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Abstract

Background: The purpose of this manuscript is to provide, based on an extensive analysis of a proteomic data set,
suggestions for proper statistical analysis for the discovery of sets of clinically relevant biomarkers. As tractable
example we define the measurable proteomic differences between apparently healthy adult males and females.
We choose urine as body-fluid of interest and CE-MS, a thoroughly validated platform technology, allowing for
routine analysis of a large number of samples. The second urine of the morning was collected from apparently
healthy male and female volunteers (aged 21-40) in the course of the routine medical check-up before recruitment
at the Hannover Medical School.

Results: We found that the Wilcoxon-test is best suited for the definition of potential biomarkers. Adjustment for
multiple testing is necessary. Sample size estimation can be performed based on a small number of observations
via resampling from pilot data. Machine learning algorithms appear ideally suited to generate classifiers.
Assessment of any results in an independent test-set is essential.

Conclusions: Valid proteomic biomarkers for diagnosis and prognosis only can be defined by applying proper
statistical data mining procedures. In particular, a justification of the sample size should be part of the study
design.

Background
The field of biomarker discovery or clinical proteomics
has raised high hopes generated by reports on potential
biomarkers, which in many cases subsequently could
not be substantiated in validation studies [1,2]. Promi-
nent examples are the findings in [3,4]. This develop-
ment has resulted in large scepticism from both
clinicians and regulatory agencies, which will make the
application of valid biomarkers into the arsenal of clini-
cal diagnostics even more of a challenge [5,6]. Further,
it is now generally accepted that single biomarkers are
unlikely to result in major advancements as the com-
plexity of disease cannot be captured by a single marker;
instead, a panel of such biomarkers must be employed
[7,8]. However, it is equally evident that such a panel
must consist of clearly defined and validated biomarkers
in order to provide a well defined signature. This raises
the issue of the definition of a valid biomarker. As this

is obviously of central importance, we have revisited this
issue, not only employing theoretical considerations, but
also by using a tractable yet realistic case study. The
theoretical considerations in this area apply to the fol-
lowing main challenges:

1 Is the change (frequency or abundance) of a cer-
tain molecule observed in a proteomics study of dis-
ease, the result of the disease, or does it merely
reflect an artefact due to technical variability in the
pre-analytical steps or in the analysis, biological
variability, or bias introduced in the study (e.g. due
to lifestyle, age, and gender)?
2 How should we estimate the number of samples
required for the definition of likely valid biomarkers?
3 Which algorithms can be employed to combine
biomarkers into a multi-marker classifier, and how
can the validity of a multi-marker classifier be
assessed? Is validation in an independent test set
necessary?* Correspondence: h.mischak@clinmed.gla.ac.uk
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In an effort to investigate these issues and propose
answers to these questions, we have employed different
analysis and statistical strategies towards biomarker defi-
nition and validation using a set of data obtained from
real samples. While technical differences do exist
between proteomics and peptidomics, these approaches
investigate a highly similar chemical entity, and the pro-
blems and challenges associated with the identification
of potential proteomic and peptidomics biomarkers (fea-
tures significantly associated with the studied physiologi-
cal or pathophysiological condition) are essentially
identical. Therefore, we feel it is appropriate not to dis-
tinguish between peptidomics and proteomics through-
out this manuscript. Several platforms for proteomics or
peptidomics are currently being used in biomarker dis-
covery studies (reviewed in e.g. [9].
We have chosen data from CE-MS as one representa-

tive example, due to the following reasons: a) CE-MS is
being used in clinical trials and data from CE-MS are
applied in clinical decision-making, b) sufficient datasets
of CE-MS were available to us, and c) the analytical per-
formance characteristics of the CE-MS platform are well
documented [10,11]
In order to permit a rigorous and realistic assessment

