good as the MSA
that the trees are derived from [6,7].
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Phylogenetic analysis is broadly divided into two
groups of methods. Algorithms in the first group calcu-
late a matrix representing the distance between each
pair of sequences and then transform this matrix into a
tree using a tree-clustering algorithm. Algorithms in the
first category utilize various distance measures with dif-
ferent models to account for nucleotide or amino acid
substitutions. In the second group, the tree that can
best explain the observed sequences under the chosen
evolutionary model is found by evaluating the fitness of
different tree topologies [6,8]. The second category can
further be divided into two groups based on the optim-
ality criterion used in tree evaluation: maximum parsi-
mony and maximum likelihood. Under maximum
parsimony [9], the preferred phylogenetic tree is the tree
that requires the least evolutionary change to explain
the observed data whereas under maximum likelihood
[9,10], it is the most probable tree under the chosen
evolutionary assumption.
The prediction of subfamilies from protein MSAs have

been carried out previously by comparing subfamily hid-
den Markov models, subfamily specific sequence pro-
files, analyzing positional entropies in an alignment, and
ascending hierarchical method [4,5,11,12]. All of these
methods require an alignment of biological sequences
that assume some sort of an evolutionary model. Com-
putational complexity and the inherent ambiguity of the
alignment cost criteria are two major problems in MSA
along with controversial evolutionary models that are
used to explain them.
A novel approach for phylogenetic analysis based on

Relative Complexity Measure (RCM) of whole genomic
sequences have been previously proposed by Otu et al,
that eliminates the need for MSA and produces success-
ful phylogenies on real and simulated datasets [8]. The
algorithm employs Lempel-Ziv (LZ) complexity [13] and
produces a score for each sequence pair that can be
interpreted as the “closeness” of the sequence pairs.
Unequal sequence length or different positioning of
similar regions along sequences (such as different gene
order in genomes) is not an issue as the method has
been shown to handle both cases naturally. Moreover,
RCM does not use any approximations and assumptions
in calculating the distance between sequences. There-
fore, RCM utilizes the information contained in
sequences and requires no human intervention.
Application of RCM to genomic sequences for phylo-

genetic analysis was successfully carried out on various
datasets containing genomic sequences [8,14]. Moreover,
Liu et al [15] extended this method further to integrate
the hydropathy profile and a different LZ-based distance
measure for phylogenetic analysis of protein sequences
while Russell et al integrated a merged amino acid
alphabet containing 11 characters to represent all amino

acids to reduce complexity prior to calculating a pair-
wise distance measure to be used as a pairwise scoring
function in determining the order with which sequences
should be joined in a multiple sequence alignment
problem [16].
Application of RCM to evaluate genomic sequences is

relatively straight forward since RCM based on Lempel-
Ziv complexity scores can capture each mutation in
DNA sequences and register it as an increase in the
complexity scores of compared sequences. However,
substitution of one residue into another in proteins is
tolerable as long as the substituted residue is not highly
conserved and physicochemical and structural properties
of the substituted and the native residues are not funda-
mentally different [17-19]. Employment of hydropathy-
index-based grouping of residues is one way of a pre-
processing requirement to capture only the mutations
that would not be tolerated in a protein sequence since
LZ algorithm is not capable of accounting for amino
acid substitution frequencies and similarity scores.
Hence, any application that uses RCM to generate a dis-
tance matrix of protein sequences should be linked to
treating the sequence with a reduced amino acid alpha-
bet (RAAA) prior to calculating their RCMs.
In this paper, we utilize RCM with different reduced

amino acid alphabets and assess RCM’s potential in
clustering protein families into functional subtypes
based solely on sequence data. This method clustered
seven well-characterized protein families into their func-
tional subtypes with 92% - 100% accuracy.

