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Abstract

Background: Exon arrays provide a way to measure the expression of different isoforms of genes in an organism.
Most of the procedures to deal with these arrays are focused on gene expression or on exon expression. Although
the only biological analytes that can be properly assigned a concentration are transcripts, there are very few
algorithms that focus on them. The reason is that previously developed summarization methods do not work well
if applied to transcripts. In addition, gene structure prediction, i.e., the correspondence between probes and novel
isoforms, is a field which is still unexplored.

Results: We have modified and adapted a previous algorithm to take advantage of the special characteristics of
the Affymetrix exon arrays. The structure and concentration of transcripts -some of them possibly unknown- in
microarray experiments were predicted using this algorithm. Simulations showed that the suggested modifications
improved both specificity (SP) and sensitivity (ST) of the predictions. The algorithm was also applied to different
real datasets showing its effectiveness and the concordance with PCR validated results.

Conclusions: The proposed algorithm shows a substantial improvement in the performance over the previous
version. This improvement is mainly due to the exploitation of the redundancy of the Affymetrix exon arrays. An R-
Package of SPACE with the updated algorithms have been developed and is freely available.

Background
Alternative splicing (AS) is the process by which a single
gene is able to express several proteins that may have
diverse or even antagonistic functions. The mature
mRNA that corresponds to the different proteins for the
same gene is called transcript isoform or isoform in
short. Some AS is related to development, tissue differ-
entiation, etc. Other AS events are pathological and are
associated with various diseases including cancer. Many
of them are yet unknown. The analysis of disease speci-
fic alternative splicing and its molecular consequences is
promising and can be used to find new diagnostic, prog-
nostic, predictive, and therapeutic tools [1].
Some microarray companies (Affymetrix, Jivan Biotech-

nology and Exonhit) provide arrays designed to capture
alternative splicing events. There are also custom arrays
that use the Agilent platform [2]. The main difference

between these technologies is that Affymetrix only
includes exon probes (complementary sequences to each
one of the known transcribed exons of a given gene) and
Jivan, Exonhit or customized Agilent arrays also include
junction probes (a segment of complementary nucleotides
for each of the two sides of a known exon-exon junction
in the mature mRNA of the gene). Affymetrix has recently
developed an experimental array that also includes junc-
tion probes. This work focuses on Affymetrix exon arrays.
There are a number of studies that propose different
methods to deal with these arrays [2-8]. The procedure to
extract a signal value from a set of probes in an Affymetrix
array (including exon arrays) can be divided into three
stages: background removal, normalization (to equalize
the conditions among all the experiments) and summari-
zation (to provide a single concentration measurement
that represents all the signals in a set of probes that corre-
sponds to a particular analyte). Usually the proposed
methods for exon arrays [9,10] are modifications of the
algorithms already used in expression arrays.* Correspondence: arubio@ceit.es
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Algorithms for removing background and performing
normalization in expression arrays can be reasonably
applied to exon arrays. However, the summarization
step has some special characteristics that make it diffi-
cult to apply these methods. To clarify this assertion, it
is important to distinguish that, in exon arrays, there
are three ways to group the probes: by genes (to mea-
sure gene expression), by transcripts (to measure tran-
script expressions) and by exons (to measure the exon
expression). Affymetrix [11] and Brainarray [12] provide
different updated versions of the Chip Definition Files
(CDF) to do the grouping using genes, transcripts or
exons and using different identifiers for each of them.
Our work focuses on transcripts.
In a summarization step it is implicitly assumed that

there is no cross-hybridization between probes that
belong to different sets (or at least in most of the
probes). However, if the probes are grouped by tran-
scripts and a gene presents several isoforms, there will
be many probes that hybridize with several transcripts
of the same gene. To make matters worse, specific
probes for a particular transcript (that do not show
cross-hybridization) may be excluded if the computation
is a robust summarization method. The reason is that,
since their behavior is different from other probes in the
set, their values are not used in the summarized signal.
As many as 85% of the exons in genes with several iso-
forms are shared by several transcripts. It is not advisa-
ble to use standard expression algorithms to exon arrays
grouped by transcripts. In the seminal study of Wang
et al. [13] this problem is stated and solved by using a
deconvolution algorithm assuming that the structure of
the gene is known. Recently, a work that also deals with
transcript concentration estimation has been proposed
[14]. For some gene structures there is a deconvolution
ambiguity and additional constrains may be necessary to
resolve transcript expressions [15,16].
To deal with the problem of quantifying transcripts, the

authors and some colleagues [17] designed the algorithm
“Splicing Prediction and Concentration Estimation”
(SPACE) based on Non-negative Matrix Factorization
(NMF). SPACE algorithm was used to predict the struc-
ture for each particular gene and quantify the concentra-
tion of each particular transcript including unknown
isoforms. SPACE was designed to be used with arrays
with either exon or junction probes. The special charac-
teristics of the Affymetrix arrays drove us to include
some refinements to this algorithm. They are (1) detec-
tion and removal of the outliers in the probe data,
(2) estimation of the number of transcripts of a gene in a
set of samples, (3) selection among the possible solutions
which is the most suitable for splicing data (NMF solu-
tion is not unique) and (4) use of the information of pro-
besets to correct errors in the predicted structure of the

genes. In the results section, the improvements for simu-
lated data are shown. The accuracy of predicted struc-
tures and concentrations validated by PCR for real
datasets is also tested. In addition to this, the SPACE
algorithm with the improvements described here, has
been ported to R (initially it was written in Matlab).

