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FragViz: visualization of fragmented networks
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Abstract

Background: Researchers in systems biology use network visualization to summarize the results of their analysis.
Such networks often include unconnected components, which popular network alignment algorithms place
arbitrarily with respect to the rest of the network. This can lead to misinterpretations due to the proximity of
otherwise unrelated elements.

Results: We propose a new network layout optimization technique called FragViz which can incorporate additional
information on relations between unconnected network components. It uses a two-step approach by first
arranging the nodes within each of the components and then placing the components so that their proximity in
the network corresponds to their relatedness. In the experimental study with the leukemia gene networks we
demonstrate that FragViz can obtain network layouts which are more interpretable and hold additional information
that could not be exposed using classical network layout optimization algorithms.

Conclusions: Network visualization relies on computational techniques for proper placement of objects under
consideration. These algorithms need to be fast so that they can be incorporated in responsive interfaces required
by the explorative data analysis environments. Our layout optimization technique FragViz meets these
requirements and specifically addresses the visualization of fragmented networks, for which standard algorithms do
not consider similarities between unconnected components. The experiments confirmed the claims on speed and
accuracy of the proposed solution.

Background
From the onset of systems biology, visualization of net-
works has played a key role in communicating the rela-
tions between objects of interest and the structure of
the problem domain. Gene networks [1], protein inter-
actions [2,3], synergistic relations between SNPs [4],
gene-based disease similarities [5], enzymatic relations
and metabolic processes are just a few examples of
domains where visualization of networks can aid in
understanding the layout of the biological systems. The
interest in this area has sparked the development of a
large variety of software tools and approaches that deal
with network layout optimization, data integration,
interactive exploration of the networks and data analy-
tics [6].
Formally, a network is a graph which consist of ver-

tices (nodes) linked by edges. In systems biology, ver-
tices can represent genes, proteins, metabolites, diseases,

or other objects of interest. Edges abstract the relations
between these objects.
The network often consists of a large number of

unconnected components, like the recently published
yeast protein interaction network [7] and a drug similar-
ity network [8] with 160 and 240 unconnected compo-
nents, respectively. Classical network layout techniques
such as Fruchterman-Reingold [9], Kamada-Kawai [10]
and Frick et al. [11] algorithms arrange unconnected
components arbitrarily, which can wrongly suggest a
relation between otherwise unrelated components.
For illustration consider the network from Figure 1,

which depicts four components from the leukemia gene
network shown in Figure 2. From the layout in Figure
1a with an arbitrary component placement one could
(incorrectly) conclude that genes blvra-hmox-blvrb are
more similar to dars-aars than to other genes in the
graph. Misinterpretations like this can be avoided by
displaying the network’s main component, if one exists,
separately, and then listing other (smaller) components.
This type of display has been used, for instance, in the
recently published disease gene network [5]. We discuss
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Figure 1 Four components of the leukemia gene network from Figure 2. The layout was optimized by a standard Fruchterman-Reingold
algorithm (a) and by FragViz (b). FragViz optimization additionally used the information on vertex distances.

Figure 2 The network (N1) of the significantly differentially expressed genes from the leukemia data set, where the similarity
between the chosen genes was calculated based on their co-membership in biological pathways. Only components with at least two
vertices (similarity threshold equal to 0.7) are included in the network. Genes represented with solid circles were significantly over-expressed in
the ALL samples and genes shown as empty circles had higher expression in the AML samples. The individual components are named
according to the prevailing Gene Ontology annotation. Components were grouped and labeled manually by the expert.
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several other approaches and their shortcomings in
related work.
In the paper we introduce a generally applicable tech-

nique called FragViz for placing the components accord-
ing to the background data on their similarity. For
example, rendering a network from Figure 1a. by our
algorithm yields the layout in Figure 1b, from which we
can infer that there is a relation between blvra-hmox-
blvrb and alas1-urod. These are indeed correct relations
as all of the mentioned genes have a function in heme
metabolism. Notice that in the same visualization com-
ponents dars-aars and eif2s2-eif2s1 are close to each
other and all genes comprising them participate in pro-
tein translation. To render this network FragViz used
additional information on mutual similarity between
network nodes. It is clear that consideration of this
additional information can improve the placement of
unconnected components and expose additional infor-
mation, thus avoiding misinterpretations based on the
proximity of arbitrarily placed components.
FragViz uses a two-step network layout optimization