of the methodology, the study must (i) represent a real
proteomic dataset that is acquired using the same tech-
nologies and experimental design as for a biomarker
study; (ii) be a classification problem with “typical” com-
plexity, but simple enough to be tractable by standard
methods; and (iii) permit the deployment of commonly
used statistical analysis strategies in order to benchmark
them against an unequivocal outcome. Based on these
considerations we choose as an example the definition
of proteomic differences between apparently healthy
adult males and females. This avoids any bias due to a
non-verifiable physiological condition in the subjects,
since gender can be assessed with close to 100% confi-
dence [12]. This design avoids an important problem in
biomarker discovery pipelines: the so called verification
bias. This bias occurs if subjects are not equally likely to
have the diagnosis verified by a gold-standard test and if
selection for further evaluation is dependent on the
diagnostic test result. Of course, in general the clinical
situation will not allow for such a sharp definition as in
the male-female case, but standard methods exist for
accounting for the verification bias if the clinical readout
cannot be assigned with 100% confidence [13-15]. We
also used a cohort of subjects with diabetes type II
either with normal kidney function (controls, CD) or
diabetic nephropathy (cases, DN) to demonstrate the
applicability of the methods to a case where the clinical
readout may not be verified with 100% confidence. The
difference in the male-female study turned out to be
more subtle than in the CD versus DN case, as the

differences between the proteomic profiles between
males and females are less pronounced than in the CD-
DN case.
As body fluid to be analysed we have chosen urine.

The urinary proteome/peptidome is of high stability,
reducing pre-analytical variability [16]. CE-MS was cho-
sen as technology as it allows for the routine analysis of
a large number of samples, and has been thoroughly
validated as a platform technology for proteomic bio-
marker studies [17]. As result of the current study we
demonstrate the importance of a strict and correct use
of statistics, especially adjustment for multiple testing.
We further describe algorithms that enable prediction of
the number of samples required for the definition of
biomarkers with high confidence. The results presented
here also show that different machine learning algo-
rithms perform similarly (and very well) in establishing
discriminatory multi-marker models. However, it is
equally evident that these only lead to meaningful
results if the number of data points employed is suffi-
cient to learn the difference between the groups, and
that the performance of such models can only be
assessed on an independent test set. Although our
results have been obtained with a particular proteomic
technology, CE-MS, the principal conceptual considera-
tions, and hence also the conclusions, are independent
of the technology used. Therefore, the results reported
here should also be applicable to other datasets gener-
ated using alternative standard proteomics technologies
such as LC-MS or MALDI. Unfortunately, to the best of
our knowledge, there is currently no similar dataset
publicly available for MALDI or for LC-MS. Hence, we
cannot report on the application of the proposed meth-
ods for either platform.

Results and Discussion
Biomarker selection
The design of the study is depicted in Figure 1. To
detect possible biomarkers, we employed samples from
67 males and 67 females, aged 21-40, as the training set.
All relevant data on all samples used in the study are
available in the Additional file 1 and Additional file 2.
We accepted only peptides that were present in at least
30% of the male or female samples, as a feature with a
smaller frequency in both groups may hardly be seen as
significantly associated with gender in this study. This
threshold resulted in a total of 1216 peptides for further
consideration. The appropriateness of a statistical test is
primarily determined by the data distribution. Usually,
after low-level data processing the resulting data exhibit
a mixture distribution characterized by a proportion of
observations in a point-mass at zero representing the sam-
ples where a peptide is not detected, and a continuous
component (see Figure 2). The origin of the point-mass

Dakna et al. BMC Bioinformatics 2010, 11:594
http://www.biomedcentral.com/1471-2105/11/594

Page 2 of 16



at zero may either be biological, as the protein is really
absent in these samples, or technical, as the protein is pre-
sent but its signal is below the limit of detection (LOD)
[18]. The only known fact about the point mass at zero is
that those values are between zero and the LOD. In statis-
tical terminology, the proteomics data are left censored.
Therefore, usage of standard statistical methods which
focus on one part of this mixture at a time can fail to
detect differences between classes. The data employed
here contains 1169 consonant differences (the group with
the higher proportion of zeros has the smaller mean in the
continuous component), 38 dissonant differences (the
group with the higher proportion of zeros has a larger
mean in the continuous component) and 9 without point-
mass component. The higher number of consonant mar-
kers reflects the fact that markers showing a higher mean
are better detectable than those with a mean near to the
LOD. A difference in means between the two groups may