Results and Discussion
The improvements described in the methods section to
the initial SPACE algorithm were applied to both syn-
thetic and real microarray datasets. Each of the datasets
are described in the following sections.

Synthetic dataset
Around 600 genes (selected randomly) that show alter-
native splicing were simulated. Probe signals for this
synthetic dataset are proportional to the sum of concen-
trations of the transcripts that share the probe, in turn,
this proportional constant, the affinity, was estimated
from the values of each probe in an experiment for dif-
ferent tissues provided by Affymetrix. These affinities
are estimated using dChip. This method assumes that
the signal is proportional to the product of the affinities
of the probes and the concentration of the gene. Once
the estimated concentration of the gene is known it is
quite straightforward to get the affinities. Another
equivalent possibility is to get the affinities using the
first eigenvector of the SVD decomposition of the probe
data matrix for each gene. Since dChip assumes that
there is only one isoform per gene, these affinities are
not accurate but sufficient to perform a simulation.
Transcript concentrations are constructed by drawing
random numbers that follow a uniform distribution
across samples and multiplying them by a proportional
factor also drawn from a uniform distribution. This
approach simulates that there are some transcripts that
are systematically more expressed than others in a gene.
The property G matrix for each of the genes was built

using the information provided by Brainarray [12]. G is
an indicial matrix (gij = {0, 1}) that relates probes with
transcripts, i.e. it discerns whether a probe is included
in a transcript or not. The size of this matrix is probes
transcripts. Following the deconvolution model pro-
posed by Wang et al. [13], the simulated probe signal
matrix (probes samples) was built by multiplying the
three matrices (Y = A...G...T). The underlying reasoning
is that the signal of each probe is proportional to its
affinity times the sum of the concentrations of the tran-
scripts that hybridizes against it. Finally, noise (both
multiplicative and additive) was added. This noise was
computed so that it is similar to the noise present in
real data. In turn, the noise in real data was estimated
by using the residuals of the dChip summarization
model.
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This simulated dataset are 600 genes with known
structure (obtained from Brainarray), known number of
transcripts (consequence of the structure) and known
concentrations (generated using random numbers) plus
noise that mimics the real distribution.
The SPACE algorithm includes a NMF step. The

NMF is computed iteratively. Each gene is iterated 3000
times to achieve convergence.
The results are presented for estimation of the num-

ber of different transcripts in a given mixture, structure
prediction of each of these transcripts and estimation of
their concentration.
Prediction of the number of transcripts
The number of transcripts was estimated using a modi-
fication to a method proposed by Owen and Perry [18].
This method performs a partition of the initial data
matrix (Y) into four submatrices and estimates one of
these submatrices using the remaining three subma-
trices. Changing the role of each of the submatrices, it is
possible to predict the whole initial data using approxi-
mately 75% of these data. The estimation is performed
by means of using NMF (or partial SVD) and is done
considering different internal dimensions for the factori-
zations into consideration. The estimation process was
repeated a number of times for different partitions (250
in our case). Afterwards, we selected the minimal inter-
nal dimension of the factorization (number of tran-
scripts) that provides an error distribution whose
median is not statistically larger than the distribution of
the error of the internal dimension with the minimum
error (using a Wilcoxon test). Figure 1 shows the perfor-
mance of this estimation. It compares the predicted
number of transcripts (using only the simulated probe
level data) with the number of transcripts in Ensembl
(using Brainarray cdfs).
This simulation shows that the estimation of the num-

ber of transcripts is a difficult task even for synthetic
data since, for this level of noise, the predicted number
of transcripts is usually incorrect. Nevertheless, if the
proposed method is used simply to predict splicing, it
has a very low false positive rate (FPR), i.e. only 1% of
the genes that have a single transcript are predicted to
have alternative splicing. The false negative rate (genes
with several transcripts that are predicted to have one
transcript) is on average about 30%. This false negative
rate (FNR) is (among others) a consequence of some
simulated transcripts having very low concentrations in
all samples, in comparison with the most significant
transcript of the same gene. We also performed a simu-
lation assuming that all the transcripts follow an uni-
form distribution and FNR improves (data not shown).
The Figure S3 in Additional file 1, compares the per-

formance of the number of transcripts predictions using
the new and the previous version of the algorithm on

the same simulated dataset. The new version estimates
the number of transcripts more accurately.
Structure prediction
SPACE algorithm was applied to each of the genes in
the synthetic dataset. The algorithm provided a continu-
ous estimation G of the property G matrix (see meth-
ods section).

