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Abstract

Background: Data generated using ‘omics’ technologies are characterized by high dimensionality, where the
number of features measured per subject vastly exceeds the number of subjects in the study. In this paper, we
consider issues relevant in the design of biomedical studies in which the goal is the discovery of a subset of
features and an associated algorithm that can predict a binary outcome, such as disease status. We compare the
performance of four commonly used classifiers (K-Nearest Neighbors, Prediction Analysis for Microarrays, Random
Forests and Support Vector Machines) in high-dimensionality data settings. We evaluate the effects of varying levels
of signal-to-noise ratio in the dataset, imbalance in class distribution and choice of metric for quantifying
performance of the classifier. To guide study design, we present a summary of the key characteristics of ‘omics’
data profiled in several human or animal model experiments utilizing high-content mass spectrometry and
multiplexed immunoassay based techniques.

Results: The analysis of data from seven ‘omics’ studies revealed that the average magnitude of effect size
observed in human studies was markedly lower when compared to that in animal studies. The data measured in
human studies were characterized by higher biological variation and the presence of outliers. The results from
simulation studies indicated that the classifier Prediction Analysis for Microarrays (PAM) had the highest power
when the class conditional feature distributions were Gaussian and outcome distributions were balanced. Random
Forests was optimal when feature distributions were skewed and when class distributions were unbalanced. We
provide a free open-source R statistical software library (MVpower) that implements the simulation strategy
proposed in this paper.

Conclusion: No single classifier had optimal performance under all settings. Simulation studies provide useful
guidance for the design of biomedical studies involving high-dimensionality data.

Background
High-content experiments utilizing ‘omics’ technologies
are increasingly being conducted to discover molecular
biomarkers that discriminate between two or more phe-
notypic classes of interest. Recent examples of applica-
tions include a study to identify differential gene
expression patterns to distinguish different sub-classes of
pediatric and adult leukemia [1] and a proteomic study
to detect serum based biomarkers for the diagnosis of
head and neck cancers [2]. Such experiments typically

involve measurements of thousands of biomolecular fea-
tures from each subject in the study - however, the vast
majority of the measured entities do not exhibit differ-
ences in mean intensity levels between the different
classes of comparison. The goal of these studies is to
identify the subset of features or ‘biomarker set’ that is
associated with class membership and a corresponding
algorithm that can predict class membership with suffi-
ciently high accuracy. Thus, computational methods
employed in the analysis of such experiments often
involve a two-stage process: the first involving a dimen-
sionality reduction procedure for identifying the subset
of features that is significantly associated with class mem-
bership and the second to estimate a class prediction
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algorithm based on the selected subset of features that
can be used to predict a subject’s class.
Efforts to estimate statistical power and sample size

requirements in the design of high-content experiments
must take into account the data analytic procedures
employed to reduce dimensionality that precede the
estimation of the optimal classification rule. Several clas-
sifiers are commonly used in the analysis of ‘omics’ data,
including Random Forests [3], Prediction Analysis for
Microarrays [4], K-nearest neighbor classification [5]
and Support Vector Machines [6]. Each of these classi-
fiers involves complex algorithms based on a variety of
assumptions, thus their relative performance is naturally
expected to vary depending on the application and the
nature of the data.
Several methods have been reported to estimate sam-

ple size and statistical power for detecting individual
features significantly associated with phenotypic class,
while adjusting for multiple comparisons and false dis-
covery rate in high-dimensional data [7-16]. Similarly,
comparison of the performance of multivariate classifiers
has increasingly become an active area of research.
Huang et al. (2002) [17] proposed minimum sample size
requirements based on a Fisher Discriminant Analysis
(FDA) procedure when carried out after a subset of fea-
tures had been selected based on individual F tests. This
approach does not account for the variability induced in
analysis due to the feature reduction process and
focuses on a specific classifier (FDA). Dobbin, K. et al.
(2007) [18] presented analytical solutions for statistical
power and sample size based on parametric assumptions
with regard to feature distributions. The method esti-
mates the minimum sample size required such that the
expected probability of correct classification of the
resulting predictive function is within a specified thresh-
old of the best achievable probability of correct classifi-
cation. The algorithm presented in Dobbin, K. et al.
(2007) [18] is valuable in that it addresses issues related
to the high-dimensionality of the data and the variability
introduced during both the feature reduction and classi-
fier training procedures - however, the method does not
provide guidance on the relative performance of classifi-
cation algorithms. Aliferis C.F., et al. (2009) [19] pre-
sented results from simulation studies comparing two
protocols for feature selection and classifier training -
the first protocol involved feature selection using Pear-
son’s Correlation in conjunction with a Nearest-Cen-
troid Prediction method; the second protocol was based
on the Support Vector Machine algorithm without a
preceding feature reduction procedure. Hua J., et al.
(2009) [20] presented an extensive simulation study
comparing the performance of several feature reduction
procedures in conjunction with three classifiers (namely,
Linear Discriminant Analysis, Nearest Neighbors and

Support Vector Machines). The authors compared the
various methods with respect to the highest achievable
classification accuracy of the resulting classification algo-
rithms. The extensive simulation studies presented in
Hua J., et al. (2009) [20] shed light on the relative per-
formance of several feature reduction strategies under
diverse data settings. However, this study does not pro-
vide guidance on the optimal sample size needed to
achieve a desired level of statistical power, when multi-
variate classifiers are used in conjunction with dimen-
sionality reduction procedures.
The objective of this paper is to present a comparative

study of the performance of four commonly used classi-
fiers, namely Random Forests [3], Prediction Analysis
for Microarrays [4], K-nearest neighbor classification [5]
and Support Vector Machines [6]. The statistical power
of each of these algorithms is evaluated in high-dimen-
sionality data settings where the analysis includes a
recursive feature elimination procedure to identify the
subset of features that are significantly associated with
class membership. We compare the performance of
each classifier under varying sample size and levels of
signal-to-noise in the dataset. We also assess the effect
of non-Gaussian (skewed) feature distributions, correla-
tion between biomarkers, imbalance in class distribution
and the choice of metric for quantifying classifier perfor-
mance. We also provide a free open-source R statistical
software [21] library (MVpower) that implements the
methods proposed in the paper.
To guide the design of ‘omics’ studies, we present a

summary of the key characteristics of metabolite and
proteomic data profiled in seven experiments utilizing
high-content mass spectrometry and multiplexed immu-
noassay-based techniques. The experiments undertaken
at BG Medicine Inc. [22] in collaboration with other
institutions span a wide variety of disease settings
including organ toxicity, cardiovascular disease, infec-
tious disease, and neuromuscular disease. Since statisti-
cal power is fundamentally dependent on the difference
in mean intensity levels between the phenotypic classes
being compared, we provide summaries of effect sizes
observed in the data profiled in these experiments. We
define effect size as the absolute difference in mean
intensity of each feature between two phenotypic classes,
relative to the average within-class standard deviation.
We also present data on the percentages of features in
each study with significantly non-Gaussian class condi-
tional feature distributions.
In the settings considered in this paper, we assume

that the subjects in a typical study belong to one of two
mutually exclusive classes representing distinct phenoty-
pic groups of interest (e.g. diseased versus healthy) - the
two classes are referred to as ‘cases’ and ‘controls’,
respectively. The biomolecular entities profiled on each
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subject using mass spectrometry and multiplexed immu-
noassay based proteomic and metabolomic technologies
are referred to as ‘features’. The subset of features with
non-zero difference in mean intensity, between cases
and controls are referred to as ‘biomarkers’. The subset
of features with zero difference in mean intensity
between cases and controls are referred to as ‘noise fea-
tures’. Aliquots of body fluid (e.g. plasma, serum) or tis-
sue from each subject from which metabolite and
protein measurements are made are referred to as
‘samples’.