Methods
Datasets
Simulated Dataset
Performance of RCM was tested on a simulated dataset
that contains 10 randomly evolved protein sequences
from a root sequence of length 500 by using INDELible
V1.02 [20]. Simulated protein sequences were generated
according to the following parameters:
1. JTT-dcmut [21] was chosen as the amino acid

substitution model.
2. Power law insertion/deletion length distribution

model with a = 1.7 and maximum allowed insertion/
deletion length of 500 were used.
3. Both insertion and deletion rates were set to the

default parameter of 0.1 relative to average substitution
rate of 1%.
4. Length of the root protein sequence was set to 500.
5. The rooted tree with 10 taxa that reflects the true

phylogenetic evolution of the sequences was generated
along with the true MSA from which the true tree was
inferred.
6. The true MSA was then inputted into ClustalW2

[22] and the bootstrap tree was generated (1000
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bootstrap trials, including positions with gaps, and
correcting for multiple substitutions)
Protein Datasets
RCM was tested on seven protein datasets. Number of
sequences, number of subfamilies, average length, stan-
dard deviation of sequence lengths and mean percent
identities (PID) [23] of sequences for each family are
summarized in Table 1. Protein sequences for mandelate
racemases, crotonases, haloacid dehalogenases and vic-
inal oxygen chelates (VOC) were extracted from exten-
sively curated Structure-Function Linkage Database
which contains sets of subfamily grouping for a large set
of protein families. SFLD contains protein families with
a hierarchical classification scheme based on sequence,
structure and conserved chemical reactions at the super-
family, subgroup, and family levels [24]. Crotonases and
haloacid dehalogenases were filtered such that subfami-
lies that contain less than 3 sequences or more than 200
sequences were removed to prevent sequence number
bias and to reduce computational complexity. Unknown
or unspecified amino acids were discarded (21, 22 and
10 occurrences in mandelate racemase, crotonase and
VOC family, respectively). The protein sequences for
acyl transferase (AT) domains and nucleotidyl cyclases
were obtained from reference [25]. The protein
sequences in the hard-to-align dataset that contains gly-
coside hydrolase family 2 (GH2) members were adapted
from reference [3]. Expert curated annotations of pro-
tein sequences and abbreviations used for sequences in
this study are provided in Additional File 1.

Reduced Amino Acid Alphabets
Sequence space of proteins is redundant and generates
only a limited number of folds, domains, and structures
[26]. Various strategies have been devised that take a
coarse-grained approach to account for the degeneracy
of sequences by grouping similar amino acids together
[17-19,27-30]. Grouping is usually carried out based on
structural and physiochemical similarities of amino acids
[28]. Grouping of amino acids in sequence space can
help develop prediction methods for various sequence
determinants and decrease the amount of search space

in procedures employed in directed evolution experi-
ments [26,31]. One of the finest examples is the reduc-
tion of amino acid alphabet into a binary code that is
composed of characters representing polar and non-
polar amino acid residues [27]. Grouping of amino acid
residues has also been used extensively in Hydrophobic-
Polar (HP) lattice model to explain the hydrophobic
collapse theory of protein folding [32].
A recent study was carried out by Peterson et al to

test the performance of over 150 RAAAs on the
sequence library from DALIpdb90 database and showed
that RAAAs improves sensitivity and specificity in fold
prediction between protein sequence pairs with high
structural similarity and low sequence identity [33].
We tested performances of six amino acid reduction

schemes with 15 different level of groupings to separate
proteins into functional subfamilies (Table 2). These
included three top performing RAAA (HSDM17,
SDM12, GBMR4) from reference [33] and three random
RAAA of size 4.

Substitution Matrices
Amino acids that are within the same group in a RAAA
are considered identical [33]. Substitution matrices that
assign the same similarity score to each amino acid
within the same group were obtained from reference
[33]. For those RAAAs in the EB scheme and the three
random RAAAs, new substitution matrices were created
from BLOSUM62 frequency counts using the same
procedure outlined in reference [33].