The G matrix has all its values bounded between

zero and one. On the other hand, the original G matrix
is binary (i.e. a probe does or does not hybridize against
a transcript). It would be desirable to quantify the ability
to predict the G matrix using G .
Changing a threshold th, it is assumed that a particu-

lar entry of G is 1 (the probe is predicted to hybridize
against a particular transcript if the corresponding entry
is over th) or 0 (the probe is predicted not to hybridize
against this particular transcript if the corresponding
entry is below th). Comparing the corresponding entries
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Figure 1 Proportion of predicted number of transcripts in a
simulation performed with 600 genes (synthetic data). The 600
genes used were randomly selected from the human genome with
one to six transcripts. Annotated transcript structures in Brainarray
version 11 CDFs were used to make the synthetic data for each
gene. Probe affinities were estimated from real data (Affymetrix
sample dataset for human tissues). Both additive and multiplicative
noise mimics the noise present in real datasets. Transcript
concentrations have been randomly assigned from a uniform
distribution across samples multiplied for a proportional factor (also
from a uniform distribution) between transcripts, the resulting
concentrations are such that some transcripts present lower
concentrations in all samples compared with the concentrations of
the most significant transcript of the same gene. The area of each
circle represents the proportion of times the corresponding
predicted number is chosen by the algorithm for a given number
of transcripts. Genes with a single transcript are wrongly predicted
to have AS (several transcripts) only 1%.
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from G and (G >th), there are true positives (TP, corre-
sponding entry is 1 in both matrixes), true negatives
(TN, the entry is 0 in both matrixes), false positives (FP,
the entry is 0 in G and G is over th) and false negatives
(FN, the entry is 1 in G and G is below th). These
values (using different thresholds) can be used to con-
struct the ROC or compute other performance figures.
Each gene has its own ROC curve. Summing up each of
TP, TN, FP and FN for all the genes it is possible to get
an estimation of the overall performance.
It is important to point out that there is always an

indetermination in the order of the transcripts: the col-
umns of G and G for a perfect prediction can have a
different order. Before performing the previous compu-
tations, G is resorted so that it becomes more similar
to G. The same sorting is applied to the rows of the
concentrations matrix.
Different error figures in the prediction are repre-

sented in Figure 2. It includes the Hamming distance,
the sensitivity and the specificity for different thresholds
over the G matrix. The dashed lines belong to the
SPACE algorithm without improvements and the con-
tinuous lines to SPACE with improvements.
In figure 2, it can be observed that the optimum

threshold for the Hamming distance (overall error) is
about 0.5. The new algorithm has a lower hamming dis-
tance than previous one. If the threshold that provides
the same sensitivity and specificity (the crossing point)
is set, both the one and zero values have the same relia-
bility. In this case, we consider accidental inclusion as
equally undesirable as accidental exclusion of an exon.
This threshold is close to 0.8. The sensitivity and speci-
ficity of SPACE in the crossing point is equal to 0.85;
such value represents an error 25% lower than the
crossing point for SPACE without any improvement.
Concentration estimation
We scaled the columns of the W matrix to make its
structure more similar to AG matrices. This scaling, dif-
ferent for each of the columns of W is possible because
of the non-uniqueness of the NMF. The initial SPACE
algorithm included a heuristic to obtain a “filled” G
matrix that is also used in the improved one before the
scaling. The estimated concentrations of the transcripts
with and without the adaptation of W matrix in SPACE
were compared. In figure S4 in Additional file 1, the
mean average error (MAE%) for different genes used in
the simulations is shown. In that figure, it can be
observed that adaptation improves the estimation of the
concentrations. In most of the cases the diminution in
the estimated error is statistically significant.

Real datasets
SPACE was also applied to several datasets downloaded
from GEO [19]. All of them have available CEL files to

perform all the steps of the analysis and the correspond-
ing papers include validation of the results using RT-
PCR. These datasets are: Affymetrix sample dataset of
human tissues. It contains 11 tissues with 3 replicates of
each tissue along with several mixtures of three tissues
(heart, testes and cerebellum). A recent study made by
de la Grange et al. [8] includes RT-PCR validation for
some genes in that dataset; GSE9385 [20] (a study of
glial brain tumors in humans); GSE9372 [21] (a com-
parative study of the relationships between genotype
and alternative splicing in humans); GSE11344 [22]
(change in splicing patterns after PTB depletion in
mice); and GSE8945 [23] (a study on the effect of the
hnRNP L protein on alternative splicing).
The Table S1 in Additional file 2, summarizes the