Results
This section is organized as follows: In the first sub-
section (’Data’) we present a summary of the key charac-
teristics of data obtained from high-content ‘omics’
experiments from several studies involving human
subjects or animal models. The data summaries from
several ‘omics’ studies are presented to guide selection
of parameters and models relevant in power calculations
for future investigations involving similar high-through-
put methods.
In the second sub-section (’Simulation Results’), we

present results from simulation studies comparing the
performance of classifiers K-nearest neighbor (KNN),
Prediction Analysis of Microarrays (PAM), Random For-
ests (RF) and Support Vector Machines (SVM) in high-
dimensionality data settings.

Data
In Table 1, we present a brief description of seven high-
content experiments, including information on the pri-
mary disease area, species, samples analyzed and the
specific platforms employed for profiling proteins and
metabolites. In all the experiments considered, the

primary outcome was dichotomous, representing two
mutually exclusive phenotypic classes of interest. A brief
description of each study is provided in the Methods
Section.
Comprehensive metabolite profiling of the individual

samples was based on a combination of three platforms
employing mass spectrometry (MS) based techniques
referred to as GC/MS, Lipid LC/MS and Polar LC/MS.
Proteomic analysis was based on a combination of tar-
geted methods using quantitative multiplexed immu-
noassay technique as well as a comprehensive protein
profiling strategy based on tandem mass spectrometry.
A brief description of the platforms and the specific
molecules targeted by each is provided in the Methods
Section.
Feature intensity measurements were transformed to

the natural logarithm scale prior to data analysis. Data-
sets generated by individual platforms in each study
were summarized with regard to the following: (i) distri-
bution of effect sizes, (ii) distribution of skewness and
(iii) the percentage of features with non-Gaussian distri-
butions (Figures 1, 2, 3).
For each feature (on the natural logarithm scale), we

define effect size as follows: Let μj and sj denote the
mean and standard deviation within class j, respectively,
for j = 1, 2. Let δ = |μ1 - μ2| denote the absolute differ-
ence in means between the two classes. Assuming that
the standard deviations in both classes are equal
(denoted by s), the effect size was defined as the ratio

 . The assumption of a common standard deviation
within different phenotypic classes was largely borne out
in the ‘omics’ experiments summarized here (details
available upon request).
Information on the distribution of skewness of features

(on the natural logarithm scale) and the percentage

Table 1 Summary of data arising from experiments utilizing ‘omics’ technologies.

Study
(Compartment)

I
(Plasma)

II
(Plasma)

III
(Plasma)

IV
(Plasma)

V
(Tissue)

VIa
(Tissue)

VIb
(Plasma)

VIIa
(Tissue)

VIIb
(Plasma)

Disease area Organ
Toxicity

Cardio-
vascular
Disease

Infectious
Disease

Neuro-muscular
Disease

Organ
Toxicity

Organ Toxicity Organ Toxicity

Species Human Human Mouse Mouse Rat Rat Rat

Platforms

- GC/MS √ √ √ √

- Lipid LC/MS √ √ √ √ √ √ √ √ √

- Polar LC/MS √ √ √ √ √ √ √ √ √

- Proteomics
(Mass Spectrometry)

√ √ √ √ √ √ √

- Proteomics
(Multiplexed
Immunoassay)

√ √

The metabolomic platforms utilized in various studies include GC/MS (gas chromatography coupled with mass spectrometry), Lipid LC/MS (liquid
chromatography coupled with mass spectrometry platform targeting lipids) and Polar LC/MS (liquid chromatography coupled with mass spectrometry platform
targeting polar metabolites).
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exhibiting significant non-Gaussian distributions reveal
important characteristics of the profiled data in each
platform/study. For each feature, x, skewness was esti-

mated as the ratio
( )xi

i

n
−

=
∑ 



3

1
3

, where n denotes the

number of subjects within a class, x1,.., xn denote the n
intensity measurements for that feature, μ represents the
mean and s denotes the standard deviation for that fea-
ture. For each feature, skewness was estimated separately
within each case and control class - the distribution of
the average of the within class estimates is reported in
Figure 2. Lastly, we estimated the percentage of features
within each dataset (per platform per study) that deviated
significantly from the assumption of a class conditional
Gaussian distribution. For each feature, we obtained a p
value from the Anderson-Darling test for normality [23]
and adjusted for multiple comparisons using the q value
procedure [24]. In each phenotypic class, the percentage
of features with p and q values less than 0.05 was esti-
mated - the average of the class-specific percentages is
reported in Figure 3.

In Figure 1, we present the distribution of effect sizes
for features (on natural logarithm scale) measured in
each ‘omics’ platform per study. Studies on human sam-
ples (shown in red) exhibit distributions shifted to the
left toward lower effect sizes in all platforms when com-
pared to studies conducted on animal models (shown in
black). The maximum effect size in human studies ran-
ged from 0.4 (Study I, GC/MS) to 0.8 (Study II, Polar
LC/MS), with the 95th percentile at or below 0.8 in all
platforms. The range of effect sizes observed in studies
involving animal models (Study III - Study VII, Table)
was dramatically larger than that in human studies - the
maximum effect size ranged from 0.6 (Study III, Lipid
LC/MS platform) to 17.8 (Study V, Polar LC/MS plat-
form). The 95th percentile of the distribution of effect
sizes in animal studies was lower than 2.5 in both pro-
teomic platforms. On the other hand, the 95th percentile
of the distribution of effect sizes in animal studies
among platforms profiling metabolites ranged from
approximately 0.4 (Study III, Lipid LC/MS) to larger
than 4.0 (Study V, Polar LC/MS). Differences in the
magnitude of effect sizes observed between animal and
human studies can be attributed in part to the following

Figure 1 Distribution of effect size among features measured in each platform per study. Solid dots indicate 5th and 95th percentiles,
brackets indicate 1st and 3rd quartiles, × indicates the median value and the number noted on the right axis indicates maximum value of effect
size. Studies of human (animal model) samples are colored red (black). Platforms that were not utilized for a specific study are denoted as N/A
(blue).
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factors: (i) the increased genetic homogeneity in the ani-
mal populations when compared to human populations,
and (ii) the nature of the studies undertaken. Animal
studies involve in-bred and genetically homogenous
populations, thus resulting in reduced within class varia-
bility in measured features when compared to studies
involving human subjects. Moreover, the animal studies
reported here involved experiments comparing the
effects of treatment with drug relative to placebo,
whereas the human studies were case-control experi-
ments comparing subjects belonging to two distinct dis-
ease-related outcome classes.
In Figure 2, we present the distribution of skewness of

features measured after natural logarithm transforma-
tion of the measurements. For each study, we report the
distribution of the average within-class estimate of skew-
ness. The average skewness of features measured in
human studies (shown in red) was distinctly larger when
compared to studies involving animal models (shown in
black). The median skewness in human studies ranged
from approximately 0.1 (Study I, Lipid LC/MS) to
approximately 0.8 (Study II, GC/MS). Among animal
studies, the median skewness was approximately 0 in

most platforms. Notable exceptions were the Polar LC/
MS and Lipid LC/MS data profiled in Study IV as well
as the Proteomics (Mass Spectrometry) data profiled in
Study VIIb, where the median skewness was approxi-
mately -0.5.
In Figure 3, we present the average percentage of

features (per platform and study) with a p value and q
value less than 0.05 resulting from the Anderson-Dar-
ling test for normality on the natural logarithm trans-
formed data. The percentage of features satisfying the
p and q value thresholds was estimated within each
phenotypic class - the average of the within class esti-
mates are reported. Consistent with the data reported
in Figure 2, studies involving human subjects (shown
in red) resulted in larger percentages of features with
significantly non-Gaussian feature distributions, when
compared to studies involving animal models (shown
in black). Among human studies, the percentage of
features with non-Gaussian distributions ranged from
7.8% (Study II, Lipid LC/MS) to 53.1% [Study I, Polar
LC/MS]. Among studies involving animal models, the
percentage of features with non-Gaussian distributions
ranged from 0% [Studies V, VIIa, Proteomics (Mass