Lempel-Ziv Complexity
In this paper, a normalized distance measure that was
previously used for phylogenetic tree construction of
whole genome sequences was employed. The distance
measure was based on Lempel-Ziv [34] complexity and
was known to accurately cluster all related genomic
sequences under one branch of the tree [8].
Lempel-Ziv (LZ) complexity score of a sequence is

obtained by counting the number of steps required to
generate a copy of the primary sequence starting from a
null state. At each step, an amino acid or a series of

Table 1 General Properties of the Datasets

Family # of sequences # of subfamilies μ Length s Length μ PID*

Crotonases 467 13 332 87 21

Mandelate racemases 184 8 416 74 27

Vicinal oxygen chelates 309 18 294 108 14

Haloacid dehalogenases 195 14 303 137 12

Nucleotidyl cyclases 75 2 1059 200 21

Acyl transferases 177 2 290 12 41

GH2 hydrolases 33 4 872 160 15

* Mean Percent Identity (μ PID) is the average of all pairwise sequence identities in a given family.
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amino acids are copied from the subsequence that has
been constructed thus far allowing for a single letter inno-
vation. The number of steps needed to obtain the whole
sequence is identified as the LZ-complexity score of the
given sequence. The exhaustive library of a sequence is
defined as the smallest number of distinct amino acid or
amino acid combinations required to construct the
sequence using a copying process described by Lempel
and Ziv [34]. For example, the LZ-complexity of the sim-
ple sequence ‘AAILNAIIANNL’ would be obtained as
shown in Table 3. Since seven steps are needed to gener-
ate the whole sequence, the LZ-complexity score for this
sequence is 7. The LZ-complexity of a sequence ‘X’ com-
pared to a sequence ‘Y’ is known as the RCM of ‘X’ with
respect to ‘Y’. This is the number of steps required to con-
struct sequence ‘X’ beginning with ‘Y’ instead of a null
sequence. Five different distance metrics have been sug-
gested by Otu et al [8], however, this work used only the
following normalized distance metric that accounts for the
differences in sequence lengths:

D
c XY c YX c X c Y

c XY c YXXY = ( ) ( ) ( ) ( )
( ) ( )

+ − −
+
2

where c(XY) and c(YX) are RCM of X appended to
Y and Y appended to X, respectively. Remaining four

LZ-based distance measures defined in Out et al per-
formed slightly worse than the above distance (data not
shown). Although in performance between five measures
were not significant, we adopted the aforementioned
distance for its ability to account for length variance.

Distance Matrix & Phylogenetic Tree
The relative complexity measure (RCM) for creation of
the distance matrix was utilized as previously described
[8]. Phylogenetic trees were generated from distance
matrices using neighbor-joining [35] program of the
phylogeny inference package, PHYLIP 3.68 [36]. Un-
rooted trees were rooted with midpoint rooting by pla-
cing the root halfway between the two most distinct
taxa. Midpoint-rooted trees were converted to clado-
grams (i.e., branch lengths are discarded) using the
Retree program of PHYLIP package [36]. Phylogenetic
trees for all protein families and RAAAs are shown in
supplementary materials (Additional File 2) in Newick
format and can be visualized with a tree-drawing
program.

ClustalW2
Protein sequences in each family were aligned using
ClustalW2 [22] for comparison with RCM. MSAs were
performed using updated substitution matrices with gap
extension and gap opening penalties provided in Table
2. Bootstrap analyses were carried out 100 times and
trees containing bootstrap values were created using
ClustalW2 with the neighbor-joining clustering algo-
rithm. For convenience, MSAs that were carried out
using ClustalW2 will be referred as the MSA or the
MSA method for the rest of the article.