results of the predictions for each of the datasets. The
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Figure 2 Performance of the structure prediction. Sensitivity
(SN), specificity (SP) and Hamming distance (HD) of the structure
prediction obtained in the simulations for different values of applied
threshold. The dashed lines show the performance of SPACE before
applying improvements and the continuous lines after applying
Adapt algorithm and coherence correction. The Hamming distance
error rate was calculated in the form of HD = (FP + FN) /N, i.e. the
proportion of probes that are erroneously predicted. The sensitivity
(or true positive rate, TPR) was calculated as SN = TP = (TP + FN), i.e.
the proportion of probes that are predicted to hybridize against a
transcript and in fact do hybridize. Finally, the specificity (or one
minus the false positive rate, FPR) was calculated as SP = TN/(TN +
FP), i.e. the proportion of probes that are predicted NOT to
hybridize against a transcript and in fact do not hybridize. The x-axis
shows the threshold in the estimated G matrix to decide whether
a probe hybridizes or not. The threshold that provides the
minimum Hamming distance (overall error) is 0.5. A threshold near
0.8 provides the same sensitivity and specificity, both equal to 0.85;
such value represents an error at least 25% lower than the crossing
point for SPACE without improvements.
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table includes the following fields: dataset, gene, RT-
PCR band according to Fast-DB, number of isoforms
between primers using PCR, predicted number of iso-
forms between primers using SPACE, number of iso-
forms between primers according to Ensembl 51,
predicted total number of isoforms, total number of iso-
forms in Ensembl 51, coherence of predicted structure
with PCRs, coherence of estimated concentrations with
PCRs and a comment of the results.
Affymetrix dataset
ROC curves have been made to test SPACE perfor-
mance for the structure prediction of alternatively
spliced isoforms. As already stated, SPACE predicts the
overall structure of a gene whereas RT-PCR experiments
can identify only the events that occur between the
included primers. In order to test the quality of SPACE
predictions we made the following assumption: if the
results of a RT-PCR within a gene in a dataset is com-
patible with Ensembl structure, we assume that the
Ensembl structure is correct. In figures three and four
of the study made by de la Grange et al. [8] a total of
17 genes that present alternative splicing between tis-
sues were validated by RT-PCR (some of them in more
than one splicing event). Two genes SNX13 and IDE
were excluded because alternative splicing events shown
in the PCRs do not appear in Ensembl release 51.
Assuming that the gene structures of the remaining 15
genes in Ensembl are correct, we use these structures
for each gene as “ground truth” and computed the ROC
curves shown in Figure 3. The number of transcripts of
each gene in all samples was estimated from the PCR
figures. The number of transcripts was also estimated by
the proposed algorithm. The estimated number of tran-
scripts was usually larger than the indicated by PCRs.
Two ROC curves were constructed. The red ROC curve
indicates SPACE performance without any improve-
ment. The black ROC curve was estimated applying the
improvements described in the methods section.
The analysis for CLTB gene is shown in Figure 4.

SPACE algorithm was run to predict the structure of
two alternatively spliced isoforms. Their predicted struc-
ture in panel (g) shows a cassette event that is charac-
teristic of cerebellum. Predicted structure is the same
than annotated structure in Ensembl release 51 shown
in panel (f). The predicted concentrations of isoforms
clearly show that variant 2, which includes the cassette
exon, is exclusive of nervous tissue. These results match
RT-PCRs provided in de la Grange et al. [8]. Results for
other genes in [8] (and all the other studies) are shown
in the additional material (Additional file 1).
Glial tumors
In the study of glial brain tumors in humans made by
French et al. [20], the authors provide PCRs for 11 genes.
The analysis for ATP2B4 gene is shown in Figure 5.

SPACE algorithm was run to predict the structure of two
isoforms. Their predicted structure in panel (g) shows a
cassette event that involves one exon towards the 5’ end of
the gene. The estimated concentrations of both transcripts
(variant 1 and 2) across all samples are shown in panel (h).
Variant 1 (short isoform) is almost non-existent in sam-
ples 1 to 6 (normal tissue). In samples 7 to 32 (oligoden-
droglioma), variant 2 has a larger concentration than
variant 1. In samples 33 to 55 (glioblastoma multiforme),
this difference in concentration is even more apparent.
These results are not consistent with the PCRs shown in
[20]. In this study, the PCR shows that the long isoform is
expressed only in GBM cells whereas the short isoform is
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Figure 3 ROC curves of SPACE structure prediction (Affymetrix
sample dataset of human tissues). ROC curves that test SPACE
performance for structure prediction. They measure the
concordance of the predictions with the transcript structures that
appear in Ensembl release 51. The y-axis shows the sensitivity (the
proportion of probes that are said to hybridize against a transcript
and in fact do) and in the x-axis 1 - specificity is shown (the
proportion of probes that are said not to hybridize against a
transcript and in fact they do not). A total of 15 genes that present
alternative splicing between tissues and were validated by RT-PCR
(figures 3 and 4 of de la Grange et al. [8]) were chosen to make the
ROC curves. Two genes SNX13 and IDE (also validated in the same
figures) were not included because alternative splicing events
shown in the PCRs do not appear in Ensembl release 51. Another
two genes ABLIM1 and MICAL2 were validated in two different
splicing events. The number of transcripts of each gene in the
tissue dataset was estimated from the PCR figures. The first ROC
curve corresponds to the prediction without taking into account
the improvements described in this paper. The second ROC curve
was obtained after applying Adapt algorithm and structure
coherence correction (probes within the same exon or exon part
must have the same hybridization pattern). The ROC curves of each
of the 15 genes are shown in grey as background.
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expressed similarly in the three groups. This error in the
predicted concentration may be owed to the lack of iden-
tifiability of this particular gene structure [15,16].
Genotype and alternative splicing
In the comparative study of the relationships between
genotype and alternative splicing in humans, the valida-
tion done with PARP2 gene is shown in Figure 6. This
gene, according to Kwan et al. [21] study, shows an
alternative splicing event related to a particular SNP in
probeset 3527423. In Ensembl release 51, this gene is
annotated as a single transcript. Two transcripts were

predicted by SPACE algorithm and their predicted
structure is shown in panel (g). Predicted transcript var-
iant 1 is equal to the annotated transcript in Ensembl.
Predicted transcript variant 2 shows the lack of probeset
3527423. In panel (h), the estimated concentrations of
the two predicted transcripts are shown. There are three
replicates of each sample and the estimated concentra-
tions match perfectly PCR results for both splicing var-
iants in each sample.
In this particular case, the coherence algorithm would