procedure. It first applies the standard Fruchterman-
Reingold algorithm separately on each unconnected
component to optimize the layout of its vertices. Then
it optimizes the global placement and orientation of
components using a semi-physical model where the
forces between components are inferred from similari-
ties between the corresponding vertices in these
components.
The data on similarity of the network nodes can either

come from the same data source used to infer the struc-
ture of the network, or can be provided by supplying
any additional information. Most often, the network’s
structure itself is derived from the scored relations
between objects (e.g., the correlation in expression of
two genes [12], the degree of SNP synergy in phenotype
prediction [13], the number of disorder-specific genes
shared by two diseases [14]). Edges then connect pairs
of vertices for which the corresponding score exceeds
some user-defined threshold. In such cases, the node
pair similarity scores can be used as additional data for
our procedure. If relations in the graph are not obtained
by imposing thresholds on numerical data, other data
source can be used to describe the vertex similarities.
For instance, in the experimental study reported in the
paper we show a protein-protein interaction network in
which the vertex similarities are computed based on the
biological function of the proteins.

Related work
The proposed approach belongs to the family of algo-
rithms for force-directed placement of objects into two-
dimensional projections, and is strongly related to two
kinds of algorithms: the optimization of network layout

and multidimensional scaling (MDS) [15,16]. Network
layout algorithms typically consider undirected graphs
and optimize their layouts so that the pairs of connected
vertices are placed closer to each other than to other
vertices. If graph edges are weighed, shorter distances in
the layout indicate stronger relations between objects
represented with vertices. Multidimensional scaling con-
siders an input matrix of object dissimilarities. It repre-
sents objects with points in Euclidean plane, and
optimizes their placement so that the plotted distances
match the dissimilarities as accurately as possible.
The two kinds of algorithms are related. It is possible

to lay out a network by representing it with a distance
matrix and performing MDS-based optimization. Or,
vice versa, we can convert a distance matrix into a
weighed complete graph and use a graph layout optimi-
zation in place of MDS. The optimizations would yield
different results, as each of the methods uses its own
stress function that is being optimized and was designed
to match the goals of particular projection. For instance,
in network layout optimization, projected distance
between unconnected vertices has no effect for as long
as it is large in comparison with distances between the
connected vertices. In contrast, MDS optimizes dis-
tances between all pairs of objects, including the most
distant.
With regard to the optimization procedure, algorithms

make assumptions about the structure of the data. Net-
work layout algorithms work best for graphs in which
most vertices have only a small number of neighbors.
MDS, on the contrary, considers distances between all
pairs of objects, a data structure that can be represented
with a complete weighed graph. Force-directed network
layout optimization algorithms do not work well on
densely connected graphs (e.g., [17]). The time complex-
ity becomes prohibitive, and optimization may get
trapped in the local optimum. In contrast, MDS is inap-
plicable to data with a large number of objects due to
space complexity (prohibitively large distance matrix),
whereas the Fruchterman-Reingold algorithm might still
be useful if the number of edges is small enough.
There are a number of algorithms that use the meta-

phors from either network layout algorithms or MDS or
both, trying to adapt each one for a particular data
structure or heuristically improve runtime performance.
Clustered graphs, for one, include groups of vertices
that are related to each other. Clusters can be deter-
mined by observing the density of mutual connections
between vertices or they can be based on data describ-
ing the vertices. Various algorithms have been designed
that can detect such clusters [18-20]. Eades et al. [21]
proposed a method for plotting clustered graphs, which
models them in terms of four layers representing the
entire graph, clusters, abridgments and pictures (groups
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of points shown in a particular projection). A corre-
sponding model includes forces between connected ver-
tices, between all vertices in each cluster, and between
meta-vertices representing entire clusters. The perfor-
mance of MDS can be improved by various heuristics.
Morrison et al. [22], for instance, propose an algorithm
which first projects a sample of points, then interpolates
the remaining points between their positions, and finally
fine-tunes the projection using a force model. These
and similar methods can be used to speed up the layout
optimization, increase the readability of the graph and
construct user interfaces for interactive graph explora-
tion. A complete survey of information visualization
methods that focus on graph visualization techniques,
can be found in [23].
The method described in this paper, FragViz, is a

representative of context-specific methods for layout
optimization. Unlike other methods we have reviewed in
this section, it specifically addresses the layout optimiza-
tion for graphs consisting of isolated components, which
are given in advance and represent meaningful entities,
such as groups of genes related to a particular process.
The components, in turn, need to be considered jointly,
based on their mutual relations which may stem from
individual relations between member vertices. The nat-
ural approach that deals with this particular data struc-
ture is to first optimize the layout of each component
independently, and then optimize the position and rota-
tion of the components. We achieve this by combination
of network layout and MDS-based algorithms. Notice
that, as further addressed in the Discussion, other, per-
haps more straightforward adaptations of existing
approaches could address such data, but perform worse
both in terms of runtime and quality of the resulting
layout.