Tree Based Classification (TBC)
TBC algorithm [4] was used to check the accuracy of
each tree in separating protein families into subfamilies.
TBC divides a tree into disjoint subtrees and assigns a
protein subfamily to a subtree that maximizes the num-
ber of true positives when the proportions of fp/(tp+fp)
and fn/(tp+fn) are both equal to 0.5 for a given subtree,
where fp is the number of false positives, fn is the num-
ber of false negatives and tp is the number of true posi-
tives. Above proportions correspond to the “maximal
allowed contamination” level that minimizes the TBC
error over the whole tree.
TBC requires a bifurcating tree of sequences in a pro-

tein family and an attribute file that contains expert
curated assignment of each sequence to a particular
subfamily. TBC accuracy (i.e., the percentage of cor-
rectly classified sequences) is the primary performance
measure to evaluate the division of protein families into
subtypes using the TBC algorithm. TBC accuracy is
equal to 1- %TBC error where %TBC error is the total

Table 2 Reduced Amino Acid Alphabets

Scheme Size Matrix Gaps# Reference

ML* 4,8,10,15 BL50 12/2 [28]

EB§ 13,11,9,8,5 BL62 11/1 [18]

HSDM* 17 HSDM 19/1 [29]

SDM* 12 SDM 7/1 [29]

GBMR* 4 BL62 11/1 [30]

RANDOM§ 4,4,4 BL62 11/1 This study

Reduced amino acid schemes used in this study.* Substitution matrices for
these reduced alphabets were obtained from reference [33]. § BL62 frequency
counts were used to derive these substitution matrices using the formula
outlined in reference [33]. #Gap opening/gap extension penalties used for
MSAs in ClustalW2.

Table 3 Lempel-Ziv Complexity

Sequence X = AAILNAIIANNL

Exhaustive History Complexity

A 1

AI 2

L 3

N 4

AII 5

AN 6

NL 7

HE(X) C(X) = 7

The exhaustive library construction and Lempel-Ziv complexity score
calculation of sequence X.
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number of fp, fn, and unclassified sequences divided by
the total number of sequences. For a detailed analysis of
the TBC algorithm, refer to reference [4].

Protocol
The proposed algorithm operates on a set of
sequences in FASTA format. After one of the alpha-
bets given in Table 1 is applied to all the sequences in
the dataset, RCMs are calculated and used to obtain
the distance between each pair for the neighbor-join-
ing clustering to create a phylogenetic tree. For each
RAAA, a single tree based on RCM is generated and
analyzed using TBC algorithm to determine how well
it clusters different subfamilies under different
branches of the tree.
For simulated dataset, three phylogenetic trees were

compared: The true tree generated by INDELible, the
bootstrap tree and the RCM tree. INDELible creates a
true MSA of the simulated protein sequences. This
alignment was used in ClustalW2 and bootstrapped
1000 times and the resulting tree was called the boot-
strap tree. The third tree is the RCM tree that was
generated by the proposed approach.
For seven protein datasets, first, the original fasta

sequences were used to calculate RCMs and their asso-
ciated RCM trees. Second, the original fasta sequences
were re-coded using different RAAAs (Table 2) and the
reduced sequences were used to calculate their RCMs
and the associated RCM trees.
A similar procedure was applied to the phylogenetic

trees using the MSA method. For each protein family,
MSA was carried out using the corresponding substitu-
tion matrices and gap penalties provided in Table 2.
MSA-based trees were created following bootstrap ana-
lysis (100 replicates) with ClustalW2.
Finally, for each family, a total of 16 phylogenetic trees

(1 for 20-letter alphabet, 12 for RAAAs, and 3 for ran-
dom RAAAs) for each method are generated and
checked how well they separated families into subfami-
lies. A summary of the overall workflow is depicted in
Figure 1.

