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Abstract

Background: Visualization of DNA microarray data in two or three dimensional spaces is an important exploratory
analysis step in order to detect quality issues or to generate new hypotheses. Principal Component Analysis (PCA)
is a widely used linear method to define the mapping between the high-dimensional data and its low-dimensional
representation. During the last decade, many new nonlinear methods for dimension reduction have been
proposed, but it is still unclear how well these methods capture the underlying structure of microarray gene
expression data. In this study, we assessed the performance of the PCA approach and of six nonlinear dimension
reduction methods, namely Kernel PCA, Locally Linear Embedding, Isomap, Diffusion Maps, Laplacian Eigenmaps
and Maximum Variance Unfolding, in terms of visualization of microarray data.

Results: A systematic benchmark, consisting of Support Vector Machine classification, cluster validation and noise
evaluations was applied to ten microarray and several simulated datasets. Significant differences between PCA and
most of the nonlinear methods were observed in two and three dimensional target spaces. With an increasing
number of dimensions and an increasing number of differentially expressed genes, all methods showed similar
performance. PCA and Diffusion Maps responded less sensitive to noise than the other nonlinear methods.

Conclusions: Locally Linear Embedding and Isomap showed a superior performance on all datasets. In very low-
dimensional representations and with few differentially expressed genes, these two methods preserve more of the
underlying structure of the data than PCA, and thus are favorable alternatives for the visualization of microarray
data.

Background
DNA microarrays allow the measurement of transcript
abundances for thousands of genes in parallel. Applica-
tions in quality assessment and interpretation of such high
dimensional data by clustering [1,2] and visualization [3,4]
make use of algorithms that reduce its dimension. Two
and three dimensional visualizations are often a good way
to get a first impression of properties or the quality of a
dataset or of special patterns within the data by showing
clusters such as diseased and healthy patients, revealing
outliers, a high level of noise or to generate hypotheses for
further experimentation [5-8]. In general, there are two
different approaches to reduce a datasets’ dimension.

Feature selection methods [9-11] compute a ranking on all
genes by means of some given score and pick a gene sub-
set based on this ranking. Feature extraction methods
define a mapping between the high-dimensional input
space and a low-dimensional target space of a given
dimension. Both methods are used in machine learning
concepts. Most classification algorithms use many or all
features in a complex (nonlinear) manner whereas
approaches like [12,13] are based on the relative expres-
sion of only two or three genes to overcome the “black
box” character of the other classifiers. So they allow an
easy traceability of the genes leading to the classification
result. On the other hand, applications like the visualiza-
tion of high-dimensional data may profit from extracting
information from all features. This results in feature
extraction methods usually being more suited for low-
dimensional representations of the whole data. In the
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following, we refer to feature extraction methods when
speaking of dimension reduction techniques.
Considering visualization, these kind of mappings are

often unsupervised, because they don’t use further infor-
mation of the data like class labels and allow an unbiased
view of the structure within the data. Supervised methods
are more applicable to improve classification or regres-
sion procedures, assuming that less non-differential or
noisy features are reduced after the mapping.
All features, that are related to special properties of the

data or a separation into classes or clusters, often lie in a
subspace of a lower (intrinsic) dimension within the origi-
nal data. A ‘good’ dimension reduction technique should
preserve most of these features and generate data with
similar characteristics like the high-dimensional original.
For example, classifications should work at least as well on
the low-dimensional representation and clusters within
the reduced data should also be found, preferably more
distinct. Principal Component Analysis (PCA) is a widely
used unsupervised method to define this mapping from
high-to low-dimensional space. Availability of large data-
sets with high-dimensional data, especially in biological
research (e.g. microarrays), led to many new approaches in
the last years.
Other studies, that deal with the assessment of dimen-

sion reduction techniques, either compare them against
the background of classification [14-18], and hence mainly
discuss supervised methods like Partial Least Squares
[19,20], Sliced Inverse Regression [21] or other Regression
models [22], or come from Computer Vision and deal
with text, image, video or artificial data like the Swiss Roll
[23-28]. This study instead, focuses on microarray data
and its two and three dimensional visualization. We com-
pare PCA to six recent unsupervised methods to find out
if and under which conditions they are able to outperform
PCA. In the following sections, we describe a benchmark,
consisting of classifications and cluster validations, to
compare the visualization performance of seven dimension
reduction techniques on ten real microarray and several
simulated datasets. After some technical details in the
methods section, we present and discuss all results, based
on one representative dataset. Further details of the other
nine datasets are available in the supplement.