miss this alternative splicing event because the Ensembl
annotation does not include this variant.
PTB depletion in mice
In the analysis of predetermined transcript inclusion levels
after PTB depletion in mice made by Xing et al. [22], the
obtained results for Ncam1 gene are shown in Figure 7.
This gene has five different transcripts annotated in
Ensembl release 51 as shown in panel (f), two of which are
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Figure 4 Results for CLTB gene (Affymetrix sample dataset of
human tissues, reverse strand). (a) Log of the intensities for all
the probes within the gene. Each line corresponds to a different
sample. (b) Residuals of the RMA normalization model. The residuals
for some exons are much larger than for others. One of these exons
is predicted as a cassette alternative splicing event (skipped exon).
The vertical bars detach the different exons (or piece of exons) that
correspond to each group of probes. (c) Structure of the CLTB gene,
i.e. the exons that appear in any of its transcripts. (d) Locations of
the Exon probes. It can be observed that each exon has one or
several probes mapped to them. (e) Genomic positions of the
probes. (f) Structure of the different transcripts of CLTB gene in
Ensembl release 51. Two different transcripts are represented. (g)
Predicted structure using SPACE. The predicted number of
transcripts is two and their predicted structure is shown. Predicted
transcripts match exactly the Ensembl annotated ones. (h) Estimated
concentration of each of the two transcripts (variant 1 and 2) in
each sample. Variant 2 is predominant in cerebellum tissue as
shown by RT-PCR in [8]. These graphs were generated using
GenomeGraphs [30].
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Figure 5 Results for ATP2B4 gene (data from GSE9385). The
content of each panel is explained in figure 4. (f) In Ensembl release
51 there are six different annotated transcripts. (g) The predicted
number of transcripts using SPACE is two and their predicted
structure is shown. A cassette event of one exon toward the 5’ end
of the gene is clearly identified. (h) Estimated concentration of each
of the two transcripts (variant 1 and 2) in each sample. Samples 1
to 6 correspond to normal tissue, samples 7 to 32 to
oligodendroglioma and samples 33 to 55 to glioblastoma
multiform. The results for the estimation of the concentrations are
the reverse of RT-PCR results.
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very short compared to the length of the gene. Two tran-
scripts were predicted by SPACE and their predicted struc-
ture is shown in panel (g). The first predicted transcript
variant 1 is very similar to the first Ensembl transcript. The
second predicted transcript variant 2 is also similar to the
third Ensembl transcript. Some probes that belong only to
the short Ensembl transcripts are incorrectly assigned to
the larger predicted transcripts and the second exon is also
misassigned to the predicted variant 2. In panel (h), the
estimated concentrations of the two predicted variants are

shown. Variant 1 is predominant in the samples 1 to 3
(normal tissue) and variant 2 is predominant in the sam-
ples 4 to 6 (tissue of mice with PTB depletion). These con-
centrations are in concordance with PCRs.

Discussion
We have described the different improvements on
SPACE: outlier detection and correction; prediction of
the number of transcripts; the adaptation of the factors
of the NMF to provide a structure closer to the reality;
and the exploitation of the redundancy of the Affyme-
trix probes.
All the improvements were tested on synthetic data

mimicking the real data (affinity, structure and noise
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Figure 6 Results for PARP2 gene (data from GSE9372) .
According to Kwan et al. [21], this gene shows AS related to a
particular SNP in probeset 3527423 and it has a new variant with its
second exon shortened. The content of each panel is explained in
figure 4. (b) Residuals of the RMA normalization model. For some
exons there are residuals much larger than for others, as at the end
of the second exon where the probeset 3527423 is located. (g)
There is a splicing event at the end of the second exon which
correspond to probeset 3527423 in transcript variant 2. Transcript
variant 1 matches Ensembl annotated transcript. (h) Estimated
concentration of each variant with three replicates per transcript.
These concentrations match RT-PCR results perfectly.
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Figure 7 Results for Ncam1 gene (data from GSE11344). The
content of each panel is explained in figure 4. (b) Residuals of the
RMA normalization model. It can be observed that for many exons
there are residuals that are much larger than expected. This fact
indicates the presence of many splicing events. (d) Most of the
exons have several probes mapped to them. However, some exons
(in the middle close to the 49.34 Mb position) are not represented
by any probe. Any splicing event related to these exons cannot be
detected. (g) Predicted structure using SPACE of two transcripts of
this gene. The first transcript variant 1 is related to the first Ensembl
release 51 transcript. The second transcript variant 2 is related to
third Ensembl transcript. A few exons are misassigned to these
transcripts. (h) Estimated concentrations of each of the two
transcripts (variant 1 and 2) in each sample. Samples 1 to 3
correspond to normal tissue where the variant 1 is predominant.
Additionally, variant 2 is predominant in samples 4 to 6 that present
PTB depletion. These results are in concordance with RT-PCR results.
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were taken from real data). Suggested changes improved
error rates by about 25%. We have also tested our algo-
rithms in RT-PCR validated data. The ROC figures docu-
ment a specificity and sensitivity of around 75% in the
case of structure prediction. Concentration estimates to a
large extent mirrored PCR images in the cited studies.
However, when applying SPACE (with the suggested