Results and Discussion
Simulated Dataset
Phylogenetic analysis of protein sequences has been inti-
mately connected with MSA. A phylogenetic tree is gen-
erated from an evolutionary distance matrix using MSA
of sequences. However, for real biological datasets, the
true tree is rarely known. Therefore, protein sequence
evolution was simulated to study the reliability of the
RCM method. A simulated protein dataset containing
10 protein sequences was generated to show that RCM
coupled with a RAAA can produce a phylogenetic tree
(RCM tree) that is consistent with the true tree and the
bootstrap tree. The true tree is produced by INDELible
and is the original tree that reflects the evolution of 10
simulated sequences. On the other hand, the bootstrap
tree is the tree that was produced by ClustalW2 using
the true MSA implied by INDELible. The bootstrap tree
is identical to the true tree and the bootstrap supports
for all branches are high reflecting the consistency [37]
in the branching. The RCM tree was produced by the
alignment-free RCM approach. The RCM tree is identi-
cal to both the true tree and the bootstrap tree reflect-
ing its potential for use in phylogenetic analysis of
protein sequences. The tree topology of only one of the
trees is shown in Figure 2 since they are all identical.

Performance of the RCM approach
We applied the RCM approach to seven protein data-
sets. RCM method showed an efficient division of pro-
tein families into subfamilies using RAAAs. Phylogenetic
trees of the seven protein families using RCM approach
are shown in Figure 3 for ML15 alphabet. Detailed com-
parison of RCM with MSA in terms of TBC accuracy,
the number and percentage of TBC error for each
RAAA and each dataset is provided in Additional File 3.
Crotonases
Members of crotonase family contain 467 protein
sequences from 13 different subfamilies and catalyze
diverse metabolic reactions with certain family members
displaying dehalogenase, hydratase, and isomerase activ-
ities. TBC accuracy varied between 96.4% and 100% for

Sequences in
Protein Datasets

Original & Reduced Amino 
Acid Alphabets

RCM 
Calculation

RCM 
Tree

PhylipLZ Algorithm

MSA
(Different Substitution Matrices)

MSA 
TreeRetree

ClustalW2
Bootstrap

ClustalW2

Neighbor & Retree
Misclassified 
Sequences

TBC

Misclassified 
Sequences

TBCPhylip

Figure 1 Protocol Overview. For RCM, the original sequences and sequences recoded with reduced alphabets are used to calculate RCM-based
distances which are then inputted sequentially to the Neighbor-Joining and Retree programs of the PHYLIP v3.68 package. For MSA, first,
alignments are carried out using ClustalW2 with substitution matrices corresponding to each amino acid alphabet. Following bootstrap analysis
with ClustalW2, Retree program is used to root the trees with midpoint rooting and to discard branch lengths. Each phylogenetic tree is then
inputted to the TBC algorithm along with its attribute file that shows the expert assignment of each sequence to each family to calculate the
TBC error.
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RCM. The top performing RAAA with the smallest size
was GBMR4 that resulted in 100% TBC accuracy. TBC
accuracy was 100% for all RAAAs tested with MSA.
Mandelate Racemases
The mandelate racemase dataset contains 184 sequences
that are assigned to 8 expert curated subfamilies. All

mandelate racemases contain a conserved histidine, pre-
sumably acting as an active site base [38]. When the
RCM approach was tested on mandelate racemases, all
resulting trees showed correct assignment of functional
subfamilies into 8 different clusters with 100% accuracy
using all alphabets except GBMR4 that resulted in
96.7% TBC accuracy.
Vicinal oxygen chelates (VOC)
VOC family contains 309 sequences from 18 different
subfamilies. The number of TBC accuracy varied
between 77.7% and 92% for RCM and 81.9% to 91.3%
for MSA. Members of VOC have an average sequence
length of 294 amino acids and a mean PID of 14%
(Table 1). The low PID and the highly divergent nature
of this family make its subfamilies susceptible to mis-
classification more than other families based on
sequence information alone. In this dataset, EB8 per-
formed better than 20-letter alphabet (92.2% vs. 91.3%)
with RCM while GBMR4, ML4, EB8, EB, EB13 and 20-
letter alphabets resulted in 91.3% TBC errors with MSA.
Haloacid dehalogenases
Haloacid dehalogenases contains 195 sequences that
belong to 14 different subfamilies. Haloacid dehalogen-
ase family is similar to VOCs in its highly divergent nat-
ure based on the low mean PID (12%) that places the
sequences in this family in the “twilight zone” to infer

3
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2
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10

1
Figure 2 Tree topology of the simulated dataset. The identical
topology of the three phylogenetic trees (i.e., RCM tree, bootstrap
tree and true tree) for the simulated dataset is shown.