Methods
Dimension Reduction
Seven unsupervised dimension reduction techniques
were compared within this study: Principal Component
Analysis (PCA), Kernel PCA (KPCA), Isomap (IM),
Maximum Variance Unfolding (MVU), Diffusion Maps
(DM), Locally Linear Embedding (LLE) and Laplacian

Eigenmaps (LEM). These dimension reduction techni-
ques can be divided into two groups: linear and non-
linear methods. While PCA belongs to the former, due
to a linear combination of the input data, the other six
methods were designed with respect to data lying on or
near a nonlinear submanifold in the higher dimensional
input space and perform a nonlinear mapping.
Given an input space ℝD and target space ℝd (with

d <<D) let X ∈ ℝN×D be an input dataset of N samples and
D features (gene expression values) and Y ∈ ℝN×d its low-
dimensional representation. A dimension reduction tech-
nique is a mapping F: ℝD ® ℝd that optimizes a cost
function ∈ : Rd ® ℝ on the target space. This problem can
often be reduced to an eigenvalue problem, whose eigen-
vectors will define the embedding Y .

Principal Component Analysis
Principal Component Analysis (PCA) [29,30] builds a
new coordinate system by selecting those d axes w1, . . . ,
wd ∈ ℝD, which maximize the variance in the data:
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w2, . . . , wd are chosen in the same way, but orthogo-
nal (independent) to each other (here, C ∈ ℝDxD denotes
the covariance matrix of the data X). So, the principal
components pi = Xwi explain most of the variance in
the data. Before mapping the data, the samples in X
were centered by subtracting their mean. Since PCA
only considers the variance among samples, it works
best if those features, that are relevant for class labeling,
account for a large part of the variance. Sometimes, the
first two or three principal components are not suffi-
cient for a good representation of the data [26]. This
can lead to a high target dimensionality and prevent a
well suited visualization. Furthermore, the covariance
matrix grows rapidly for high-dimensional input data.
To overcome this issue, we substituted the covariance
matrix by the matrix of squared Euclidean distances
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Kernel PCA
To make PCA more suitable for nonlinear data, Kernel
PCA (KPCA) maps the data into a higher dimensional
feature space before applying the the same optimization
as PCA. [32,33]. The mapping can be done implicitly by
using a kernel function. The Gaussian kernel
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was applied in our study.
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Isomap
Isomap (IM) [27,28], a nonlinear modification of Multi-
dimensional Scaling [34], preserves the global structure
of the input data in its low-dimensional representation.
This is done by constructing a neighborhood graph G,
weighted by shortest geodesic distances DG ∈ ℝN×N

between all k nearest neighbors. This way, Isomap cap-
tures paths along a nonlinear manifold instead of the
direct Euclidean distance. The embedding into the low-
dimensional space is done by selecting y1, . . . , yd ∈ ℝN

such that

 = −D DG Y L2

,is minimized, with D i j y yY i j,( ) = −
2

being the

pairwise distance matrix of neighbors yi , yj in the target
space.
Previous work in [23] addressed problems in visualiz-

ing datasets consisting of several well separated clusters.
Since Isomap is known to suffer from holes in the
underlying manifold [14], it is suggested to modify the

method by selecting k
2

nearest and k
2

farthest neigh-

bors when constructing the graph, instead of the k near-
est neighbors. Both, IM and IM(mod), will be discussed
in the results section.