Figure 2 Distribution of skewness among features measured in each platform per study. Brackets indicate 1st and 3rd quartiles and ×
indicates the median value. Studies of human (animal model) samples are colored red (black). Platforms that were not utilized for a specific
study are denoted as N/A (blue).
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Spectrometry)] to 38.5% (Study IV, Lipid LC/MS). The
Lipid LC/MS and Polar LC/MS platforms in Study IV
were observed to be exceptions among studies invol-
ving animal models - in both platforms, significant
percentages of features with negative skewness were
observed (Figure 2), with correspondingly large percen-
tages of features exhibiting non-Gaussian distributions
(Figure 3).
The large average skewness (Figure 2) and the corre-

spondingly high percentage of features exhibiting non-
Gaussian distributions (Figure 3) in human studies is
consistent with previous reports of larger biological
variability and the higher likelihood of observing outlier
measurements in human studies, when compared to stu-
dies involving animal models [25].

Simulation Results
We conducted simulation studies comparing the perfor-
mance of the classifiers KNN, PAM, RF and SVM, in
settings in which the number of features exceeded the
number of subjects in the study. Each classifier incorpo-
rated a recursive feature elimination procedure to select
the subset of features that maximized the classifier’s per-
formance in predicting class membership. In the

following, the sample size in each class is denoted as n
and the percentage of biomarkers among 1000 features
measured per subject is denoted as k. References to
effect size pertain to individual features comprising the
biomarker set - for example, a simulation setting
described as ‘k = 1% and effect size of 0.2’ refers to a set
of 10 biomarkers, each with effect size of 0.2.
The results reported in this paper are based on 100

simulated datasets. The simulations assumed a range of
values for n (50, 100, 150, 200) and k (0.5%, 1%, 5%).
The performance of each classifier was quantified based
on two metrics: ‘average classification accuracy’ (i.e.
average percentage of samples that were correctly classi-
fied) or the ‘AUC statistic’ associated with the estimated
Receiver Operating Characteristics (ROC) curve. The
aforementioned metrics to quantify classifier perfor-
mance were estimated based on samples left out of the
classifier training procedure, during a 4-fold cross vali-
dation process. Statistical power to detect a ‘biomarker
set’ and associated classification rule was estimated by
comparing the observed value of the classifier perfor-
mance metric to its distribution under the null hypoth-
esis. The null distribution was estimated based on 100
simulated datasets in which 100% of the features

Figure 3 Percentage of analytes with significantly non-Gaussian distributions, in each platform per study. Studies of human (animal
model) samples are colored red (black). Platforms that were not utilized for a specific study are denoted as N/A (blue).
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measured were noise features. Statistical power was esti-
mated as the percentage of simulated datasets in which
the observed value of classifier performance metric
exceeded the 95th percentile of its distribution obtained
under the null hypothesis. Details on the simulation stu-
dies are presented in the Methods section.
Presence of noise features
In Figure 4, we present simulation results illustrating the
effect of the presence of noise features on statistical
power of each classifier. We compared the setting in
which the dataset included only 10 biomarkers per sub-
ject (’Without Noise’) to the setting in which the dataset
included 1000 features per subject, of which 10 were
biomarkers (’With Noise’). We assumed that n = 150
and that the class conditional feature distributions fol-
low a Gaussian model. In the setting ‘With Noise’, the
optimal subset of features was determined by recursive
feature elimination (See Methods). The simulations used
average classification accuracy as the metric to quantify
classifier performance. The introduction of noise fea-
tures and the subsequent procedure to determine the
biomarker set resulted in drastic reduction in power for
effect sizes in the range 0.20 - 0.45, for all classification
algorithms considered (Figure 4). For example, when

each of the 10 biomarkers was characterized by an effect
size of 0.35, statistical power decreased from 100% in
the absence of noise features to 38% [95% CI: (28%,
48%)], 79% [95% CI: (71%, 87%)], 60% [95% CI: (50%,
70%)] and 49% [95% CI: (39%, 59%)] in the presence of
noise, for KNN, PAM, RF and SVM, respectively. PAM
achieved the highest power in the presence of noise
when compared to KNN, RF and SVM in this setting.
For effect sizes greater than 0.45, all classifiers achieved
power approaching 100%, even in the presence of a sig-
nificant percentage of noise features.
Comparison of classification algorithms when class
conditional feature distributions are Gaussian
We compared the statistical power of classifiers KNN,
PAM, RF and SVM, when the feature distributions in
the case and control classes were assumed to follow a
Gaussian model. The simulations compared the effects
of varying levels of signal-to-noise in the dataset, varying
sample sizes, imbalance in class distribution and the
choice of metric to measure classifier performance
(average classification accuracy Vs AUC).
We first consider the Gaussian distribution to model

feature distributions within class as this is a common
assumption made in several statistical algorithms,
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Figure 4 Statistical power of classifiers KNN, PAM, RF and SVM, comparing settings with and without noise. Each dataset included n =
150 subjects per class, where features were distributed according to a Gaussian distribution within each class. The setting “With Noise”
corresponded to the inclusion of 1000 features per subject, where only 10 were biomarkers. The setting “Without Noise” corresponded to the
inclusion of only 10 biomarkers per subject. Results are based on 100 simulated datasets.
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including PAM. In many practical applications, the
assumption of a Gaussian distribution may be approxi-
mately satisfied by suitable transformations of the data,
such as the commonly used logarithm transformation.
However, as seen in Figures 2 and 3, several protein and
metabolite features particularly from human studies
exhibit highly skewed, non-Gaussian distributions. Addi-
tionally, data from ‘omics’ studies indicated that: (i) both
biomarkers and noise features are equally likely to have
highly skewed distributions within each class; and, (ii)
the class conditional feature distributions do not vary
significantly by class for most features. Subsequent
simulations evaluated the performance of KNN, PAM,
RF and SVM when the class conditional feature distri-
butions were modeled according to a mixture of Gaus-
sian distributions.
Figure 5 panels (a) - (c) present results on statistical

power comparing settings of varying values of n (100 Vs
150 Vs 200). Similar results on statistical power for n =
50 can be found in Additional File 1: Supplemental Fig-
ure S1 (a). Simulations assumed that k = 1% and that
the class conditional feature distributions follow a Gaus-
sian model. The results are based on the use of average