D E F G

BA C

Figure 3 Phylogenetic trees of protein families. RCM trees were drawn using ML15 alphabet. For each family, the taxa corresponding to
different subfamilies are colored differently. (A) Crotonases (B) Mandelate racemases (C) Vicinal oxygen chelates (D) Haloacid dehalogenase (E)
Nucleotidyl cyclases (F) Acyl transferases (G) GH2 hydrolases
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any relation between sequences based on sequence
information alone. ML15 was the best performing
RAAA for RCM with 96.9% accuracy (Table 4). The size
of the best performing RAAA for this family is larger
compared to other families hinting that highly divergent
sequences may require larger alphabets with lower level
of grouping.
Nucleotidyl cyclases
Nucleotidyl cyclase family has two functional subfami-
lies, adenylate and guanylate cyclases that correspond to
use of the substrates ATP and GTP respectively. The
nucleotidyl cyclase family with 33 adenylate cyclases and
42 guanylate cyclases was clustered into two distinct
subfamilies with 100% accuracy using both methods and
all RAAAs except EB5 and EB8 for RCM and ML4 and
EB5 for MSA, all of which resulted in 98.7% accuracy
(Table 4). Moreover, the clustering result for the nucleo-
tidyl cyclases are in agreement with the result obtained
previously by the MSA-dependent clustering algorithm
that uses the residues with the highest evolutionary split
statistic to split protein families into functional subfami-
lies [25].
Acyl transferases (AT)
The AT domains of Type I modular polyketide
synthases are responsible for the substrate selection.
Most incorporate either a C2 unit (malonyl-CoA sub-
strate) or a C3 unit (methylmalonyl-CoA substrate). The
choice of substrate can be deduced from the chemical
structure of the polyketide product [25]. In the acyl
transferase dataset, 99 of the 177 sequences use C2
units whereas 78 use C3 units as substrate.
Previously, Goldstein et al [25] used evolutionary split

statistic and clustered the AT domains into 2 subfami-
lies with 2 false assignments for the 5 residue-long
motif. The number of false assignments increased to 5
with increasing motif length (up to 30-residue long)
suggesting that the utilization of a larger motif increases
the noise and error rate. As such, inclusion of only

5 residues (less noise) with high split statistics increases
the assignment accuracy (5 vs. 2 false assignments).
A similar trend is observed in the case of RCM. While

the TBC accuracy for AT domains was only 91% (15
false assignments) with the 20-letter alphabet (Table 4),
the accuracy increased to 97% (5 false assignments) with
the utilization of the ML4, ML8, EB9, ML10, EB11,
SDM12, EB13, and HSDM17 alphabets. Furthermore,
4 of the 5 misclassified sequences using the above
reduced alphabets are contained in the 2, 3 and 4 false
assignments produced by the Goldstein et al ’s approach
using the 5,10 and 15 residue-long motifs, respectively.
Although the accuracy was higher previously, it should
be noted that the RCM approach did neither require an
MSA of sequences nor any other sequence-based statis-
tics. The accuracy was 97.2% for MSA using the top
performing RAAAs. There was no immediate evidence
suggesting a specific characteristic for incorrectly classi-
fied sequences.
Glycoside hydrolase family 2 (GH2)
The final dataset contains 33 members of the GH2
family with a (b/a)8 fold. The subfamilies and the num-
ber of sequences from each subfamily are b-galactosi-
dases (6), b-mannosidases (12), b-glucuronidases (7) and
exo-b-D-glucosaminidases (8). This dataset was used
previously and chosen because it was cited as a “hard-
to-align” dataset by classical alignment approaches [3].
The GH2 family was clustered into 4 functional subfa-
milies with 100% accuracy using ML4 and GBMR4 - the
two top performing RAAAs - with RCM (Table 4). TBC
accuracy was 100% for all RAAAs tested with MSA.