improvements) to real data we faced some problems
worth noting. For example, SPACE algorithm assumes
that all the probes hybridize against at least one of the
transcripts. In exon arrays there are many probes
(probes related with erroneously predicted exons) that
do not hybridize against mRNA, this happens even in
the core annotated probes. Additionally, many of the
probes in exon arrays do not perform well or at least
there are probes within the same exon that do not cor-
relate well with other probes of that exon.
Structure prediction improves with careful selection of

the probes, e.g. by identifying and discarding probes that
do not hybridize or that cross-hybridize to different
parts of the genome (a problem addressed by Kapur et
al. [24]). Background acts as an offset for the probes in
the array. Even though the applied background removal
algorithm [25] behaves better than the standard RMA
version, further improvements can be made at this
point. This problem is attenuated but not completely
solved when using Brainarray [12] CDF files for genes,
transcripts and exons. There are several papers [4,22,24]
that address these questions and provide different meth-
ods to select the probes.
Assessment of the performance of the SPACE algo-

rithm for real datasets required some sort of “ground
truth”. In this paper, only genes with RT-PCR validated
splicing events in each dataset were used for validation.
It should be noted that PCRs only assess splicing events
that appear between the primers, while SPACE algo-
rithm reconstructs the whole structure of each tran-
script. For the validated gene set, transcript structures
from Ensembl release 51 were used as reference. Inac-
curacies in the Ensembl annotation would lead to an
underestimation of the validation rates. In Figures S1
and S2, Additional file 1, the concordance between
SPACE predictions and Ensembl release 51 annotations
was tested for a set of 1600 randomly selected genes.
The performance decreased compared to genes that
have RT-PCR evidence of alternative splicing. Addition-
ally, the concordance of the estimated concentrations of
each isoform in each sample with the PCRs shows the
accuracy of the predictions.
The redundancy of the Affymetrix probes in exon

arrays was exploited to detect and correct errors in the
structure. Probes that belong to the same exon or pro-
beset (in the case of exons that differ between tran-
scripts) must all be present or absent in a particular

transcript. After applying this correction, both sensitivity
and specificity improved significantly in real and simu-
lated datasets. However, if a new transcript had a spli-
cing event (previously unknown) that did not follow the
probeset grouping (a new alternative donor site, for
example), the prediction would be incorrect, as the algo-
rithm would treat the probeset as a whole.
Variability between samples provides SPACE algo-

rithm with more information that leads to better results
in the prediction of structure. For example, a normal vs
tumor experiment that consists of several technical
replicates of the same samples provides less information
than an experiment with 11 different tissues as the Affy-
metrix sample dataset. Additionally, the number of tran-
scripts present in all samples is also important to the
algorithm performance. If there are more than 4 or 5
transcripts SPACE performance greatly decreases.
Using the Wang deconvolution model, it would be pos-

sible to estimate transcript concentrations provided that
the gene structure (G matrix) is known. However, there
is a deconvolution ambiguity that only depends on the
gene structure [15,16]. This ambiguity may provide dif-
ferent valid solutions to the Wang model for some genes
with the same probe intensities. SPACE is also sensitive
to this ambiguity. However, as shown in the simulations,
it is able to predict the structure and estimate the con-
centrations with reasonable accuracy. She et al. [15] sug-
gest a method to deal with this ambiguity by estimating
the mean affinity of groups of probes. This is a priori
information which can also be included in the SPACE
algorithm. It is also possible to test later whether the esti-
mated G matrix has this ambiguity or not.
All the described algorithms have been included in an R-

Package and added as the Additional file 3. A script to test
the functions is also included as Additional file 4. The
source code and the manual of the package are included
as Additional file 5 and Additional file 6 respectively.

Conclusions
We have proposed a method to predict the structure
and estimate the concentration of transcripts using Affy-
metrix exon arrays. We have included several improve-
ments over our previous work, namely; outlier
identification and removal, improved estimations of the
number of transcripts, adaptation of the NMF factors to
mimic the proposed model and exploitation of the
redundancy of the exon arrays that include several
probes per exon. Simulations show that the error figures
improved by applying these methods. The algorithms
have been validated in real datasets.

Methods
The different steps of the suggested method are
depicted in Figure 8. These steps are: outlier removal,
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factorization, adaptation of the W matrix (Adapt algo-
rithm) and structure correction by coherence.

Normalization and background removal
The Robust Multiple-array Average (RMA) [26] proce-
dures for background removal and quantile normaliza-
tion were used. Instead of using the standard RMA
background method, we used [25] (developed by the
same group), an improvement over the previous algo-
rithm. These methods are quick and efficient and can be
readily applied to exon arrays. The implementation of
these algorithms in aroma.affymetrix [27,28] was used.

Outlier detection and correction
Usually there are outliers within probe intensity data. An
outlier is an anomalous probe measurement that shows an

abnormal distance from similar probe measurements of
the same array in different experiments after the normali-
zation step. NMF factorization (the core of the SPACE
algorithm) is not robust if there are outliers in data, as it
tries to accommodate them. A single factor of the factori-
zation may be used simply to store a large outlier. There-
fore, results improve by removing outliers prior to the
factorization. A method to detect outliers that is closely
related with the algorithm to estimate the number of tran-
scripts was included and is explained below. Once the out-
liers are identified, there are different algorithms to impute
their values (for a comparative review Barnett et al. [29]).