Methods
The input to FragViz is a list of network components
and a matrix of (dis)similarities between the network’s
vertices. FragViz first uses a network layout optimization
technique, like Fruchterman-Reingold algorithm [9], to
determine the placement of vertices within each of the
connected components. Then, it finds a placement of
components which reflect their mutual similarities. It is
this second step that is an original contribution of our
method, and which we in detail describe below.
Formally, we are given a graph G = (V, E) that con-

sists of p disjunct components V Vkk

p=
=1 , and a |V|

× |V| dissimilarity matrix D. The internal layout of each
component Vk is fixed and given by positions of its ver-
tices inside its own fixed coordinate system. We will
denote the position of vertex vi by vi. We also assume
that the internal coordinate systems are centered,

i.e. ∑ ∈ =v Vi k
v 0i for each component Vk. The task is

to find the placement ck and orientation �k of coordi-
nate systems for all components, which reflect the given
dissimilarities D.

Description of a physical system
We will base the method on a physical metaphor. Ima-
gine each component as a board with vertices as pegs.
Pegs from different components are connected with
springs of different lengths corresponding to the given
dissimilarities D. The nature (or, in our case, a compu-
ter simulation) “optimizes” the system by finding the
lowest energy configuration of the boards (components).
Assume that all vertices have equivalent mass m. The

mass of the component Vk is

m V mk k= | | (1)

and component’s moment of inertia is

I mk

v Vi k

=
∈
∑ || || .v i

2
(2)

The force between a pair of points (vi, vj) is defined by
Hooke’s law,

F g g
gi g j
gi g j

ij i j= − −
−
−

( || ||)
|| ||

,dij (3)

where gi and gj are positions of vertices in a global
coordinate system,

g v ci i k= + , (4)

where k is such that vi Î Vk.
Let Fi be the sum of forces acting on vertex vi

F Fi ij=
∈

∑
v Vj

. (5)

The force causes linear acceleration

a
Fi

k =
∑ ∈vi Vk

mk
(6)

and angular acceleration

k = ∈ ×∑v Vk
Ik

i Fi v i
(7)

of the component. We shall assume infinite friction,
so the component does not retain any momentum. At
each instance, the component moves by a distance
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proportional to the linear acceleration, Δck ~ ak and
rotates by an angle proportional to the angular accelera-
tion, Δ�k ~ ak, so

Δ
∑ ∈

c
Fi

k ~
| |

v Vk
Vk
i (8)

Δ
∑ ∈ ×

∑ ∈
k ~

|| ||
.

vi Vk

v Vki

Fi v i

v i
2 (9)

These equations allow for a computer simulation of
the physical process. Starting from a random placement
of components, we iteratively compute the forces Fi,
and move and rotate the components accordingly until
the system reaches an optimum in which all Fi are
negligible.

Approximate simulation
Computer simulation of the system described above is
rather slow. We can speed it up by first computing the
positions of components and then rotating them in
place. The result is only approximately optimal with
regard to the total stress (3), yet we will experimentally
show that the difference is negligible.
For positioning the components, the approximate

method measures and optimizes distances between com-
ponents rather than the distances between vertices. We
define the distance between components Vk and Vl as
the average of distances between the corresponding ver-
tices, similar to average linkage in hierarchical clustering
analysis [24]:

 kl ij

v V
Vv

Vk V
d

i
i
j

k
l

=
∈
∈

∑1
| || |

.
(10)

The task is then to find the positions in a two dimen-
sional plane, in which the distance between every pair of
component centers ck and cl matches the given δkl as
close as possible. This approach is much faster than the
simulation from the previous section since the computa-
tion of all pairwise distances at each step of optimiza-
tion is replaced by a single such computation in (10).
This translates the problem of placing the components
into the familiar multidimensional scaling problem
(MDS). There exist many efficient solutions of the MDS,
such as, for instance, SMACOFF [25], which optimizes
the overall energy of the system without computing its
gradient, the force (3).
By considering only the centers of components, MDS

ignores their sizes, which can cause the components to
overlap. This can be fixed by introducing a scaling

factor between the global coordinate system and the
internal coordinate systems of components by replacing
(4) by

g v ci i k= + K . (11)