classification accuracy as the metric to quantify classifier
performance. When n = 100 (150, 200), all four classi-
fiers achieved nearly perfect power (100%) correspond-
ing to effect sizes in individual biomarkers of 0.56 (0.45,
0.45) or greater. For sample sizes of at most n = 150
and effect sizes lower than 0.45, PAM achieved the
highest power, followed by RF, SVM and KNN. For
example, when the effect size of each individual biomar-
ker was 0.34 and n = 100, statistical power was 21%
[95% CI: (13%, 29%)], 54% [95% CI: (44%, 64%)], 39%
[95% CI: (29%, 49%)] and 33% [95% CI: (24%, 42%)], for
KNN, PAM, RF and SVM, respectively. Similarly, when
n = 150 and effect size was 0.34, statistical power was
highest for PAM (79% [95% CI: (71%, 87%)]), followed
by RF (60% [95% CI: (50%, 70%)]), SVM (49% [95% CI:
(39%, 59%)]) and KNN (38% [95% CI: (28%, 48%)]).
Figure 5, panels (d) - (e) present results on statistical

power comparing settings of varying values of k (0.5%
Vs 1% Vs 5%). Simulations assumed that n = 150 and
that the class conditional feature distribution follows a
Gaussian model. All four classifiers achieved nearly per-
fect power (100%) to detect effect sizes of 0.56 (0.45,
0.34) or greater, when k = 0.5% (1%, 5%). When k =
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 1% biomarkers

KNN
PAM
RF
SVM

KNN
PAM
RF
SVM

KNN
PAM
RF
SVM

KNN
PAM
RF
SVM1%

1%
3%
7%

3%
3%
3%
9%

6%
10%
12%
17%

38%

49%

60%

79%

95%

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

Effect size  ((δδ σσ))

P
ow

er
 (%

)

(f) Gaussian distribution (n=150) 
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Figure 5 Comparison of statistical power of classifiers when feature distributions within class are Gaussian. Each dataset included 1000
features per subject, where features were distributed according to a Gaussian distribution within each class. Results shown in Panels (a) - (c)
were based on k = 1% and n = 100, 150 or 200. Results shown in Panels (d) - (f) were based on n = 150 and k = 0.5%, 1% or 5%. Results are
based on 100 simulated datasets. See Additional File 1: Supplemental Figure S1 (a) for similar results when n = 50 and k = 1%.
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0.5% and the effect size of each individual biomarker
was 0.34, statistical power was 26% [95% CI: (17%,
35%)], 42% [95% CI: (32%, 52%)], 37% [95% CI: (28%,
46%)] and 37% [95% CI: (28%, 46%)], for KNN, PAM,
RF and SVM, respectively. When k = 1% and the effect
size of each individual biomarker was 0.34, statistical
power was 38% [95% CI: (28%, 48%)], 79% [95% CI:
(71%, 87%)], 60% [95% CI: (50%, 70%)] and 49% [95%
CI: (39%, 59%)], for KNN, PAM, RF and SVM, respec-
tively. For modest effect sizes, PAM achieved the highest
power, followed by RF, SVM and KNN.
Comparison of simulation results with methods described in
Dobbin et al. (2007) [18]
Figure 6 presents the average classification accuracy for
each classifier, under the assumption that the class con-
ditional feature distributions are Gaussian. The value of
k was varied between 0.5%, 1% and 5% and n was varied
between 100, 150 and 200. Similar results on average
classification accuracy for n = 50 can be found in Addi-
tional File 1: Supplemental Figure S2 (a). The estimates
of average classification accuracy were based on predic-
tions in samples held out of the classifier training

process during a 4-fold cross validation procedure. Fol-
lowing the trend in results shown in Figure 5, PAM
achieved the highest average classification accuracy
when effect sizes for individual biomarkers was at least
0.34. Assuming n = 150, k = 1% and effect size of 0.34,
the expected percentage of correct classification deter-
mined using the algorithm proposed by Dobbin et al.
(2007) [18] was 60%. For the same setting, the simula-
tion estimates of average classification accuracy for the
classifiers KNN, PAM, RF and SVM were 60% [95% CI:
(50%, 70%)], 64% [95% CI: (55%, 73%)], 58% [95% CI:
(48%, 68%)] and 60% [95% CI: (50%, 70%)], respectively.
The simulation based estimates of average classification
accuracy showed close agreement with those derived
using Dobbin et al. (2007). In addition, the simulations
revealed differences between classifiers with regard to
the variance of the average classification accuracy esti-
mates, thereby resulting in significant differences in sta-
tistical power between classifiers (Figure 5). In all
settings considered in which the features followed a
Gaussian class conditional feature distribution, PAM
outperformed KNN, RF and SVM.
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(b) Gaussian distribution (n=150) 
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(c) Gaussian distribution (n=200) 

 1% biomarkers

KNN
PAM
RF
SVM

KNN
PAM
RF
SVM

KNN
PAM
RF
SVM

KNN
PAM
RF
SVM

53%
54%54%
55%

53%
55%55%56%

55%
56%57%
58%

60%60%
62%

66%
67%68%

71%

74% 74%
76%
79%
80% 81%

82%

85%85%
86%86%
88%89% 90%90%

92%92% 93%93%
94%95% 95%95%96%

0.0 0.2 0.4 0.6 0.8 1.0

50
60

70
80

90
10

0

Effect size  ((δδ σσ))

A
ve

ra
ge

 c
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (%

)

(d) Gaussian distribution (n=150) 
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(e) Gaussian distribution (n=150) 
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(f) Gaussian distribution (n=150) 
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Figure 6 Comparison of average classification accuracy of classifiers when feature distributions within class are Gaussian. Each dataset
included 1000 features per subject, where features were distributed according to a Gaussian distribution within each class. Results shown in
Panels (a) - (c) were based on k = 1% and n = 100, 150 or 200. Results shown in Panels (d) - (f) were based on n = 150 and k = 0.5%, 1% or
5%. Results are based on 100 simulated datasets. Average classification accuracy estimates were derived based on a 4-fold cross validation
procedure. See Additional File 1: Supplemental Figure S2 (a) for similar results when n = 50 and k = 1%.
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To address concerns regarding the validity of cross-
validation based estimates of average classification accu-
racy in small samples, an additional alternative strategy
was considered. In this procedure, the classifiers were
trained following a recursive-feature elimination proce-
dure incorporating a 4-fold cross validation process as
described in the Methods. However, the average classifi-
cation accuracy of each estimated algorithm was
assessed based on an independent test set of 400 sub-
jects (See Additional File 1: Supplemental Figure S3 (a)).
The training datasets were simulated following a Gaus-
sian model, where n = 150 and k = 1%. For an effect
size of 0.34, the independent test set based estimates of
average classification accuracy for the classifiers KNN,
PAM, RF and SVM were 57% [95% CI: (47%, 67%)],
60% [95% CI: (50%, 70%)], 56% [95% CI: (46%, 66%)]
and 58% [95% CI: (48%, 68%)], respectively. In the set-
tings considered in these simulations, the estimates of
average classification accuracy based on independent
test sets were similar to those obtained using the 4-fold
cross validation procedure.