have its origin in a difference in the proportion of zeros, a
difference in the mean of the continuous component, or
both. The standard parametric t-test may be inappropriate
for such data as the underlying assumptions of the test are
strongly violated. Non-parametric tests like the Wilcoxon
rank sum test (WT) may be more appropriate [19], but
may still fail to distinguish the contributions of the two
mixture components to the male and female profiles [20].
This suggests the usage of hypothesis tests specifically
developed for point-mass mixture data, like the two-part
t-test, two-part WT and empirical likelihood ratio test,
which tests the null hypothesis of no difference in the
point-mass proportions and no difference in the means of
the continuous components [20]. As expected, owing to
differences in statistical power, the number of biomarkers
declared statistically significant strongly varies with the
type of test adopted (Table 1). When subsequently validat-
ing in the hold-out set, the majority of the initially defined

CE-MS analysis

Healty male
21-40 years

Healty female
21-40 years7 7

20 20

33 33

67 67

Evaluation of 
individual biomarkers

Evaluation of 
biomarker models

Figure 1 Study design. Usage of samples and flow of information. 67 samples from males and females were each employed in a training set
for the definition of biomarkers, and establishment of classifiers. Subpopulations of 7, 20, and 33 samples were employed, where indicated. The
results (potential biomarkers, classifiers) were evaluated on an independent set of blinded data that also consisted of 67 male and 67 female
samples, to enable the best possible assessment.
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potential biomarkers could not be confirmed. This result
is likely due to the inherent multiplicity of the problem,
strongly supporting the requirement for adjustment for
multiple testing [21-23]. These results are even more pro-
nounced when a smaller cohort is employed, resulting in ≤
10% of the potential biomarkers being confirmed in the
test set (data not shown). To control the false discovery
rate (FDR) as correction to multiple testing, the Benja-
mini-Hochberg (BH) procedure was used [24]. In Table 1
we report the number of potential markers with adjusted

p-values less than 0.05. After adjustment for multiple test-
ing, the WT reports the largest number of significant mar-
kers (Table 1). Moreover, 78% of the 112 markers declared
significant by the two-part WT are also significant when
using the standard WT, indicating that using just standard
WT, which is part of standard statistical software (e.g.,
SAS or SPSS), should enable definition of reliable biomar-
kers. The fact that many of the values in the profiles are
tied to zero only makes the WT conservative and the p-
values more trustable [25]; as in a pilot study, a false
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Figure 2 Typical male and female peptide profiles. Distribution of a peptide included in the male-female comparative study. The frequency
of the peptide ID:4356 is plotted against the natural logarithm of the measured intensity. Both profiles show a point mass at zero and a
continuous component. The zero component arises because the peptide is either absent or its concentration is below the detection limit.
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negative is less harmful than a false positive. To test the
stability of the significant markers chosen by the different
tests, we investigated which of the differentially expressed
markers established will still be a valid marker when tested
alone on an independent test set (2 × 67 samples). As seen
from Table 1 the standard WT has the most markers
holding up in the independent test set. Furthermore, the
concordance between the biomarkers found in the training
set and in the test set is only slightly lower than that for
the two-part WT. The results given above argue in favour
of using the standard WT for any similar proteomics data.
Previous reports have already stressed that non-parametric
statistical tests such as the WT may be more appropriate
for proteomics data. However, the use of the standard t-
test is still frequently used and reported in the literature
[26-28]. We subsequently investigated the number of
potential biomarkers that can be defined when employing
only a subset of the original samples. Statistically, if a real
difference exists, it may always be detected when the sam-
ple size is ad-equate. Hence, studies on small cohorts may
over-look important markers. With appropriate sample
size all the differentially expressed markers should be
detected. Of course, not every difference found with larger
sample sizes will be of clinical relevance, hence the need
for the incorporation of biological back-ground informa-
tion. Interestingly, even a subset of the markers found
using moderate sample size may still be enough for build-
ing a good classifier. As expected, the number of signifi-
cant markers increases with increasing sample size (see
Figure 3). Our simulations, where populations of sizes up
to 2 × 480 were generated using resampling with replace-
ment from the 2 × 67 samples, showed that this behaviour
stops at sample sizes around 2 × 400 where a plateau is
reached (Figure 3 on top left). The concordance of these

potential biomarkers in the test set also increases with the
sample size. With sample sizes less than 13, no differen-
tially expressed markers are detected at all.