The scaling factor is equal for all components and
should be such that the components are just as large as
possible without too much of overlap. A simple rule of
a thumb is to use the ratio between the average size of
components v and the average distance between

them, g so

K v g= / (12)

where

v
p Vk Vk v v V

i j
k

p

i j k

=
−

−
∈

≠
=

∑∑1 1
1

1
| |(| | )

|| ||
,

v vi j (13)

and

g
p p

k l

=
−

−
<

∑2
1( )

|| || .c ck l (14)

For rotation of components we use the original ver-
tex-wise definition of force (3) computed in the scaled
coordinate system (11). We apply the same procedure as
in the exact simulation, except that we only compute
the rotation without the translation. To avoid ending up
in local minima, we use simulated annealing where the
component can also rotate in the “wrong direction”,
with the probability of doing so decreasing with time.
Although this optimization recomputes the pairwise dis-
tances between all vertices at each step, it is not overly
time consuming since it requires only a small number
of iterations.
In the remainder of the paper we only show layouts

optimized by the approximate method.

Data
The performance of the proposed algorithm was
assessed on four different networks (N1, N2.1, N2.2 and
N3) showing relations between genes which were most
differentially expressed in the leukemia gene expression
data set [26]. The original data set includes 4,860 genes
whose expression was measured using DNA microarrays
in 72 tissue samples classified either as acute lympho-
blastic leukemia (ALL, 48 samples) or acute myeloid
leukemia (AML, 25 samples). For N1, N2.1 and N2.2 we
selected 1,025 differentially expressed genes with expres-
sion levels significantly smaller or larger (p-value < 0.01)
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according to Student’s t-statistic with respect to the null
distribution of the statistic. The null distribution was
obtained by randomly permuting the class labels and
calculating the t-statistic for all the genes. Network N3
was built with 131 out of 4,860 originally measured
genes for which the information on their protein inter-
actions was available in the MIPS mammalian protein-
protein interaction database [27]. In the visualizations in
the paper, genes represented with solid circles were sig-
nificantly over-expressed in the ALL samples and genes
shown as hollow circles had higher expression in the
AML samples.
Based on different means to estimate the gene similar-

ity, we have defined four distinct gene networks:

• N1 - biological function similarity score: the simi-
larity of genes relates to their biological functions
and was calculated based on their membership in
canonical biological pathways using the Jaccard
index [28]. The information on the membership of
genes in biological pathways was acquired from the
Molecular Signature Database [29] (C2 collection,
canonical pathways). Figure 2 shows the network
where the similarity threshold was set to 0.7 and all
the unconnected genes were ignored.

• N2.1 - Huttenhower similarity score: the similarity
between genes as computed by [30] using the infor-
mation on all publicly available gene expression and
protein interaction data, combined with prior knowl-
edge from the Gene Ontology, KEGG, HPRD and
other biological databases. Similarity scores above
0.999 for the leukemia genes were used to build the
network. Only the genes connected to at least one
other gene are included in the network (Figure 3).
• N2.2 - Huttenhower similarity score: the same
similarity scores and threshold as in N2.1 were used
(the Huttenhower et al., 2009 similarity score) for
the N2.2 network. Differently to N2.1, N2.2 also
includes isolated vertices (genes not connected to
any other gene) in order to observe the similarity of
all the differentially expressed genes (Figure 4).
• N3 - protein-protein interaction network (Figure
5): the leukemia genes were connected into the net-
work based on their protein interactions from the
MIPS mammalian protein-protein interaction data-
base [27]. We additionally used the biological func-
tion similarity score (described under N1) for
placing the interacting protein components based on
the similar biological functions of the proteins com-
prising them.

Figure 3 The network (N2.1) of the most differentially expressed genes from the leukemia data set. The similarity matrix of the chosen
genes was taken from the recently published work of Huttenhower et al., 2009. The genes represented with solid circles were significantly over-
expressed in acute lymphoblastic leukemia and the genes shown as empty circles had higher expression in acute myeloid leukemia.
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The average local clustering coefficient [31] and the
number of vertices, edges and components for these
four networks are presented in Table 1. The local clus-
tering coefficient of a vertex in a network quantifies
how close its neighbors are to being a clique and
describes the connectedness of a network.