Correlated features
In the previous simulations, we assumed that the distri-
butions of the 1000 features measured per subject were
statistically independent. However, this assumption
breaks down in several applications due to the inherent
dependence of biomarkers that belong to similarly act-
ing biological pathways. To model this dependence
between biomarkers, the previously described Gaussian
data generation model was generalized to incorporate a
correlation of 0.5 between the 10 biomarkers in both
the cases and controls. The 990 noise features were
assumed to be independent in both cases and controls.
The results from this simulation are shown in Figure 7.
When k = 1% and the effect size of each individual bio-
marker was 0.34, power was 27% [95% CI: (18%, 36%)],
38% [95% CI: (28%, 48%)], 48% [95% CI: (38%, 58%)]
and 28% [95% CI: (19%, 37%)], for KNN, PAM, RF and
SVM, respectively. As expected, when the biomarkers
were correlated, the resulting statistical power was lower
among all classifiers when compared to the setting in
which all features were independent (Figure 5b). In this
setting of correlated features, RF and PAM resulted in
approximately similar power for modest effect sizes
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Figure 7 Comparison of statistical power of classifiers when feature distributions within class are Gaussian and the biomarkers are
correlated. Each dataset included 1000 features per subject, where features were distributed according to a Gaussian distribution within each
class. The results are based on k = 1% and n = 150. In order to simulate dependence between biomarkers, the data generation model assumed
a correlation of 0.5 between the 10 biomarkers in both cases and controls. Results are based on 100 simulated datasets.

Guo et al. BMC Bioinformatics 2010, 11:447
http://www.biomedcentral.com/1471-2105/11/447

Page 10 of 19



between 0.34 and 0.56 and outperformed both KNN and
SVM.
Imbalance in class distribution
In many biomedical applications, the sample sizes in the
case and control classes tend to be significantly unba-
lanced. Such situations are common in studies of rare
diseases, where an investigator may have limited access
to samples from individuals with disease when com-
pared to healthy control subjects. Imbalance in class
sizes significantly influences the performance of classi-
fiers and as a consequence, the resulting statistical
power can be dramatically affected. In the simulation
results depicted in Figure 8, we compared the setting
where the dataset included 100 cases and 200 controls
to the setting where there were 150 subjects in each
class. We further assumed that k = 1% and that the
class conditional distributions follow a Gaussian model.
The simulations used average classification accuracy as
the metric to quantify classifier performance. For PAM
and RF, the prior class weights were specified to be
equal, to adjust for the imbalance in class distributions
during the classifier training process. In all four classi-
fiers, the imbalance in class sizes resulted in a significant
decline in statistical power for effect sizes lower than

0.45. For example, when the effect size of individual bio-
markers was 0.34, statistical power reduced from 38%
[95% CI: (28%, 48%)] to 19% [95% CI: (11%, 27%)] for
KNN, from 79% [95% CI: (71%, 87%)] to 36% [95% CI:
(27%, 45%)] for PAM, from 60% [95% CI: (50%, 70%)] to
37% [95% CI: (28%, 46%)] for RF and from 49% [95%
CI: (39%, 59%)] to 40% [95% CI: (30%, 50%)] for SVM,
respectively. The greatest and least decline in power due
to imbalance in class sizes was observed in PAM and
SVM, respectively. As a caveat, we note that the AUC
statistic has been previously identified as having limita-
tions in settings of unbalanced outcomes [26-28] - these
limitations may also influence the results reported here.
Choice of metric to quantify classifier performance
Figure 9 presents simulation results comparing the effect
of the metric used to assess classifier performance on
resulting statistical power. Metrics used to quantify per-
formance of a classifier were: (i) average classification
accuracy or (ii) the AUC statistic. Average classification
accuracy was defined as the percentage of samples cor-
rectly classified as a ‘case’ or ‘control’, estimated from
class predictions made on samples held out of the classi-
fier training process. The AUC statistic refers to the
area under the ROC curve corresponding to the trained
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(c) RF (n=150)
1% biomarkers

2%
3% 3%

6%
11%
17%

37%

60%

95%

Balanced
Unbalanced

0.0 0.2 0.4 0.6

0
20

40
60

80
10

0

Effect size  ((δδ σσ))

P
ow

er
 (%

)

(d) SVM (n=150)
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Figure 8 Comparison of statistical power of classifiers under balanced versus unbalanced class distributions. Each dataset included 1000
features per subject with k = 1%, where features were distributed according to a Gaussian distribution within each class. A balanced design
including 150 subjects in each class was compared to an unbalanced design of 100 cases and 200 controls. Results are based on 100 simulated
datasets.
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classifier, where the AUC statistic was also estimated
based on class predictions made on held out samples.
The metric selected to quantify classification perfor-
mance drives the selection of the subset of features
upon which each is classifier is trained (See Methods).
The results shown in Figure 9 were based on the

assumptions of n = 150, k = 1% and a Gaussian model
for class conditional feature distributions. When the
effect size of individual biomarkers was 0.44 or greater,
all four classifiers achieved perfect power, regardless of
the metric used to assess classifier performance. For
effect sizes lower than 0.44, classifiers constructed based
on optimizing the AUC statistic resulted in modestly
higher power when compared to classifiers optimized
based on the average classification accuracy. The dis-
tinction was least pronounced for RF, where both
metrics resulted in nearly identical power. For example,
to detect an effect size of 0.34, estimates of statistical
power based on average classification accuracy and
AUC were 38% [95% CI: (28%, 48%)] and 48% [95% CI:
(38%, 58%)] for KNN, 79% [95% CI: (71%, 87%)] and
87% [95% CI: (80%, 94%)] for PAM, 60% [95% CI: (50%,
70%)] and 64% [95% CI: (55%, 73%)] for RF and 49%

[95% CI: (39%, 59%)] and 68% [95% CI: (59%, 77%)] for
SVM.
Effect of skewed class conditional feature distributions
Figure 10 presents results on statistical power when the
class conditional feature distributions followed a non-
Gaussian mixture model, for varying values of n (100 Vs
150 Vs 200) and k (0.5% Vs 1% Vs 5%). Similar results
on statistical power when n = 50 and k = 1% are shown
in Additional File 1: Supplemental Figure S1 (b). In all
settings compared, RF was the most robust to deviations
from the Gaussian model and achieved the highest
power when compared to PAM, SVM and KNN. For
example, when the effect sizes of individual biomarkers
was 0.28, k = 1% and n = 150, statistical power was 94%
[95% CI: (89%, 99%)], 72% [95% CI: (63%, 81%)], 100%
and 95% [95% CI: (90%, 100%)], for KNN, PAM, RF and
SVM, respectively. When k = 1% and n = 200, statistical
power was 100%, 94% [95% CI: (89%, 99%)], 100% and
100%, for KNN, PAM, RF and SVM, respectively. We
note that the parameters chosen to simulate non-Gaus-
sian features resulted in within-class feature variances
that were four times as large when compared to that in
the Gaussian setting (See Methods). Thus, for features
corresponding to a fixed effect size, those in the
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Figure 9 Comparison of statistical power of classifiers, under different metrics for assessing classifier performance. Each dataset
included 1000 features per subject, where features were distributed according to a Gaussian distribution within each class. The results are based
on k = 1% and n = 150. The classifier performance metric ‘average classification accuracy’ was compared to the ‘AUC statistic’, in determining
the optimal subset of features after dimensionality reduction. Results are based on 100 simulated datasets.
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Gaussian setting had one half the magnitude of mean
separation between classes (i.e. |μ1 - μ2|) when com-
pared to features in the non-Gaussian setting. As a con-
sequence, for a fixed value of effect size, the power
achieved by all classifiers was larger in the non-Gaussian
(Figure 10) when compared to the Gaussian setting (Fig-
ure 5).
In all cases considered, PAM was the least robust to