Maximum Variance Unfolding
Similar to Isomap, Maximum Variance Unfolding
(MVU) [25,26] preserves the distances among k nearest
neighbors by means of a neighborhood graph G. But it
varies in considering squared Euclidean distances
between two neighbored samples, instead of geodesic
distances and in maximizing the Euclidean distance
between all points yi , yj in the target space (to ‘unfold’
the data) while preserving the distances in the neighbor-
hood graph. This leads to the optimization problem.

max y y D Di j

ij

G Y− =∑ 2
subject to 

Based on the same concept, MVU shares some weak-
nesses with Isomap like suffering from erroneous con-
nections in the graph.

Diffusion Maps
Diffusion Maps (DM) [35,36] start with building a graph
G as well, but differ in weighting the edges by the Gaus-

sian kernel function: W i j
x xi j
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With the rows being normalized by

Ŵ N N∈ × , the weights Ŵ N N∈ × can be seen as a

Markov Matrix that defines the probability to move
from one sample to another in one time step. The tran-

sition probability for t time steps, denoted ˆ ( )W t , is

given by Ŵ t . It can be used to control the local con-

nections among neighbored samples. Here, we set it to t
= 1. Diffusion Maps retain a weighted L2 distance, the
‘diffusion distance’

D x x

W i l W j l

x
t

i j

t t

ll

N
( )

( ) ( )

,

, ,
^ ^

( ) =
( ) − ( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )=
∑

2

1


The term  x
W i j

W j l
i

j

jl
( ) =

( )
( )

Σ
Σ

ˆ ,
ˆ ,

leads to stronger

weighting of samples from dense areas in the graph.
Since the diffusion distance between two points is com-
puted over all possible paths in the graph, Diffusion
Maps are more robust to noise.

Locally Linear Embedding
Unlike Isomap and MVU, Locally Linear Embedding
(LLE) [24,37] attempts to preserve local properties of
the data. Each sample xi is represented by a linear com-
bination of its k nearest neighbors:

x W i j xi j

k
j= ( )=∑ ,

1
. The weights W ∈ ℝN×N are

estimated by minimizing the reconstruction error
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. The last constraint ensures an invar-

iance to translation next to rotation and rescaling. By
minimizing
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the low-dimensional representation that best preserves
the weights in the target space is chosen.

Laplacian Eigenmaps
As well as LLE, Laplacian Eigenmaps (LEM) [38,39] are
a local technique. Similar to Diffusion Maps, this
method first constructs a neighborhood graph, weighted
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with values W (i, j) from the Gaussian kernel function.
By minimizing a cost function

 Y y y W i ji j

ij

( ) = − ( )∑ 2
,

for neighbored yi, yj (W (i, j) = 0 otherwise), the dis-
tances between the low-dimensional representations are
minimized and nearby samples xi, xj are highly weighted,
and thus brought closer together. This way, Laplacian
Eigenmaps implicitly enforces natural clusters in the data.

Methods of Assessment
Benchmark
Our benchmark (Figure 1) is divided into three parts.
First, the studied dimension reduction methods were
applied to the complete dataset. The low-dimensional
datasets were then assessed by two different approaches,
namely classification and cluster validation. To evaluate
and compare the performance of each method, the

classification accuracies of Support Vector Machines
[40] (with Gaussian kernel) and the compactness and
distance of clusters within the low-dimensional repre-
sentations were used. In the following, each step of our
benchmark is described in detail.
Datasets
The methods were tested on ten published microarray
datasets as well as on simulated data. Each published
dataset was divided into two classes according to a bin-
ary variable corresponding to the samples’ disease status,
the presence of certain molecular mutations or other
sample characteristics as shown in Table 1. Since micro-
array data is technically provided with a more or less
high level of noise, we reran the benchmark on the
microarray datasets combined with normally distributed
noise with zero mean and an increasing variance
between 0 and 0.1. Before adding noise, all data was
scaled to values between 0 and 1 to overcome the vary-
ing means and standard deviations of the datasets.