The effect of the size of the RAAA on clustering
performance
The comparison of RCM with MSA in terms of TBC
accuracy and the percentage of TBC error are summar-
ized in Table 4 for the 20-letter alphabet and the top
performing RAAA with the minimum size. In cases

Table 4 TBC errors for top performing RAAA

Crotonases Mandelate
racemases

Vicinal
oxygen
chelates

Haloacid
dehalogenases

Nucleotidyl
cyclases

Acyl
transferases

GH2
hydrolases

RCM MSA RCM MSA RCM MSA RCM MSA RCM MSA RCM MSA RCM MSA

20 letter Accuracy 100 100 100 100 91.6 91.3 93.3 99.5 100 100 91.5 97.2 87.9 100

Error 0 0 0 0 8.4 8.7 6.7 0.5 0 0 8.5 2.8 12.1 0

Statistics for top
performing

RAAA

Accuracy 100 100 100 100 92.2 91.3 96.9 99.5 100 100 97.2 97.2 100 100

Error 0 0 0 0 7.8 8.7 3.1 0.5 0 0 2.8 2.8 0 0

Top performing
RAAAs

RAAA GBMR4 ML4
GBMR4

ML4 GBMR4
ML4

EB8 GBMR4
ML4

ML15 ML8 ML4
GBMR4

GBMR4 ML4 ML4
GBMR4

ML4
GBMR4

ML4
GBMR4

TBC accuracy and percentage of TBC error are reported for the 20-letter alphabet and the top performing RAAA. If two RAAAs with the same size have identical
TBC accuracies, both RAAAs are reported at the final row in the table. Bold entries correspond to top performers using RCM and MSA for the specified datasets
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where two RAAAs of the same size give identical TBC
results, both of them are reported. Three trends can be
observed from the data in Table 4.
First, for five of the seven families (crotonases, mande-

late racemases, nucleotidyl cyclases, acyl transferases,
and GH2 hydrolases), both methods perform equally
well comparably. For VOC, RCM outperforms MSA
while for haloacid dehalogenases, MSA slightly outper-
forms RCM. It is important to note that both VOCs and
dehalogenases have the two lowest mean PIDs (12% vs.
14%) and low mean sequence lengths with large stan-
dard deviation. Low PID and low sequence length are
two features in alignments that render inference of rela-
tionship based only on sequence information difficult.
Nonetheless, TBC accuracies of both families with their
respective top performing RAAAs are comparable to the
results obtained from the protein families with higher
mean PIDs and longer mean sequence lengths.
Second, either ML4 or GBMR4 is sufficient to obtain

high TBC accuracy for all datasets except VOCs and
haloacid dehalogenases. Indeed, apart from the afore-
mentioned families, ML4 and GBMR4 can produce
either identical or better results than all other alphabets
using either RCM or MSA, implying that as little as an
alphabet size of 4 would be sufficient to capture most of
the sequence information that might yield considerable
improvements in inferring relationship based on
sequence information when both mean PID and the
length of the aligned regions in an MSA is above a cer-
tain threshold.
Third, for the datasets with low mean PIDs and aver-

age sequence lengths, a larger RAAA size may be
required to obtain identical or better results than the
20-letter alphabet using both RCM and MSA. This is
especially evident with the RCM approach. While the
minimum RAAA size of the top performer was 4 for 5
datasets that have relatively higher average sequence
lengths and mean PIDs, it increases to 8 (EB8) for
VOCs and 15 (ML15) for haloacid dehalogenases that
have mean PIDs of 14% and 12%, respectively. More-
over, a subtle but a similar trend is also evident in the
case of MSA. While the alphabet size of the top perfor-
mer was 4 (GBMR4, ML4) for VOCs, it increased to 8
(ML8) for haloacid dehalogenases, implying that a larger
RAAA size may perform better on sequences with lower
sequence identities.
It is also interesting to note that the average TBC