Results and Discussion
The goal of FragViz is to find the network layout in
which the arrangement of components uncovers new
insights on relations between them and their constitu-
ents. We evaluated the method in an experimental study
that considered FragViz visualization of the leukemia
gene networks N1, N2.1, N2.2 and N3. For additional
assistance to the domain expert, the network compo-
nents were named according to their most specific term
from biological process or molecular function aspect of
Gene Ontology [32].

The leukemia gene network (N1)
Our goal was to obtain a clear visualization relating the
most important genes and their biological functions for

two major types of acute leukemia, yielding insight and
valuable clues about the disrupted biological processes
and pathways in leukemic cells. Solid vertices in Figure
2 represent genes significantly over-expressed in the
ALL samples while empty circles are genes that had
higher expression in the AML samples.
FragViz allows for the exploration of biological pro-

cesses related to acute myeloid and acute lymphoblastic
leukemia on different levels, from specific to more gen-
eral ones. In Figure 2 additional Gene Ontology terms
were assigned to groups of clusters which were deter-
mined manually by the expert to elucidate the disrupted
biological pathways on a more general level as they
cover higher number of differentially expressed genes.
These ontological terms apply to all the genes in the
marked areas and are significantly enriched with a p-
value < 0.01. The components of the graph that are
close to each other have similar biological and/or mole-
cular functions according to Gene Ontology, demon-
strating similarity between genes constituting them.
For example, the “guanylate cyclase activity”, “nucleo-

tide metabolic process”, “RNA polymerase activity”, and

Figure 4 The network (N2.2) of the most differentially expressed genes from the leukemia data set as the network in Figure 3, but
including the isolated vertices (genes not connected to any other gene), in order to observe the similarity of all the differentially
expressed genes.
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“DNA replication” components in Figure 2 all connect
genes significantly over-expressed in acute lymphoblastic
leukemia. All of these genes have a function in nucleo-
tide metabolism and DNA biosynthesis. It is well known
that lymphoblastic cells typically have severalfold higher
activity of enzymes responsible for nucleotide metabo-
lism enabling excessive proliferation of transformed cells
[33]. Moreover, some of the pathways active in nucleo-
tide metabolism, for example de novo purine synthesis
(DNPS), have been recognized as important targets of
antileukemic agents (e. g., methotrexate, mercaptopur-
ine). In combination with other therapeutical agents,

these drugs have improved survival of children with
ALL to an overall cure rate of approximately 80 percent
[34]. The network shown in Figure 2 clearly demon-
strates this characteristic of acute lymphoblastic
leukemia.

The Huttenhower similarity network (N2.1 and N2.2)
The N1 and both N2 networks contain the same 1,025
differentially expressed genes from the leukemia data
set. However, in N2.1 and N2.2 a combined gene dis-
tance score was used, computed from multiple biological
data sources (e.g., gene expression, protein-protein
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Figure 5 The network (N3) of genes from the leukemia data set. Vertices are connected based on their protein interactions from the MIPS
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interactions, biological function, ...) as proposed by Hut-
tenhower et al. [30]. N2.1 shows only vertices with at
least one edge. N2.2 also includes isolated vertices
(genes not connected to any other gene), in order to
observe the similarity of all the differentially expressed
genes.
As in the N1 network, most of the graph components

in N2 networks (Figures 3, 4) connect genes that are
over-expressed in one of the two investigated kinds of
leukemia (all genes in the component are the same
color). One can observe that the genes significantly dif-
ferentially expressed in the two investigated leukemias
cluster together (Figures 3, 4). This reflects the well
known phenomenon that not only individual genes, but
whole processes and pathways are disrupted in cancer
cells [35]. In Figure 4, the empty circles (AML) are clus-
tered in the right part of the graph and the solid ones
(ALL) in the left part, again demonstrating that expres-
sion changes in cancer tissues are disrupted on the level
of pathways and processes.
For example, the genes in components “spliceosomal

snRNP biogenesis”, “tRNA aminoacylation for protein
translation”, “sequence-specific DNA binding” and the
nearest genes in the component “protein binding” parti-
cipate in processes of cell proliferation. All these genes
have higher expression in ALL samples. Excessive cell
proliferation is a characteristic of all leukemic cells.
However, previous studies [36,37] have shown that the
proliferative index of ALL cells is significantly higher
compared to AML cells.
Since the distance information is used to adjust the

position of unconnected components, the layout allows
for the exploration of the data on different levels, using
genes from a single component or from clusters of bio-
logically related components.