Gene expression data,
Labels

Randomization

Separate training data Separate test data

Train SVM

Predict low dimensional
test data

Estimate parameters

Reduce dimension

Loo-cv with SVM:
target dimension, 
neighbours / kernel parameter

PCA, KPCA, LLE, 
IM, IM(mod), LEM, DM, MVU

Estimate parameters

Classification Cluster-validation

Davis-Bouldin-Index

Accuracies Cluster distances

Dimension reduction

Gradient descent:
SVM & kernel parameter

Figure 1 Benchmark. Our benchmark, consisting of three independent procedures. (1) Dimension reduction: Every dataset is mapped into a
low-dimensional target space. All necessary parameters are determined by a loo-cv with a SVM. (2) Classification: Every dataset is classified by a
SVM with Gaussian kernel during 100 randomization steps. A gradient descend procedure estimates all SVM parameters. (3) Cluster validation:
The Davis-Bouldin-Index measures the distance between labeled clusters within the low-dimensional data.
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The simulated data is based on a 50 sample dataset
whose 10.000 gene expression values are normally dis-
tributed with zero mean and standard deviation one.
The covariances of all genes are given by a block diago-
nal matrix with coefficients r = 0.2 within and r = 0
outside the blocks of size 50 × 50. To separate the data
into two classes, between 10 and 500 genes were ran-
domly chosen to be differentially expressed by adding a
constant of 0.6 to the expression values of the first 25
samples. We generated 100 datasets for testing.
In the same manner as for the ten microarray datasets

before, normally distributed noise with zero mean and
an increasing variance between 0 and 0.2 was added to
the simulated data. We repeated the benchmark on 50
of these noisy artificial datasets. The number of differen-
tial features was fixed to 300.
Dimension reduction
All dimension reduction techniques discussed here have
one or two free parameters, that influence the embed-
ding and the target dimension. Their determination was
done by minimizing the error rate of a Support Vector
Machine (SVM) within a leave-one-out cross-validation
(loo-cv) schema: For N samples, the dataset was divided
N times into a training and a test set. One sample was
excluded for testing while the rest was taken for train-
ing. The average over all prediction accuracies gives an
estimate of the SVMs’ generalization error.
This procedure was repeated for every set of para-

meters within the following ranges:

Target dimensionality: 2 ≤ d ≤ 15
Neighbors: 4 ≤ k ≤ 16
Gaussian kernel: 1e − 1 ≤ s ≤ 5e5

If the same loo-cv accuracies were achieved by using
different parameter values for the target dimension, the
lowest value was taken for reasons of a most simple

representation. The same applies to the neighbor/kernel
parameters.
After the loo-cv, the whole dataset was reduced in its

dimension in an unsupervised manner, i.e. without con-
sideration of class labels.
Classification
The first evidence for the quality of the different dimen-
sion reduction methods are the accuracies of a Support
Vector Machine with Gaussian kernel.
The data was classified repeatedly during several ran-

domization steps:
We randomly split the dataset a hundred times into a

set to train the SVM and a test set for classification, and
selected the median accuracy of all runs. Within the
training set, a loo-cv was performed to determine the
SVM parameters. For reasons of performance, a gradient
descent procedure as proposed in [41] was used to mini-
mize the loo-cv error. Every time during randomization,
the training set consisted of two thirds of the original
data and the test set of the remaining samples. The only
constraint was to keep the balance between the number
of samples in each class. Since SVMs do not restrict the
dimension of the input data, the randomization results
of the low-dimensional data can be compared to the
high-dimensional original data, to see if more or less
significant features got lost after the embedding.
Cluster validation
To measure the distances between the labeled clusters,
we used the Davis-Bouldin-Index (DB-Index) [42]:
Given M clusters Ci (i = 1, . . . , M ) and their centers

 i
i

x CC
x

i
= ∈∑1

,

d
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xi
i

i

x Ci

= −
∈
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Table 1 Microarray datasets