non-Gaussian feature distributions. PAM is a generaliza-
tion of a Linear Discriminant Analysis classifier, based
on the assumption that the features in each class are
distributed according to a multivariate normal distribu-
tion. Thus, its sensitivity to deviations from a Gaussian
model is expected. The non-parametric nature of Ran-
dom Forests contributes to its robust performance
under settings of varying class conditional feature
distributions.
Figure 11 presents the average classification accuracy

for each classifier, under the assumption that the class
conditional feature distributions are non-Gaussian. The
values of k were varied between 0.5%, 1% and 5% and n
varied between 100,150 and 200. Similar results on aver-
age classification accuracy when n = 50 and k = 1% are

shown in Additional File 1: Supplemental Figure S2 (b).
Following the trend evident in Figure 10, RF achieved
the highest average classification accuracy in all settings
considered. To address concerns regarding the validity
of cross-validation based estimates in small samples, we
pursued an additional alternative strategy to estimate
average classification accuracy based on an independent
test set of 400 subjects. Additional File 1: Supplemental
Figure S3 (b) presents the average classification accuracy
estimated using an independent test set. The training
datasets were simulated following a non-Gaussian
model, where n = 150 and k = 1%. The estimates of
average classification accuracy based on independent
test sets were similar to the estimates obtained using
the 4-fold cross validation procedure.
R package
A free open-source R statistical software library
(MVpower, Version 2.0) is available for download from
the R project website [21]. The R package will allow the
user to estimate statistical power based on any of the
four classifiers (KNN, PAM, RF and SVM) for user-
defined inputs for parameters n, k, number of features
per subject and form of class conditional feature

0.0 0.2 0.4 0.6

0
20

40
60

80
10

0

Effect size  ((δδ σσ))

P
ow

er
 (%

)

(a) Non−Gaussian distribution (n=100) 
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(b) Non−Gaussian distribution (n=150) 
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(c) Non−Gaussian distribution (n=200) 
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(d) Non−Gaussian distribution (n=150) 
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(e) Non−Gaussian distribution (n=150) 
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(f) Non−Gaussian distribution (n=150) 
 5% biomarkers

KNN
PAM
RF
SVM

KNN
PAM
RF
SVM

KNN
PAM
RF
SVM

KNN
PAM
RF
SVM3%

5%
8%
8%

5%
7%
8%
8%

20%
23%

35%

55%

62%

76%

87%

Figure 10 Comparison of statistical power of classifiers when feature distributions within class are non-Gaussian. Each dataset included
1000 features per subject, where features were distributed according to a non-Gaussian distribution within each class. Results shown in Panels
(a) - (c) were based on k = 1% and n = 100, 150 or 200. Results shown in Panels (d) - (f) were based on n = 150 and k = 0.5%, 1% or 5%.
Results are based on 100 simulated datasets. See Additional File 1: Supplemental Figure S1 (b) for similar results when n = 50 and k = 1%.
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distributions. The R package is made available under the
open-source Artistic License 2.0.

Discussion
The results presented in this paper focus on the mini-
mum sample size required for determining whether a
classification algorithm performs significantly better
than random chance. Although a specific sample size
may result in high power, the resulting classifier may
not include all existing biomarkers that truly discrimi-
nate between cases and controls. This could also result
in biomarker sets that have poor overlap in comparable
experiments. The simulation strategy and resulting sam-
ple sizes discussed in this paper are appropriate for stu-
dies conducted during the initial stage of biomarker
discovery - such as clinical settings in which the exis-
tence of a biomarker set with clinically useful discrimi-
natory ability between outcome classes is unknown.
When the initial phases of investigation have proven to
be successful, subsequent validation studies may be
designed with more stringent conditions aimed at ensur-
ing the discovery of all relevant biomarker as well as

establishing a high degree of reproducibility. As dis-
cussed in Ein-Dor et al. (2006) [29], with the added con-
straint that the discovered biomarker set is sufficiently
reproducible, the resulting sample size increases drama-
tically to the thousands. Such additional constraints to
ensure sufficient power to discover a robust biomarker
set can be imposed on simulations similar to the ones
proposed in this paper for purposes of comparing var-
ious classifiers.
The simulation results presented here assumed that

the outcome of interest was binary (i.e. case versus con-
trol). Further research into sample size requirements for
studies with outcomes involving multiple (> 2) phenoty-
pic groups, continuous and or censored measurements
(e.g. survival time) is needed.

Conclusion
In this paper, we presented a summary of the charac-
teristics of ‘omics’ data profiled in seven experiments
involving human subjects or animal models in various
disease areas. The average magnitude of effect size
observed in studies involving human subjects was
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(b) Non−Gaussian distribution (n=150) 
 1% biomarkers

KNN
PAM
RF
SVM

KNN
PAM
RF
SVM

KNN
PAM
RF
SVM

KNN
PAM
RF
SVM

53%
55%55%
56%

53%
54%55%
57%

54%
55%56%
57% 56%57%57%58%

59%60%60%60%

63%
64%

67%67% 68%
69%

72%
74%

72%
74%

77%

80%

77%
78%

83%
85%

80%
82%

86%
88%

83%
84%

89%
91%

0.0 0.1 0.2 0.3 0.4 0.5

50
60

70
80

90
10

0

Effect size  ((δδ σσ))

A
ve

ra
ge

 c
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (%

)

(c) Non−Gaussian distribution (n=200) 
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(d) Non−Gaussian distribution (n=150) 
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(e) Non−Gaussian distribution (n=150) 
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(f) Non−Gaussian distribution (n=150) 
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Figure 11 Comparison of average classification accuracy of classifiers when feature distributions within class are non-Gaussian. Each
dataset included 1000 features per subject, where features were distributed according to a non-Gaussian distribution within each class. Results
shown in Panels (a) - (c) were based on k = 1% and n = 100, 150 or 200. Results shown in Panels (d) - (f) were based on n = 150 and k = 0.5%,
1% or 5%. Results are based on 100 simulated datasets. Average classification accuracy estimates were derived based on a 4-fold cross validation
procedure. See Additional File 1: Supplemental Figure S2 (b) for similar results when n = 50 and k = 1%.
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markedly lower when compared to that observed in
animal studies. Moreover, the datasets arising in
human studies were characterized by higher biological
variation and the presence of outliers, resulting in
skewed, non-Gaussian feature distributions within spe-
cific phenotypic classes. The observations of modest
effect sizes and larger biological variation greatly influ-
ence the sample size needed to adequately power stu-
dies in human subjects.
We presented results comparing the performance of

four widely used classifiers (KNN, PAM, RF and SVM)
in settings where the number of features far exceeds
the number of subjects in the study. We illustrated
that the presence of high levels of signal-to-noise
results in a dramatic reduction in power in all classi-
fiers considered. When the class conditional feature
distributions were assumed to follow a Gaussian
model, PAM achieved the highest power when com-
pared to KNN, RF and SVM. However, when the fea-
ture distributions in each class were non-Gaussian, RF
achieved the highest power among all four classifiers.
The simulations further illustrated the decrease in
power due to imbalance in class sizes - under this sce-
nario, classifiers based on the RF and SVM algorithms
resulted in the highest power. The choice of metric to
assess performance of a classifier (AUC Versus average
classification accuracy) did not result in appreciable
differences in statistical power, in the settings consid-
ered in this paper.