Resampling as means to define “better biomarkers”
Variable selection may be seen as the first part in find-
ing a good classifier and must be performed based on
training data only. Usually, variable selection is per-
formed only once using all the available training data.
This may, however, introduce a substantial bias in
declaring a biomarker differentially expressed. This fact
is due to the biological variability in the compared
populations (here male and female). Cross-validation
and Monte Carlo cross-validation (random splitting into
learning and test sets) may be adopted to protect the
analysis against such a bias. However, as the number of
biomarkers may be quite high, these procedures are
computationally challenging. Holding out 30% randomly
from the 134 male and female training samples and
examining the distribution of these biomarkers in the
134 independent test samples, we can detect a clear
advantage of the biomarkers that were found with
higher frequency in the resamples. From Table 2 we see,
provided enough resamplings are done (i.e., N ≥30), that
if a biomarker is found significant in more than 75% of
the independent resamples then the chance that it could
be confirmed in the test set was between 70 and 100%.
However, this procedure also results in a further reduc-
tion of the available biomarkers, and appears to be only
useful when a rather large number of potential biomar-
kers should be reduced. In depth analysis of the data
indicated that for building classifiers (see also below), a
reduction via resampling of the number of biomarkers
may not be necessary (data not shown). However, the

Table 1 The number of significant markers depends on the statistical test used

p-values Test No point-mass Dissonant Consonant Total Validated % Validated

unadjusted t-test 3 0 245 248 63 25%

Wilcoxon 4 5 314 323 109 33%

Two-part-t 3 8 229 240 68 28%

Two-part-W 4 11 286 301 104 34%

Empirical LRT 4 7 271 282 81 28%

BH-adjusted t-test 0 0 57 57 27 47.3%

Wilcoxon 3 1 137 141 58 41.1%

Two-part-t 0 3 66 69 30 43.4%

Two-part-W 3 6 103 112 55 49.1%

Empirical LRT 2 5 109 116 43 37.0%

The number of potential significant biomarkers when comparing the 67 cases and controls in the training set, based on unadjusted p-values (< 0.05) is shown for
the t-test, WT, Two-part t-test, Two-part WT and empirical likelihood ratio test. In addition, the number of consonant, dissonant and no point-mass features
among these is listed. All markers defined in the training set were investigated, aiming at validation, in an independent 2 × 67 test set. As is evident, the vast
majority of potential biomarkers could not be validated. Lower panel: The number of potential significant biomarkers (p-values < 0.05) after BH adjustments for
the t-test, WT, Two-part t-test, Two-part WT and empirical likelihood ratio test, and their performance in the independent test set are shown. While the
expectation, that 95% of the potential biomarkers remain significant in the test set, could not be met, the percentage of biomarkers that could be validated is
almost 2-fold in comparison to the unadjusted testing.
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implementation of such resampling is clearly advanta-
geous for e.g. describing any association with
(patho) physiology, as this procedure allows for identify-
ing those biomarkers that show the highest likelihood of
actually being associated with the investigated (patho)
physiology.
Estimation of the sample sizes
An important question in the design of clinical proteomics
studies is the selection of an appropriate sample size [29].
The number of units to be included in the study should
typically address two issues. First, the differential sample

size Ndiff should allow the identification of putative
biomarkers that are differentially expressed between two
conditions (e.g. disease versus control). Second, the discri-
minative sample size Ndisc of the training data should
allow the learning of a confident rule for classifying
blinded items.