Dataset samples features class 1(#samples) class 2(#samples)

1 Wang et al. - Breast cancer [50] 286 22.283 ER+(209) ER-(77)

2 Verhaak et al. - Leukemia [51] 461 54.675 NPM1 pos.(140) NPM1 neg.(321)

3 Haferlach et al. - Leukemia [52] 251 54.675 NPM1 pos.(138) NPM1 neg.(113)

4 Haferlach et al. - Leukemia [52] 77 54.675 AML with t(8;21)(40) AML with t(15;17)(37)

5 Golub et al. - Leukemia [53] 72 7.129 ALL(47) AML(25)

6 Chiaretti et al. - Leukemia [54] 22 12.625 CLL stable(8) CLL progressive(14)

7 Alizadeh et al. - Lymphoma [55] 38 18.432 Activated B-like DLBCL(17) GC B-like DLBCL(21)

8 Nutt et al. - High-grade glioma [56] 50 12.625 Glioblastoma(28) Anaplastic oligodendroglioma(22)

9 Alon et al. - Colon cancer [57] 62 2.000 Tumor(42) Normal(20)

10 Singh et al. - Prostate cancer [58] 102 12.600 Tumor(52) Normal(50)

Summary of all ten microarray gene expression datasets we used for testing the dimension reduction techniques. Here, we focus on the data by Wang et al.,
which represents best the results of the whole benchmark. Datasets 2-10 are shortly discussed in the supplement to this work. All datasets were separated into
two classes according to two characteristics or the diagnosis of a disease.
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is the average distance of the samples in cluster Ci to

its center. While R
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reports the compact-

ness of clusters Ci , Cj related to their distance, the DB-
Index
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averages the worst cases of the clusters’ separations.
One might expect well separated clusters to have smaller
values close to one. In our case, the DB-Index was com-
puted for fixed target space dimensions 2,3,5, and 10.

Implementation details
The presented benchmark was implemented in Matlab
7.8.0 (R2009a). Furthermore, libsvm (version 2.89) [43]
served as Support Vector Machine implementation, in
conjunction with Automatic Model Selection for Kernel
Methods (Apr 2005) [44]. The Dimensionality Reduction
Toolbox (version 0.7 - Nov 2008) [45], Isomap package
(Release 1 - Dec 2000) [46], LLE routine [45] and MVU
implementation (version 1.3) [47] were used for dimen-
sion reduction. Because the Isomap and LLE routines
performed best in our benchmark, we converted their
Matlab implementations for the statistical programming
language R [48]. The R-package ‘RDRToolbox’, also
including a routine to compute the Davis-Bouldin-Index
and our microarray gene expression data simulator, can
be downloaded from [49] (see also Additional file 1).

Results and Discussion
The following sections present the results for the Wang
et al. Breast Cancer dataset, which represents best
the results of the whole procedure. For the sake of sim-
plicity, the visualization example in Figure 2 refers to
the Haferlach et al. Leukemia dataset, which consists of

fewer samples. Further detailed analysis of all other
datasets is available in the supplement (see Additional
file 2).
A linear approach like PCA is known to recover the

true structure of data lying on or near a linear subspace
of the high-dimensional input space. The following
results show that the structure of microarray data is
often too complex to be captured well in very low
dimensional target spaces in a linear manner. Nonlinear
methods, in particular LLE and Isomap, preserve more
information in the data than the first few principle com-
ponents of a PCA are able to cover.