Methods
Data
Study I
This was a retrospective case-control study conducted in
human subjects to discover diagnostic biomarkers of
organ toxicity in human blood plasma samples. The
study involved 41 cases and 93 control subjects. The
experimental design is described in detail in a previous
publication [30].
Study II
This was a matched case-control study conducted in
human subjects to discover prognostic biomarkers in
blood plasma for near-term cardiovascular events. The
study involved 68 cases matched to 68 controls. Subjects
were matched based on age, gender, race/ethnicity and
severity of coronary artery disease.
Study III
This was a study conducted in a mouse model of infec-
tious disease, aimed at discovering blood plasma bio-
markers predictive of treatment response. The study
involved 15 cases and 15 controls.
Study IV
This study was conducted in a mouse model of neuro-
muscular disease to discover blood plasma biomarkers

of treatment response. The study involved 46 cases and
22 controls.
Study V
This was a study conducted in a mouse model to dis-
cover treatment effect biomarkers in organ tissue. The
study involved one control (n = 12) and two treatment
groups (n = 12, 17). The distribution of effect size was
based on the comparison between the control and the
most extreme treatment group.
Study VI
This was a study conducted in a mouse model to dis-
cover treatment effect biomarkers in blood plasma and
organ tissue. The study involved one control (n = 14)
and four treatment groups (n = 11, 12,14,15). The distri-
bution of effect size was based on the comparison
between the control and the most extreme treatment
group.
Study VII
This was a study in a rat model to discover biomarkers
of treatment effect in organ tissue (VIIa) and blood
plasma (VIIb) samples. The study involved one control
(n = 12) and six treatment groups (n = 12). The distri-
bution of effect size was based on the comparison
between the control and the most extreme treatment
group. The details regarding the experimental design are
provided in a previous publication
[31].

Mass Spectrometry (MS) Platforms
The studies described in this paper employed a combi-
nation of one proteomic and three metabolite platforms
based on mass spectrometry techniques. The metabolite
platforms included a gas chromatography coupled with
mass spectrometry technique (GC/MS) targeting specific
molecules such as amino acids, sugars, alcohols, alde-
hydes and cyclohexanols, amines, aromatic compounds,
organic acids, phospho-organic acids, sugar acids, sugar
amines, sugar phosphates; a liquid chromatography
coupled with mass spectrometry platform (Lipid LC/
MS) targeting lysophospholipids, phospholipids, choles-
terol esters, di- and tri-acylglycerols, sphingomyelins,
ceramides and related molecules; and a liquid chromato-
graphy coupled with mass spectrometry platform (Polar
LC/MS) targeting polar molecules amino acids, amino
acid metabolites, organic acids and related molecules.
Comprehensive profiling of proteins in the tissue/body
fluid was based on protein digestion and chemical isoto-
pic peptide labeling, multi-dimensional liquid chromato-
graphy and matrix-assisted laser desorption ionization
(MALDI) tandem mass spectrometry analysis of peptides
for the identification and quantification of peptides (and
proteins). All the mass spectrometry based platforms
were carried out at BG Medicine Inc. [22] and TNO
Quality of Life [32].
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Proteomic (Multiplex Immunoassay) Platform
Two of the seven studies also included data from the
HumanMap (version 1.6) quantitative antigen platform
from Rules Based Medicine, Inc. [33]. This multiplexed
immunoassay platform detects antibodies to antigens
and resulted in quantitative measurements for 89 pro-
teins in each individual sample.

Bayes Rule
We assume that there are two classes of interest in the
population, with equal proportions and that there are p
biomarkers with non-zero difference in mean intensity
between the two classes. Under the assumptions that
the class conditional feature distributions follow a multi-
variate normal distribution, that the covariance matrix
of the biomarkers is equal to s2I and that the effect
sizes of all biomarkers (δ/s) are equal, the probability of
correct classification is equal to Φ( )

2 p [34].

Classifiers
We provide brief descriptions of each classifier (KNN,
PAM, RF and SVM) below:
K-nearest neighbor (KNN): is an intuitive classifica-

tion method, in which a new subject’s class is predicted
to be the most frequent class observed among the new
subject’s ‘k’ nearest neighbors [5]. The identity of the
nearest neighbors is determined based on a user input
measure of distance calculated in the feature space. The
algorithm requires the following three inputs (i) a train-
ing data set including samples with information on fea-
tures and class membership (ii) parameter ‘k’ to
determine the number of nearest neighbors considered
and (iii) measure of distance to be used to determine
the nearest neighbors. The key output of the procedure
is a predicted class for every subject.
Prediction Analysis for Microarrays (PAM): is a

classification technique for class prediction that is based
on the shrunken centroid technique [4]. Based on a spe-
cific value of a threshold (Δ), the shrunken centriods
procedure finds a subset of features that are most
important in predicting class membership. To imple-
ment this procedure, the algorithm calculates the differ-
ence between the overall centroid and the class specific
centroid for each feature. Features in which the absolute
distance between the overall and class specific centroid
exceeds Δ in at least one class constitute the shrunken
centroids. A new sample is classified to the nearest
shrunken centroid. The value of Δ is determined by
external cross validation. The algorithm requires as
inputs: (i) a training dataset including samples with
information on features and class and (ii) number of
cross validation folds for determining the optimal Δ.
Key outputs of the classifier include predicted class
membership for each sample and a measure of

importance of each feature. For each feature, its mea-
sure of importance in classification is proportional to
the absolute value of the difference between the overall
and class specific shrunken centroids.
Random Forests: is a classification procedure based

on aggregation of results from several individual classifi-
cation trees [3]. Each tree in the procedure is grown on
a bootstrap sample of the same size as the original data-
set. At each node of a tree, a random subset of m fea-
tures is selected. From among the m chosen features,
the best variable (and its split) based on reduction in
Gini impurity is selected. The tree is grown to the full-
est extent without pruning. To predict class membership
for a subject, their feature values are run down each tree
to obtain a predicted class. The predicted class for each
sample is then assumed to be the class that obtained the
majority vote based on all trees grown. In each tree,
since the bootstrap sample used as the training set will
approximately exclude 1/3rd of samples, these samples
are treated as a ‘test set’ for assessing prediction error of
the classifier. Inputs to the classifier include (i) a train-
ing dataset including samples with information on fea-
tures and class labels, (ii) the number of trees to be
grown and (iii) number of features (m) to be selected at
random at each node of every tree. Key outputs of the
classifier include predicted class membership for each
sample and a measure of variable importance. For each
feature, its measure of importance in classification is
based on the average decrease in classification accuracy
when the feature is randomly permuted when compared
to that obtained in the original data.
Support Vector Machines
Support Vector Machines (SVM) use kernel functions to
transform the original data vector into higher dimen-
sionality spaces. The two phenotypic classes are sepa-
rated by finding the hyperplane in the transformed
feature space which results in the maximal margin of
separation between the two classes [6]. The choice of
the kernel function (e.g. polynomial, Gaussian) is driven
by prior knowledge of the problem. The algorithm
requires as input (i) a training dataset including samples
with information on features and class labels and, (ii)
the kernel function. Estimation of the classification
accuracy is based on cross validation. The primary out-
put of the algorithm is the predicted class for each sam-
ple in the dataset.