The protein-protein interaction network (N3)
The placement of unconnected components in a frag-
mented network can be optimized using the vertex dis-
tance information from a source other than that used in
the inference of network structure. For example, the N3
network (Figure 5) shows the protein-protein interac-
tions for the leukemia genes from the MIPS database.
The network is fragmented into many smaller

unconnected components. We used the biological func-
tion similarity score for calculating the similarities
between the components and optimizing the network
layout.
Several gene products (proteins) that lie close to each

other in the FragViz optimized network (Figure 5) are
actually in interaction, as is reported in Human Protein
Reference Database (HPRD) [38], a different public
repository that stores protein-protein interactions identi-
fied by experimental results. For example, in HPRD, the
protein Integrin beta 3 (itgb3) is in interaction with pro-
tein Integrin beta 1 (itgb1). Also, proteins Poly A poly-
merase alpha (papola) and smad3 are both in
interaction with protein smad2. According to HPRD,
protein interactions also exist among proteins in the
components il4r-htatip and the near-lying component
in the optimized layout. To outline them in the network,
the vertices that correspond to these proteins (in Figure
5) are labeled accordingly. While our goals was not to
use network layout optimization for protein interaction
prediction, the cases mentioned here demonstrate the
potential utility of different data sources in network lay-
out optimization.
We added an optional component similarity visualiza-

tion to the network. The similarity between network
components is visualized by blue lines in Figure 5. Each
component is connected to two most similar compo-
nents and the line width represents the magnitude of
the similarity. In Figure 5, most connected components
are placed close to each other. However, in few cases
similar components are positioned apart. Besides the
technical problem - the optimization getting stuck in a
local optimum - this may happen when two components
belonging to different clusters of components neverthe-
less share a common function or when some compo-
nent essentially belongs to two clusters. For example,
genes in the component “G1/S transition of mitotic cell
cycle” influence gene expression, as do most of the
genes in the nearest cluster of components. The same
component however also participates in the apoptotic
pathway which is reflected in its connection with the
“phosphoinositide 3-kinase cascade” component, a
representative of components related to the apoptotic
processes.

Table 1 Basic characteristics of the networks used in experiments, describing the average local clustering coefficient
and the number of vertices, edges and components

network vertices edges components clustering coeff.

N1 72 73 28 0.985

N2.1 240 223 54 0.864

N2.2 858 223 672 0.864

N3 132 121 41 0.852
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Performance comparison
Table 2 compares the running times of simulation for
six different layout optimization approaches: Fruchter-
man-Reingold algorithm, the exact and approximated
method of FragViz, MDS and two applications of clus-
tered graph approach, proposed by Eades et al. [21].
Clustered graph visualization method is applied on a
graph G′ and a cluster tree T′. We transformed the
original graph G and a dissimilarity matrix D to a clus-
tered graph C′ = (G′, T′) in two different ways. In the
first approach (denoted Eades 1), the component struc-
ture (G) was embedded in a two-level cluster tree
(root-components-data objects) T′ in which every com-
ponent from G represents a cluster in the first level of
T′. Object dissimilarities D were used as weights in a
complete graph G′. In the second approach (Eades 2),
the original graph was retained (G′ = G) and a hier-
archical clustering method was applied on dissimilarity
matrix D to construct a cluster tree T′. Four different
linkage functions were tested (average, single, complete
and Ward’s linkage). Since they all produced similar
results, we report only on the performance of average
linkage. For N3, the MDS was run on the dissimilarity
matrix data. We used the standard SMACOFF algo-
rithm for MDS; an exhaustive comparison of various
heuristic enhancements is beyond the topic of this
paper.
All measurements have been conducted on a desktop

PC, with Intel Core 2 Duo 2.20GHz processor and 4 GB
of RAM, using the 64-bit Windows 7 OS. The results
represent an average over 10,000 runs of the algorithms
on the N1-N3 networks, starting from random positions
of vertices.
The Fruchterman-Reingold algorithm is by far the

fastest, but it uses less data than the others and the

resulting projections are much less informative. Running
times of Eades 2 are comparable to those of Fruchter-
man-Reingold. This was expected, as both approaches
run on a similar graph. Eades 1 employs a complete
graph, which makes it much slower. On large networks,
Eades 1 (N2.2) is even slower than MDS. The running
times of FragViz simulation are similar to those of
MDS, which is also expected. The approximate method
runs much faster, except for the large network N2.2,
where most vertices are unconnected, which essentially
translates the visualization problem to MDS.
Table 3 compares the quality of layouts in terms of