Classification
The results of the randomization procedure are shown
in Figure 3. In case of two and three dimensions, PCA
performs worst, while all nonlinear methods, except Dif-
fusion Maps, tend to retain the underlying structure of
the data better in such low-dimensional target spaces.
Table 2 shows the parameters having the best loo-cv

accuracies. The estimated target dimension was higher
than ten in most cases. PCA and Kernel PCA result in
the highest dimensions (14 and 15), while other meth-
ods like Laplacian Eigenmaps, MVU and Isomap worked
best with less than ten dimensions. But classifications in
two or three target dimensions often yield only slightly
different accuracies. The classification accuracies on
data with and without dimension reduction were often
similar, even in two and three target dimensions.
While all methods perform nearly even in higher

dimensions, Isomap, LLE and Laplacian Eigenmaps per-
formed best in two and three dimensions. Only on two
of ten datasets (Alizadeh et. al and Singh et. al), PCA
performed as well as other nonlinear methods like Iso-
map in two or three dimensional target spaces (see Sup-
plemental Figures S18/S19, S27/S28). On all ten datasets
considered together (see supplement), Diffusion Maps
and Laplacian Eigenmaps produce more varying results
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Figure 2 Visualization. Two dimensional visualization example of the Haferlach et al. Leukemia dataset. The LLE and Isomap embedding show
more distinct clusters than the first two principal components of a PCA.
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and especially Diffusion Maps are very sensitive to the
choice of the kernel parameter (see for example Figure
3, dimension two). But like Kernel PCA, they perform
quite similar to PCA in most cases. MVU, which is
based on Multidimensional Scaling like Isomap, is com-
parable to Isomap’s good accuracies.
The initial publications on Isomap and MVU [25,27],

covering text classification and face recognition, pointed
out, that PCA might need higher dimensional target
spaces than its nonlinear counterparts to lead to similar
results. Since PCA only considers the variance in the
data, it works best if those features, which are relevant
for the class labeling, account most for the variance.
Considering complex microarray data, the first two or
three principal components were often not enough to
cover the information necessary to sufficiently distin-
guish different classes within the data. This might pre-
vent a well suited visualization, which is true to the
original. LLE, Isomap and MVU, which classified best

most of datasets, take advantage of overlapping local
neighborhoods to create an image of the global geome-
try of the data. Although this approach may suffer from
“holes” within the data (manifold), it proved more useful
for accurate low-dimensional representations.
Well sampled datasets may overcome this issue of

sparse data. But the Chiaretti et al. leukemia (22 sam-
ples), Alizadeh et al. lymphoma (38 samples) and Nutt
et al. high-grade glioma dataset (50 samples) show that
even with relatively few samples, a true to the original
embedding is possible. The classification accuracies of
most of the dimension reduction methods on these
datasets (in ≥ 2 target dimensions) are comparable and
sometimes even better than the accuracies on the high-
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Figure 3 Randomization accuracies. Support Vector Machine classification accuracies of the Wang et al. breast cancer dataset. The data was
randomized a hundred times for fixed target space dimensions two (left) and three (center) and for dimensions estimated by loo-cv (right). In
the last case, the plot also shows the results for the original high-dimensional data without reduction. Especially in two and three dimensions, all
nonlinear methods are superior to PCA.

Table 2 Parameter estimation

method dim neighbors/s loo-cv accuracy

PCA 14 - 87.4

KPCA 15 5e5 87.1

LLE 12 14 88.5

IM 8 10 85

IM(mod) 15 4 87.4

LEM 5 4 85.3

DM 13 5e5 84.3

MVU 5 14 85

All parameters of the dimension reduction techniques for the Wang et al.
breast cancer dataset, estimated by leave-one-out cross-validation. PCA has no
additional parameter, while KPCA and DM have a kernel parameter s and IM,
LEM and MVU take the number of neighbors as argument.
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Figure 4 Cluster validation. Davis-Bouldin-Indices of the reduced
Wang et al. breast cancer dataset for fixed target space dimensions
2,3,5 and 10. In most cases, the nonlinear methods produce more
distinct clusters than PCA.
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dimensional data (see Supplemental Figures S15, S18,
S21).