Making microarray intensity data homoscedastic
NMF optimization assumes that the residuals between
the initial matrix and the estimated one by the
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Figure 8 Scheme of the different algorithms in the SPACE method. The figure depicts the different proposed stages that are performed
after the background removal and normalization across the arrays. The initial input to the algorithm is the probe expression matrix for a
particular gene (in this case the WNK1 gene). The selected experiment is a set of arrays hybridized against different tissues provided by
Affymetrix. Probe signal matrix may have some outliers that are identified and corrected in stage A (outlier removal) of the method. In stage B
(NMF factorization), the corrected matrix is factorized into two matrices W (related to concentration) and H (related with the structure). NMF
factorization is not unique. We select the factorization whose W matrix is closer to the AG factorization suggested by Wang et al. This
adaptation is performed in stage C. It can be seen in the zoomed figures that the W matrix have columns that are closer to each other. Once
we have the W matrix it can be factorized again into two matrices: a matrix of affinities (step D.1) and a continuous W = AG property
matrix G . Finally, the discretization process (step E) provides a binary structure of the G matrix that is compatible with the characteristics of the
exon arrays, i.e., the probes that belong to the same exon probeset have the same hybridization pattern.
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factorization are homoscedastic, i.e. that the residuals
have the same variance and do not depend on probe
intensity or other variables. However, the residuals tend
to be larger for probes with large affinities. Therefore,
probe intensity matrix is rescaled to make the residuals
closer to the proposed model.
Every probe intensity was divided by the median of

the values of the same probe in all experiment raised to
the power of 0.7. This value was obtained, using genes
with a single transcript (according to Ensembl release
51) and comparing the residuals with the median of
probe intensities. Using the aforementioned transforma-
tion, the prediction results in the simulation improved
significantly.

Estimation of the number of transcripts
The basic idea of the method is borrowed from Owen et
al. [18]. This method provides an estimation of the opti-
mal number of components to be retained using Singu-
lar Value Decomposition (SVD) or NMF data
factorizations. The optimal number of components is
computed by using a resampling method that splits the
expression matrix of the probes belonging to a particu-
lar gene across all samples into four submatrices. Next,
each submatrix is estimated using the other three sub-
matrices. The suggested optimal number of components
is the one with a smaller average error (after performing
a number of estimations) compared to the initial matrix.
The matrix of probe intensities Y is split into four

submatrices.

Y
P Q

R Sm n
m n m n

m n m n
×

× ×

× ×
=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 1 1 2

2 1 2 2

(1)

If k = rank(Y) is smaller than min(m1, m2, n1, n2), and
rank(Y) = rank(S) then it can be demonstrated that the P
submatrix can be reconstructed using the other three
submatrices. Without noise, the rank of Y matrix is equal
(or smaller in some degenerated cases) to the number of
transcripts k which represents the dimension of NMF
factorization. In this case, the P submatrix is identically,

P Q S Rm n m n n m m n1 1 1 2 2 2 2 1× × ×
+

×= ⋅ ⋅ (2)

where m = m1 + m2, n = n1 + n2 and S+ is the Moore-
Penrose pseudoinverse of S. If there is noise, rank(Y) ≠
rank(S) and the reconstruction of P will no longer be

exact. This reconstruction is called P . In Owen et al.

[18], it is stated that using a partial pseudoinverse and
only the k first singular values of S, the expected error
of the reconstruction is minimized. This decomposition

of matrix Y can be done for any permutation L of the
initial matrix. In this case,

P Q S Rk
L L

k
L L ( ) ( ) ( ) ( )= ⋅ ⋅+ (3)

where Sk
+ is the pseudoinverse of S using the k first

components. This consideration provides a way to apply
resampling: using different factorizations, different esti-
mates of P , Q, R and S and therefore, the whole Y
matrix can be obtained. These permutations can be
done for different values of k, i.e. the number of singular
vectors to reconstruct P using the pseudoinverse of S.
Owen et al. [18] suggest to select the k that provides
the smallest expected value of the norm of the error, i.e.,

min (| |) (| |).( ) ( ) ( )
k k

L L
k
L

E E E Y Y( ) = −  As k increases

the error drops until the optimum value. For larger
values of k the error increases only slightly. Our algo-
rithm selects the optimal dimension by using the value
of k (number of transcripts) whose median error is not
significantly different to the number of transcripts that
provides the minimum error. The corresponding statis-
tics are obtained using a Wilcoxon test.
A small variation of this algorithm was applied to

detect the outliers in the data. Each of the L permuta-
tions provided a estimation for each entry of Y matrix
using the largest possible k. Applying these estimations
a number of times (250 in our case), a density function
for each of the entries of the matrix is obtained. If an
entry is far from the median of its distribution, it is con-
sidered to be an outlier and its value is substituted by
the median of the estimates. This method takes (~5 sec/
gene).