Pearson correlation between the vertex similarities and
their distances in the projection. Although the approxi-
mate method runs much faster than the simulation, the
decrease in quality is small. Moreover, the approximate
method sometimes outperforms the exact one, which
suggests that the optimization can get trapped in a local
minimum.
For all four networks, the correlation coefficients of

the FragViz algorithms are very similar. The correlation
was always lower with the FR algorithm and, for three
out of four networks, the highest correlation was
obtained with MDS. In one of the compared networks
(N2.2) MDS performed slightly worse than approxima-
tion, suggesting MDS got trapped in a local minimum.
As expected, when the vertices were arbitrary placed in
the graph, the correlation between the position of ver-
tices in the graph and their actual distances is close to 0.
Clustered graph approaches (Eades 1 and Eades 2) are

in general faster than FragViz, but performed worse in
terms of layout quality. Eades 2 performed better than
Eades 1 on smaller graphs (N1, N2.1 and N3), whereas
Eades 1 had a high correlation for a large network
(N2.2). However, Eades 1 approach is not appropriate
for analyzing large fragmented networks as it works pro-
hibitively slow.
Note that the compared algorithms pursue different

goals. The tests were run on data suitable for the
method presented in this paper, while in other contexts
another method could give better results. In particular,
clustered graph methods could not be directly applied
to the original data, so its results depend on the pro-
posed transformation of the original problem.

Table 3 Pearson’s correlation between elements of the gene distance matrix and the Euclidean distance between the
corresponding vertices in the two-dimensional network layout

network FR Fragviz
(simulation)

FragViz
(approximation)

MDS random Eades 1 Eades 2

N1 0.311 0.391 0.380 0.415 0.007 0.173 0.215

N2.1 0.086 0.290 0.302 0.654 0.002 0.009 0.156

N2.2 0.401 0.591 0.609 0.593 0.006 0.391 0.043

N3 0.179 0.224 0.285 0.361 0.060 0.092 0.199

Table 2 Average layout optimization time in seconds for
all four networks

network FR FragViz
(simulation)

FragViz
(approximation)

MDS Eades
1

Eades
2

N1 0.4 33 6 36 3 1

N2.1 1.3 63 6 64 31 2

N2.2 8 301 240 320 410 29

N3 1.1 76 14 55 8 1.5
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Impact of the network fragmentation
We also investigated the behavior of layout optimization
methods with respect to the degree of network fragmen-
tation. We constructed 1,000 networks of the most dif-
ferentially expressed genes from the leukemia data set
(visualized in Figure 2) with similarity threshold
required for an edge from 0.0 (the graph is fully con-
nected) to 1.0 (no edges between vertices). Figure 6a
shows the correlations between the network layout and
the (dis)similarities matrix for the FR, MDS and FragViz
algorithms. Figure 6b shows how the average local clus-
tering coefficient [31] and the number of components
change with different threshold values.
FragViz and FR algorithms are equivalent when the

network consists of only one component (threshold
values lower than 0.1). For the FR algorithm, the corre-
lation decreases when the network gets more fragmen-
ted. However, when the fragmentation increases
(threshold value greater than 0.2), the correlation score
of the FragViz algorithm increases and rises above the

best score obtained by the FR algorithm. Correlation for
MDS does not depend on the threshold.

Alternative approaches
Projections similar to those by FragViz could in princi-
ple be obtained with other algorithms (Figure 7). The
graph can be augmented with virtual (hidden) edges
with small weights corresponding to the distances
between the vertices and then optimized using graph
layout optimization algorithms. Alternatively, we can
construct a distance matrix in which the distances com-
bine a term representing the graph edge (e.g. 0 for con-
nected objects and 1 for unconnected) and the term
from the original distance matrix, scaled to have only a
minor influence. Such combinations are, though, ineffi-
cient. First, force-based optimization techniques often
get stuck in local optima. Graphically, if optimizing the
entire picture at once, they are unable to pull together
the vertices belonging to the same component if too
many other, unrelated vertices are randomly scattered