Cluster validation
The cluster distances, presented in Figure 4, confirm the
above conclusions. In two and three target dimensions,
PCA results in worse scores than most nonlinear meth-
ods. DM performs the worst for more than two dimen-
sions. With increasing target space dimension all
methods converge, while the DB-Index itself increases
as well. Although Laplacian Eigenmaps implicitly
enforce natural clusters in the data, they show only
slight different scores than e.g. LLE, which clusters best
on most of the datasets. Just in case of ten target dimen-
sions, LLE’s and Laplacian Eigenmaps score remarkably
worser on four of our ten datasets, while the other
methods, including PCA, hold steady (see Supplemental
Figures S9, S12, S21, S24). While Isomap might map
well separated clusters to very close points, the slight
modification of regarding nearest and farthest neighbors
seems to correct this behavior on three datasets (Sup-
plemental Figures S3, S6, S24), but performs similar or
(much) worse otherwise (see for example Supplemental
Figures S15, S18, S27). MVU scores similar to Isomap,
but fails on three other datasets in two dimensional tar-
get spaces (Supplemental Figures S6, S15, S18).
Because LLE and Isomap performed best on most of

the datasets during classification and cluster validation,
Figure 2 compares their two dimensional embedding of
the Haferlach et al. Leukemia dataset to the first two
principal components of a PCA. All three visualizations
clearly show two clusters of AML patients with t(15;17)
and t(8;21) respectively. But LLE and Isomap distinguish
both classes best, while in the PCA embedding three
more t(15;17) samples lie between samples of the other
class. Since LLE and Isomap both map more samples
correctly, there seems to be more information within

the data, that the first two PCA components fail to pre-
serve. On closer inspection, the common three t(15;17)
outliers, that are in between or closest to t(8;21) samples
in all three visualizations, are always the same samples
#44 and #46 #57. Another visualization example of the
Alon et al. Colon Cancer dataset with all eight dimen-
sion reduction techniques can be seen in Supplemental
Figures S1 and S2.

Noise evaluation
The tests on artificially noised microarray datasets
reveal, that PCA, Kernel PCA and Diffusion Maps are
most robust on noisy data (Figure 5). But the differences
are less strong and the results more variable than for the
classification and cluster validation without adding
noise. The sensitivity to noise of all methods strongly
depends on the given class labels and associated fea-
tures, and thus leads to varying results between all ten
datasets (see supplement). While Diffusion Maps are
known to be robust to noise [14], all other nonlinear
methods, especially Isomap and its modification, suffer
most from unstructured data and lead to strongly vary-
ing cluster scores.

Simulated data
Since LLE and Isomap performed best in the first two
tests, the classifications on simulated data refer only to
these methods. In all three cases, we fixed a two dimen-
sional target space. Figure 6 shows that the results of
the loo-cv on real microarray datasets can be repro-
duced on simulated data. With only few differential fea-
tures, LLE and Isomap already capture more of the
structure of the data than PCA. It takes more than 150
(of overall 10.000) differential features for PCA to per-
form nearly even. Furthermore, for less than 200 differ-
ential features, the accuracies of PCA are spreading
much stronger, while LLE and Isomap give more stable
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Figure 5 Noise evaluation. Randomization accuracies (left) and cluster-indices (right) for the Wang et al. breast cancer dataset combined with
normally distributed noise with zero mean and different variances. PCA and DM react most stable on noise. All other methods lead to varying
accuracies and cluster scores.
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results. The findings for three target dimensions are
similar to the two dimensional case and can be seen in
the supplement (Supplemental Figure S30).
The benchmark with noisy simulated data, however,

confirms the results of the noise evaluation for the ten
microarray datasets. Supplemental Figures S31 and S32
show for two and three target dimensions, that PCA per-
forms more robust than LLE and Isomap for both, classi-
fication and cluster validation, when noise within the
data increases. These conclusions hold true for noisy
data with a larger variance, since PCA, LLE and Isomap
are invariant to multiplication of the data with a scalar.