Summarization
After the outliers have been removed and their values
estimated, NMF factorization is applied to each of the
genes within the array. This step is time consuming (~6
sec/gene). This procedure was described in Anton et al.
[17]. Briefly, this method consists of applying non-nega-
tive matrix factorization (NMF) to the matrix of probe
intensities. The standard NMF applied to the matrix Y,
yields two matrices W and H:

Y W Hm n m k k n× × ×≈ ⋅ (4)

The first matrix W can be used to reveal the predicted
structure of the gene (whether a particular probe
belongs to a transcript or not) and the second matrix H
the concentration of the transcripts. In Wang deconvo-
lution model [13], the matrix equation is Y ≈ A·F·G·T.
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The feature matrix F and the property matrix G were
merged into a single matrix G obtaining the following
equation:

Y A G Tm n m m m k k n× × × ×≈ ⋅ ⋅ (5)

Comparing equation 4 and 5, it is possible to identify
W with A G (the structure of the k transcripts) and H
with T (their concentrations).

Reshaping W to improve gene structure. Adapt algorithm
NMF factorization is not unique and some additional
degrees of freedom exist. One matrix D and its inverse
D-1 can be used to transform the two matrices as follows:

Y W H WD D H W H≈ ⋅ = ⋅ = ⋅−( ) ( )1   (6)

and in turn, the new matrices can be identified with
the AG matrix,

W H A G T    ⋅ = ⋅ ⋅( ) (7)

This new factorization (given that W and H have all

their elements non-negative) provides a different struc-
ture (and different concentrations) for each of the tran-
scripts and reconstructs the same matrix. Since the
reconstructed matrix is identical, any method to discern
the “correct” D matrix must rely on additional proper-
ties of the data, not on the data themselves.

In our case, the non-negativity condition of W and H
can be guaranteed if D is a non-negative diagonal matrix.
Since the G matrix is binary (as proposed by Wang et al.
[13]) and the A matrix is a diagonal of the affinities of the
probes, all the rows in AG are equal to the affinity of the
probe (if the probe hybridizes against the transcript) or zero
(if the probe does not hybridize). There are many more
probes that hybridize against transcripts than probes that do
not, i.e., the G has many more ones than zeros. In Ensembl
release 51 the median of the proportions of ones in all G
matrices belonging to each gene is 83%. Taking these facts
into account, we select the D matrix that provides a struc-
ture for W that mimics the model, i.e. all the columns of

W must be similar to each other except a few probes.
The condition of having “similar” columns can be

converted into an optimization problem,

min |log( ) log( ) |
D

k j

n

j

n

i

n

jj ij kk ik

tp t

d d ww
= +==
∑∑∑ −

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

111

(8)

where np is the number of probes of a gene, nt is the
number of transcripts and djj are the elements of the
diagonal of matrix D. This optimization problem can
be converted into a system of linear equations that can

be solved using robust statistical methods, i.e. the pre-
sence of outliers do not significantly affect the solu-

tion. Once djj and hence W are computed, the affinity

of the probes are the maximum values of each row of
this matrix.

a Wii
k

ik = max( ) (9)

and G can be computed by,

G A W  = ⋅
−1 (10)

In this equation, all the entries of the G matrix are

between zero and one, since they are obtained by divid-
ing each entry of W by the maximum value for each of
the rows.

Using the information of the location of the probes.
Structure coherence correction
Affymetrix probes are grouped in sets of probes. A set
of probes should hybridize against the same feature of
a gene (an exon or a part of an exon) and can be con-
sidered as a whole. The previous steps of the algo-
rithm do not take this fact into account and treat each
probe independently. The predicted structure can con-
tain errors due to bad quality probes, large noise or
limitations of the algorithm. We can take advantage of
Affymetrix redundancy by forcing the coherence of
the set of probes; all of them have the same pattern
against the different transcripts. In the suggested
matrix form, as the hybridization pattern of a probe
corresponds to a row of the G matrix, all the rows
that correspond to probes within the same set must
be identical.
Our algorithm selects for each probeset (a subset of

rows of matrix G) the closest binary matrix of rank
equal to one (all the rows have the same values). This
matrix is obtained simply by rounding the mean value
of each of the columns of the submatrix that corre-
sponds to the probeset. Finally, a threshold is set to all
the entries of the G matrix.

Additional material

Additional file 1: Prediction of the structure of genes from several
datasets using SPACE algorithm. SPACE performance taking Ensembl
release 51 annotated genes as reference (Affymetrix sample dataset of
human tissues). Improvement in the estimation of transcript
concentrations after applying Adapt algorithm (synthetic data).
Comparison between SPACE algorithm and Wang deconvolution model
to estimate the concentrations of transcripts (synthetic data). Structure
prediction and concentrations estimation of WNK1 gene using SPACE
algorithm compared to Wang deconvolution model results (Affymetrix
sample dataset of human tissues). Predicted structure and concentrations
estimation of several genes using public datasets. These genes have RT-
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PCR validated splicing events in several studies: de la Grange et al. [8],
French et al. [20], Xing et al. [22] and Hung et al. [23].

Additional file 2: Table S1. Table in Excel format that summarizes the
results of the predictions for each of the datasets.

Additional file 3: R package of SPACE algorithm for Affymetrix exon
arrays. SPACE Binary R package to be used in Windows Platforms.

Additional file 4: R script. Piece of code to run the proposed
algorithms in a small set of data. This file includes comments to set the
proper directory structure and files.

Additional file 5: R package of SPACE algorithm. Source code.
Source code of the R package.

Additional file 6: Manual of the SPACE R package. Manual of the
SPACE R package.
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