Estimation of the differential sample size
Here the question is: what is the minimum sample size
required to attain a desired statistical power for detect-
ing a meaningful difference between samples? This can

0
50

10
0

15
0

sample size

nu
m

be
r o

f B
H
−s

ig
ni

fic
an

t m
ar

ke
rs

0 5 10 15 20 25 30 35 40 45 50 55 60

qqqq

q
q
q

q

q
q

q

qq

q

q

q

q
q

q

q

q
q

q

q
q

q
q
q

q

q

q

q

q
q

q
q

q
q

qqq
q

q
q

q

q

q
q

qq

qq
q

q

q

qq

q

q
q
q
qq

qqqq
q
qqqq

qqq

q
q
qqq

qqqqqqqqqqqqq
qqqq

100 200 300 400 500

0
20

0
40

0
60

0

sample size

nu
mb

er
 of

 B
H−

sig
nif

ica
nt 

ma
rke

rs

Figure 3 Number of significant markers depends on sample size. From the 2 × 67 training data, data sets of sizes Ndiff ranging from 7 to 67
were built via resampling. At each sample size the number of significant biomarkers (defined as having a p-value after BH adjustments < 0.05) is
shown on the vertical axis. The procedure was repeated 10 times to generate the Box-Whisker plots. In all 10 experiments, no biomarkers could
be declared significantly differentially expressed below a sample size of 13. On the top left, populations of sizes up to 480 were generated using
resampling with replacement, based on the 2 × 67 samples. The figure shows that with sample sizes around 2 × 400 a plateau is reached.
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be answered by estimation of the differential sample size
Ndiff. This sample size depends on the false positive rate
a, typically set at 0.05, the statistical power 1-b (e.g. 0.9)
and the standardized effect size (e.g. Cohen’s δ ) for
quantifying how the classes differ. Indeed, the effect size
and its variation turn out to be the most important fac-
tors influencing Ndiff estimation. Both, effect size and its
variation, are traditionally estimated from previously
reported experimental data. Unfortunately, in proteo-
mics typically no previous data are available and antici-
pation of the expected as in [30,31] may hardly be
justified. We therefore investigated a resampling-based
approach by directly sampling from the pilot data at
hand. To simulate a typical proteomics study, we ran-
domly choose 7 samples of each gender from the total
training set of 67 males and 67 females. From the 2 × 7
data, we used the bootstrap [32] to generate 2000 sam-
ple sets of different larger sizes (2 × 10 to 2 × 120)
without any assumption about the underlying distribu-
tion of the sampled population. To take into account
the multivariate aspect of the problem, we ask for the
sample size required for declaring all the markers signif-
icant while controlling the FDR at 0.05 using the BH
procedure. This is equivalent to conducting the single
tests at a more stringent “average type one error” aave.
Using the result [24]

 

ave ave= − + −

−
⎡

⎣
⎢

⎤

⎦
⎥

−

( ) ( ) ,1 1 1
1

0

0

1

q q

where (1 - b)ave is the average power for a single mar-
ker (set e.g. to 0.9), q is the expected value of the false
discovery rate, i.e. q = E(FDR), and π0 is the proportion
of markers that are differentially non expressed (true
null). To estimate π0 we use the method described in
[33] and fit the observed distribution of the Wilcoxon
p-values to the following two component model

f p f p f pA( ) ( ) ( ) ( ),= + − 0 0 01

with f0(p) being the density of the null features (that is
the differentially non expressed markers) is given by the
uniform distribution U(0, 1), whereas fA(p) is the alter-
native density for the differentially expressed markers.
Hence we may write

f p f pA( ) ( ) ( ).= + − 0 01

This resulted in a estimate π0 = 0.5652831 which
plugged into Equation 1 leads to aave = 0.00223.
To estimate Ndiff we set the value of aave = 0.00223 to

control the FDR at 0.05 and examined for biomarkers
that can be declared significantly differentially distribu-
ted. WT was applied to each data set generated. Let 
be the number of times the null hypothesis is rejected.
Discarding 5% of  (the false positives) is essentially a
power estimate. By examining the graphs as in Figure 4
the sample size required for any predefined power can be
deduced. Obviously, the more precise the information
about the effect size δ, the better the trial can be
designed. If the sample size is “sufficiently large”, then
the central limit theorem guarantees that δ will be
approximately normally distributed. The bootstrap pro-
vides a powerful tool to estimate the required differential
sample size by directly sampling from the available data
and has been shown to give an unbiased estimate of
power [34]. However, the key issue here is that the avail-
able data be reliable and representative. In the absence of
a reliable data set, bootstrapping is not appropriate [35].
In the above considerations, we opted for simplicity

for the standard definition of the sample size as the
minimum number of samples necessary to achieve a
specified power. Alternatively, the “confidence probabil-
ity formulation” [36] may also be used as it relies on the
permutation of pilot study data of small sample sizes.