Figure 6 Influence of the selected similarity threshold on the layout optimization. Biological function similarity score was used on input.
Horizontal axis measures the connectedness of the network, where 0 represents a complete graph and 1 means the graph has no edges.
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Figure 7 The N2.1 network layout optimized with four different methods, two different approaches were used for clustered graph
visualization. In 7.a the network was optimized with the FragViz algorithm. For 7.b a complete weighted graph was first constructed from the
original network and similarity matrix. The weights of the network edges were scaled so that the largest weight equalled 1. Virtual edges were
added to all unconnected pairs of vertices, with weights inversely linear with the distances from the similarity matrix and scaled to interval [0,
0.01]. The complete graph was then optimized with the FR algorithm. For 7.c the original network was merged to the dissimilarity matrix, where
pairs of connected vertices from the original network had the lowest value in the similarity network 0, while other values from the dissimilarity
matrix were 100 times smaller [0.99, 1]. The dissimilarity matrix was than optimized with the MDS algorithm. In 7.d and 7.e we optimized a
network using clustered graph visualization. We transformed the original graph G and dissimilarity matrix D to a clustered graph C′ = (G′, T′) in
two different ways.
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between them and push them apart. We discovered that
using the two standard algorithms, Fruchterman-Rein-
gold algorithm and the SMACOFF algorithm for MDS,
in such manner consistently fail to optimize the projec-
tion in quite common cases where the network includes
components with more than 15 vertices. A typical exam-
ple is shown in Figure 7c. Our two-step procedure
avoids that problem by first composing the components.
Besides the projection quality issues, FragViz is also

faster than the above approaches since it splits the opti-
mization problem into a set of much smaller problems,
laying out small individual components and then arran-
ging a small number of components instead of all ver-
tices at once. Using the graph layout optimization
algorithms instead of FragViz, as described above, would
be slower since these algorithms do not perform well on
complete graphs. For MDS, to get similar running times
as FragViz, one needs to employ fast heuristic MDS
algorithms, which gain speed by somewhat compromis-
ing the quality of the projection [22].
Figures 7d and 7e show some shortcomings of cluster

based approaches on this particular data. When the pro-
blem is transformed so that the cluster structure is
defined by graph components and applied over the com-
plete graph (Eades 1), the optimization is more likely to
end up in a local minimum due to a higher number of
forces involved. In Figure 7d, we cannot spot any
regions containing mostly solid or empty vertices, as
opposed to Figures 7a and 7b by FragViz and by Fruch-
terman-Reingold algorithms. This may also be one of
the reasons behind the worse Pearson correlations of
this approach in general (Table 2). The second way in
which we used cluster based layout optimization, Eades
2, gives better correlations and running times, yet the
resulting layouts are visually unsatisfactory: the cluster
structure does not correspond exactly to the graph com-
ponents, so the vertices belonging to the same compo-
nent may be pulled apart since they ended up in
different clusters. We were unable to alleviate this pro-
blem by tweaking the parameters of the method.

Conclusions
We have recently witnessed the emergence of large
repositories of biomedical research and clinical data.
Methods are needed that would allow the domain
experts to sieve through these data sets to gather infor-
mation, reason on the hidden patterns and form plausi-
ble hypotheses to be tested in subsequent studies. Here,
visualization combined with visual data analytics plays a
major role, as it can reveal the data patterns and allow
the experts to explore the data.
Visualizations require the development of dedicated

algorithms that craft the proper placement of the object
under consideration. Explorative data analysis requests

these to be fast to be able to construct responsive inter-
faces. We have developed a layout optimization techni-
que FragViz that meets these requirements and
specifically addresses the visualization of fragmented
networks, where standard algorithms do not consider
similarities between unconnected components.
FragViz is neither faster than all existing algorithms

nor more accurate in terms of the match between the
given and the projected distances. FragViz is slower
than the Fructherman-Reingold algorithm, which is a
direct consequence of considering more information.
The resulting vertex distances may match the given dis-
tance matrix worse than in multidimensional scaling, a
consequence of fixing the layout of the components.
This is a matter of design decision: the goal of FragViz
is to provide a sensible local picture and a global over-
view, thence the two level optimization. It can happen,
for instance, that in a chain-like component the two ver-
tices on the edge are weakly related to a common third
vertex not belonging to the component. While other lay-
out optimization algorithms would bend the chain, Frag-
Viz keeps it straight. Our experiments confirmed
usefulness of the proposed solution. The case study on
the leukemia gene networks shows that derived visuali-
zations may be helpful in uncovering the relations
between the components.
The data, networks, their visualizations, and the

implementation of the described methods in an open-
source analytics framework Orange [39] are available on
the supplementary web page at http://www.ailab.si/supp/
fragviz. An online network optimization web application
is available at http://www.ailab.si/fragviz.

Availability and Requirements
Project name: Orange FragViz
Project home page: http://www.ailab.si/orange
Operating system: Platform independent
Programming language: Python, C++
Other requirements: PyQt, PyQwt, Numpy
License: GNU GPL
Any restrictions on use by non-academics: none
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