error for mandelate racemases, nucleotidyl cyclases and
hydrolases with three random alphabets of size 4 varied
between 0% and 15.6% for the MSA method. While the
groupings of amino acids in the random alphabets do
not have any physicochemical or structural significance
that can justify this overall performance, the low percent
TBC error may suggest that some subfamilies of these

protein families may be very tight with small distances
between their sequences while larger distance between
different subfamilies. This scenario coupled with the
relatively longer sequences (top three families in terms
of mean sequence length) within these families may gen-
erate sufficiently long aligned regions with enough infor-
mative sites that can result in a tree that correctly
assigns subfamilies even the reduced alphabet groupings
do not have any structural or biological meaning.
However, the trend of low TBC error is not apparent

using RCM with random alphabets. TBC errors of dif-
ferent protein families using random RAAAs (average of
three random alphabets) were significantly higher than
TBC errors using biologically meaningful reduced alpha-
bets for all the families except racemases and nucleotidyl
cyclases, both of which overlap with the results obtained
with MSA.
Performance of RCM approach with different RAAAs

to cluster protein families into functional subfamilies is
eminent. Yet, it must be noted that there is no uni-
formly superior algorithm for tree-based subfamily clus-
tering and that simple protein similarity measures
combined with hierarchical clustering produce trees
with reasonable and often high accuracy [4]. Further-
more, if much time has passed since the evolution of
different subfamilies, then sequences may have diverged
beyond the point where simple phylogenetic analysis
cannot easily give a clear distinction of subfamilies.

Conclusions
The application of RCM in generating meaningful phy-
logenetic trees has been previously tested on genomic
sequences and made RCM a good alternative to MSA-
based phylogenetic analysis. However, integration of
RCM to measure the closeness of protein sequences was
simply problematic due to the lack and difficulty of
accounting for amino acid substitutions. In this paper,
we introduced an RAAA-based approach as a preproces-
sing of protein sequences prior to calculating pairwise
RCMs. Utilization of an RAAA that is consistent with
the structure and function of the proteins or an RAAA
that reflects the general trends in specific protein
families under study can result in successful phylogenies
that can cluster each protein superfamily into functional
subfamilies.
In finding functional subtypes of a protein family, it is

often of interest to find out if the mechanisms that
manipulate a certain clustering are of evolutionary or
functional origin. Although these two signals may be
overlapping and hard to separate, RCM could be used
to address this issue by finding differences in exhaustive
histories in two sequences when they are concatenated.
The “words” that result in an observed difference can
then be analyzed and correlated to a functional and/or
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evolutionary origin. We believe future work can focus in
this direction building on the current approach that
does not attempt to trace back the origin of differentiat-
ing sequence signals but provides a powerful clustering
method of protein families into functional subtypes
without using multiple sequence alignment.

Additional material

Additional file 1: Fasta header mapping. This file contains the fasta
header abbreviations for protein families and expert assignment of
sequences to each subfamily. Some bioinformatics programs that take
fasta files as input have fasta header size limitations ranging from 8 to 10
characters long.

Additional file 2: Phylogenetic trees for all the datasets in Newick.
Phylogenetic tree files for all families are presented in Newick format. For
simulated dataset, there are 3 phylogenetic trees. For each protein
dataset, there are 32 phylogenetic trees: 16 RCM trees and 16 MSA trees.
All trees reflect only the tree topology (i.e., Branch lengths are discarded).

Additional file 3: TBC errors for all families and all RAAAs. Detailed
comparison of RCM and MSA is reported in terms of the number and
percentage of TBC error for every protein family and RAAA under
consideration.
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