Table 2 The concordance of the markers

All data 30% data hold out

# resamples N = 0 N = 2 N = 10 N = 20 N = 30 N = 40 N = 50 N = 100

f(100%) 141 44 16 12 7 8 7 6

f(80%) 141 44 32 27 22 16 20 21

f(50%) 141 125 53 57 49 45 46 47

Concordance in test set

58 (41%) 19 (43%) 11 (68%) 10 (83%) 7 (100%) 7 (87%) 6 (85%) 6 (100%)

58 (41%) 19 (43%) 21 (65%) 18 (66%) 16 (72%) 13 (81%) 15 (75%) 16 (76%)

58 (41%) 43 (34%) 26 (49%) 30 (52%) 26 (53%) 26 (57%) 25 (54%) 25 (53%)

Concordance of markers detected during resampling with those found significant in the test set: A total of 100 resamples are drawn. For each of the resamples,
30% of the 2 × 67 training samples were held out. The number of significant markers with a p-value less than 0.05 after BH adjusted WT test for 50%, 80% and
100% of the resamples is shown. Their concordance in an independent test set of 2 × 67 is also reported in the lower panel. For more than 40 resamples the
concordance of the biomarkers remains almost unchanged.
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Estimation of the discriminative sample size
To estimate the effect of training sample size on a clas-
sifiers performance we employed learning curves [37].
We used the inverse power-law model

E Y N( , , , ,)train train= + × ≥−Γ Γ   0

where E(Ytrain) is the expected value of a performance
metric, e.g. the misclassification error rate MER (MER =
1-ACC, with ACC being the overall model accuracy) or
the area above the curve AAC (AAC = 1-AUC), given
training sample size Ntrain. Γ is the minimum

classification error that can be expected as Ntrain ® ∞,
the so called Bayes error which provides the lowest
achievable error rate for a given pattern classification
problem (Γ =Γ(∞)), g is referred to as the learning rate,
and b the scale. Using SVM classification, the learning
curves for AAC and MER are given in Figure 5. SVM was
chosen since this approach has been found to give the
best or the near best performance for many microarray
data sets [38]. For the actual male and female data, the fit
resulted in the equations: AAC train= + × −0 03 1 39 0 716. . .N
and MER train= + × −0 02 1 052 0 597. . .N . From these equa-
tions the required sample size can easily be deduced.
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Figure 4 The resulting power for two markers showing significance after BH adjustments. The power is calculated as the percentage of
times the null hypothesis is rejected. To reach 90% power, Ndiff = 30 samples per group is required for ID:138036 (top), whereas for ID:19655
(bottom) Ndiff = 15 may be enough. From the original 134 samples, 30 cohorts of 2 × 7 subjects each were randomly built. From each cohort,
2000 resamples of increasing sample size (10-120) were generated via bootstrap with replacement. Circles indicate outliers.
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E.g. for reaching AAC or MER of 10%, Ndisc = 65 and Ndisc

= 75, respectively. Hence, MER seems to overestimate the
sample size Ndisc, as this quantity holds only for a given
threshold whereas the AAC gives a global measure for all
thresholds. It is important to note that different classifiers
will result in different estimates for the AAC and MER
and hence another estimate of Ndisc will be obtained.
In practice it is impossible to reach Γ and only upper

bound estimates to it can be reached. The aim is to find
the discriminative sample size Ndisc, that guarantees
that Γ (Ndisc) of the classifier is within some threshold