Simulation study
Data
Each simulated dataset included measurements on 1000
features per subject, where the sample size per class (n)
was varied between 50, 100, 150 and 200, respectively.
We assumed that subjects belonged to one of two
classes, labeled either ‘cases’ or ‘controls’. Unless

Guo et al. BMC Bioinformatics 2010, 11:447
http://www.biomedcentral.com/1471-2105/11/447

Page 16 of 19



otherwise stated, each feature was simulated as an inde-
pendent random variable. A fixed set of k percent of the
1000 features were assumed to be differentially
expressed in the cases when compared to the controls
(referred to as ‘biomarkers’) and the remaining (100-k)
percent were assumed to be non-discriminating features
between cases and controls (referred to as ‘noise’). The
percentage of biomarkers (k) was varied between 0.5%,
1% and 5%, respectively. The distribution of the features
in each class was assumed to follow either a Gaussian
distribution or a mixture distribution, respectively. For
the simulations in which the features were assumed to
follow a Gaussian distribution, the data were generated
according to the following:

X control N
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where δ ranged from 0 to 0.50 in steps of 0.05 for bio-
markers. δ was assumed to be 0 for noise features. The
simulations in which the features were assumed to fol-
low a non-Gaussian distribution, the data were gener-
ated according to the following:
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where U, Z1, Z2, Z1* and Z2* were assumed to be
independent random variables. The distributions of the
random variables U, Z1, Z2, Z1* and Z2* were:

U Uniform

Z N

Z Uniform c c

Z N

~ ( , )

~ ( , )

~ ( , )

~ ( ,*

0 1

1
2

2 1 2

1
2

 
   

 

+ +
∗ ))

~ ( , )

.

* *Z Uniform c c2 1 2
∗ + +   

Here N(μ,s2) refers to a Gaussian distribution with
mean μ and variance s2. The following values of the
parameters were assumed: s2 = 0.2, c1 = 3.0 and c2 =
6.7. Based on the above distributional assumptions, the
expected value of each feature (X) among the cases and
controls is:
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The values of μ and μ* were chosen such that E(X |
‘control’) = 0 and E(X | ‘case’) takes the values [0, 0.05,
0.10, ..., 0.50]. Based on the parameters assumed above,

the average variance and skewness of each feature (con-
ditional on class) were 0.80 and 1.50, respectively.
Recursive Feature Elimination
To find the optimal subset of features, the following
recursive feature elimination procedure was carried out
for KNN, RF and SVM: An initial classifier was con-
structed by including all 1000 features as inputs. Subse-
quent classifiers were constructed based on input
datasets that excluded the least important 1% of features
in the preceding step. When the input dataset was
pruned to 100 or fewer features, the subsequent classi-
fiers excluded the least important feature in each suc-
cessive feature elimination step. For RF, KNN and SVM,
feature importance was estimated based on the variable
importance measure output from fitting an RF model -
this measure is based on decrease in prediction accuracy
when each feature value is randomly permuted. Recur-
sive feature elimination process was carried out by vary-
ing the threshold value (Δ) for PAM.
Performance Evaluation of Classifier
The average classification accuracy or the AUC statistic
was used to assess performance of each classifier. Aver-
age classification accuracy was defined as the percentage
of samples correctly classified as a ‘case’ or ‘control’
based on the predictions made by the classifier. The
AUC statistic corresponded to the area under the Recei-
ver Operating Characteristics curve corresponding to
the estimated classification algorithm. For each simu-
lated dataset, estimates of average classification accuracy
and AUC statistic were based on samples held out of
the classifier training process, according to a 4-fold
cross validation procedure. That is, corresponding to a
single 4-way partition of the samples, 25% of the cases
and controls were successively held out of the classifier
training process. In each of the 4 steps of the cross vali-
dation procedure, a series of classifiers were trained
using 75% of the samples, by varying the number of
input features according to the recursive feature elimi-
nation procedure. The performance of each trained clas-
sifier was assessed using either the AUC statistic or
average classification accuracy, estimated from class pre-
dictions made on 25% of samples that were held out of
the classifier training process. For each value of number
of features input to the classifier in the training process,
the classification performance metric based on either
AUC or average classification accuracy was averaged
over the results obtained across the 4 cross validation
steps. The maximum average value of AUC or classifica-
tion accuracy among the series of classifiers with varying
number of input features (from the recursive feature
elimination procedure) was chosen as the measure of
classifier performance.
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To address concerns regarding the performance of
cross-validation based estimates in small samples, we
pursued an additional alternative strategy to estimate
average classification accuracy. In this modified proce-
dure, the average classification accuracy of each esti-
mated classification algorithm during the recursive
feature elimination process was assessed based on an
independent test set of 400 subjects. The average classi-
fication accuracy estimates based on the cross validation
procedure showed close agreement to the estimates
derived from the independent test set. Additional File 1:
Supplemental Figure S3 presents the average classifica-
tion accuracy estimated using an independent test set.
The training datasets were generated based on n = 150
and k = 1%.
Power Estimation
For each simulated dataset, a p value associated with
AUC or average classification accuracy was calculated
based on comparison of the observed value of the statis-
tic to its distribution under the null hypothesis of no
association between the measured features and class
label. The null distribution of the AUC statistic and
average classification accuracy was obtained from 100
simulated datasets in which all 1000 features were simu-
lated to be non-discriminating between cases and con-
trols. That is, all features were simulated to satisfy E(X |
‘control’) = E(X |’case’) = 0. Statistical power was esti-
mated as the percentage of simulated datasets in which
p values were at most 0.05. The results reported in the
paper are averages based on 100 simulated datasets.
Simulation details specific to each classifier are

described below:
KNN
Simulations were carried out using the R package class
(Version 7.2-34) [21]. Each KNN classifier was built by
considering the 5 nearest neighbors based on Euclidean
distance. In the Recursive Feature Elimination process,
feature importance was assessed based the variable
importance output obtained from fitting a Random For-
ests classifier.
PAM
Simulations were carried out using the R package pamr
(Version 1.29) [35]. The Recursive Feature Elimination
process was carried out over a vector of 30 threshold
values for centroid shrinkage. The maximum value of
average classification accuracy or AUC statistic among
the 30 classifiers constructed as part of the feature elim-
ination procedure was used as the metric of classifica-
tion performance. As described above, estimates of
average classification accuracy and AUC were based on
‘hold out’ samples in a 4-fold cross validation procedure.
Random Forests
Simulations were carried out using the R package ran-
domForest (Version 4.5-18) [21]. In each simulated

dataset and for every cross validation partition, a series of
Random Forests classifiers consisting of 500 trees each
was built, where the number of features randomly
selected at each node of a tree (mtry) was chosen to
equal the square root of the number of input features
(rounded up to the nearest integer value). In the Recur-
sive Feature Elimination process, feature importance was
assessed based on average decrease in classification accu-
racy observed resulting from permuting each feature’s
values [3].
SVM
Simulations were carried out using the R package ker-
nlab (Version 0.9-7) [21]. Each SVM classifier was built
using a Radial Basis kernel ("Gaussian”) (kernel =
“rbfdot”) and bound-constraint classification procedure
(type = “C-bsvc”). The sigma hyperparameter was esti-
mated from the data (kpar = “automatic”). In the Recur-
sive Feature Elimination process, feature importance was
assessed based the variable importance output obtained
from fitting a Random Forests classifier.

Additional material

Additional file 1: Simulation Results - Supplement. This file includes
additional simulation results for the following settings: (i) Comparison of
statistical power and average classification accuracy for classifiers KNN,
PAM, RF and SVM, when n = 50; (ii) Estimates of average classification
accuracy for classifiers KNN, PAM, RF and SVM, based on independent
test sets.
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