Statistical hypothesis test
In Table 3, we compare all results by applying the
Wilcoxon signed-rank test on the accuracies and cluster
scores for two dimensional data representations. We
tested the null hypothesis, that the median of the differ-
ences between PCA and each of the nonlinear methods
is equal to zero. This way, we computed the p-values of
14 paired samples. The p-values were not adjusted for
multiple testing. Isomap and LLE show the most signifi-
cant results in accuracy and clustering with p-values

0.0078 and 0.0273 respectively. Diffusion Maps led to
results most similar to PCA.

Runtime
The computational complexity and memory require-
ments for all dimension reduction methods except
MVU are equal, as shown in Supplemental Table S3.
However, we observed differences in runtime between
the methods due to different constant factors. Table 4
lists the runtime of all seven methods in seconds for the
smallest dataset (Chiaretti et al. leukemia dataset, 22
samples) and the largest dataset (Verhaak et al. leukemia
dataset, 461 samples). The target dimensionality was set
to two. The embeddings were computed on an AMD
Opteron processor with 2 GHz.
The runtime of all nonlinear methods (Kernel PCA,

Isomap, LLE, LEM, DM, MVU) depends on the number
of samples. Even for relatively large microarray datasets
(461 samples in this case), runtimes between 9.4 and
21.9 seconds are acceptable for visualization purposes.
Only the solution of a semidefinite program in the
MVU algorithm takes two hours. For all methods, the
computing time for datasets with more common sample
sizes (≤ 50) is less than a second.

Conclusions
Classifications on high and low-dimensional data
showed, that the most significant information within
microarray data can be captured quite well in very few
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Figure 6 Simulated data. Leave-one-out cross-validation accuracies of the simulated datasets with increasing differential features. The red line
marks the average accuracy of all 100 generated datasets within the 95% quantile. In two dimensional target spaces, LLE an IM capture more of
the underlying structure of the data with much fewer significant features than PCA.

Table 3 Wilcoxon signed-rank test (p-values)

PCA compared to ... Accuracies(dim 2) DB-Index(dim 2)

KPCA 0.1562 0.3223

LLE 0.0195 0.0273

IM 0.0078 0.1055

IM(mod) 0.0547 0.2324

LEM 0.1953 0.3750

DM 0.5000 0.8457

MVU 0.1953 0.7695

The p-values of the Wilcoxon signed-rank test based on the null hypothesis,
that PCA yields results similar to each other nonlinear method. The median
randomization accuracies and cluster scores (both for two target space
dimensions) of all ten datasets served as input to the tests.

Table 4 Runtime

PCA KPCA LLE IM LEM DM MVU

Chiaretti et al. 0.09 s 0.03 s 0.14 s 0.04 s 0.04 s 0.16 s 0.25 s

Verhaak et al. 9.4 s 12.7 s 21.9 s 14 s 15.2 s 13.2 s 2 hrs

Runtime in seconds of all seven dimension reduction techniques on the
Chiaretti et al. leukemia dataset (N = 22, D = 12.625, d = 2, k = 10, s = 10)
and the Verhaak et al. leukemia dataset (N = 461, D = 54.675, d = 2, k = 10,
s = 100). In the latter case, the runtime of MVU is given in hours.
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dimensions compared to the thousands of features of
the original data.
Our benchmark further revealed significant shortcom-

ings of PCA in two and three dimensional target spaces
and brought out two nonlinear methods, that distin-
guished most from PCA. Especially the performances of
Locally Linear Embedding and Isomap in classification
and cluster validation make them well suited alternatives
to the classic, linear approach of PCA.

Additional material

Additional file 1: R-package. RDRToolbox_1.0.0.tar.gz: A package for
nonlinear dimension reduction using the Isomap and LLE algorithm. It
also includes a routine for computing the Davis-Bouldin-Index for cluster
validation, a plotting tool and a data generator for microarray gene
expression data and for the Swiss Roll dataset.

Additional file 2: Supplement. Supplement.pdf: Contains information
about preprocessing of the data, a discussion of the computational
complexity of each dimension reduction method, further classification,
cluster validation and noise evaluation results of nine other microarray
datasets and further classification and randomization results for simulated
datasets.
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