(e.g � = 5%) from the optimal Bayes classifier obtained
for infinite Ndisc [39] (that is, Γ(∞) - Γ(Ndisc) ≤ �). Ndisc

may then be obtained by resolving the equation Γ(∞) -
Γ(Ndisc) = �. Interestingly, here again the effect size δ
turns out to be the parameter that determines Ndisc. In
the classification context, the effect size measures the
distance between the classes. If the pilot study shows a
small effect size then it is unlikely that a good discrimi-
nator will be easily obtained. The required Ndisc that
maximizes the Γ(Ndisc) implicitly depends on the false
positive rate a [39,40]. Consequently, using those
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Figure 5 Learning curve estimation of Ndisc. Cohorts with sample sizes ranging from 2 × 7 - 2 × 65 (given on the x-axis) were arbitrarily
generated out of the entire 2 × 67 dataset. 20 repetitions were performed for each size cohort. An SVM-based classifier was built for each
dataset and its performance was tested on the independent test set. In the left panel the area above the curve AAC (AAC = 1-AUC) for each
classifier is shown. The misclassification error rate MER is shown on the right. The red curves represent the mean AAC and mean MER. The
inverse power law behaviour is obvious.
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markers that control the FDR should generally produce
a good classifier [39,40]. For the 67 male and 67 female
profiles, controlling the FDR at 0.05 we are able to
define 78 significant peptide markers requiring an Ndiff

< 67. With their calculated effect sizes we found that
Ndisc = 48 is required to obtain a classifier with 10%
performance short of the optimal Bayes classifier. The
analytical method described in [39,40] relies on strong
distributional assumptions and seems to be less conser-
vative than the learning curve estimation of Ndisc.

Classification
Once a classification rule has been built, its performance
must be evaluated. Frequently, complete leave-one-out
cross validation (or similar approaches that all are a
reflection of the classifier onto the training set) is
employed for error estimation. We have investigated if
such an approach is indeed appropriate. An SVM-based
classifier was built, based on randomly selected 2 × 7, 2
× 20, 2 × 33 datasets, and the entire 2 × 67 cases and
controls. As shown in Figure 6 assessment of the
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Figure 6 Classification results of an SVM-based classifier. Male and female datasets of size 7, 20, 33, and 67 each were compared. Features
(selected based on a p-value < 0.05 in the unadjusted WT) were combined into respective biomarker models (M7, M20, M33, and M67). Their
performance was initially assessed by complete leave-one-out cross validation leading to an accuracy of 100%, 95%, 84% and 94%, respectively,
erroneously indicating optimal performance of the M7 model. The ROC analysis shows the results when these models are tested on an
independent set of 134 samples. As is evident and expected, best performance can be observed when employing the M67 model, while the M7
model barely exceeds the results obtained by mere guessing (The area under the curve AUC for the models M7, M20, M33 and M67 is 0.715,
0.786, 0.900 and 0.937, respectively).
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performance based on the complete leave-one-out cross
validation (LOOCV) resulted in apparently excellent
performance, with the classifier based on 7 cases and
controls only appearing to be 100% correct. However,
when the classifiers are then tested in the blinded data-
set, the results of the classifiers that were built only on
a small set of samples could not be verified. As
expected, best performance was observed for the classi-
fier based on all available data, where the results from
the cross validation and the assessment in the indepen-
dent dataset are quite similar. These data indicate that
results based on the training set only remain question-
able, evaluation in an independent set is indeed essential
and the ultimate test any procedure must pass. This
conclusion supports the findings of [41,42] where the
LOOCV error estimate was found to be biased for small
samples sizes. For large sample sizes the LOOCV error
estimates may be seen as reliable. Therefore we
employed the independent test set consisting of 67 male
and 67 female samples for evaluation of the perfor-
mance of all classifiers. The classification results are
reported in Table 3. The results suggest that the perfor-
mance of many machine learning algorithms is quite
similar and outperforms a simple tree model. Table 3
also suggests that the use of a generalized linear model
(GLM) may not be suitable for similar data. GLM, and
the tree model seem to be the more sensitive to the
variability and the censored structure of the data.

Applications to the CD-DN case study
To further test the applicability of the reported methods
we investigated the difference between CD and DN
patients using a data set of 120 CD and 120 DN subjects
randomly split into 2 60 training and 2 × 60 test data-
sets (data available as Additional file 3 and Additional
file 4). The differences in this dataset are much more
pronounced than the male-female case (Additional file
5). Using the 2 × 60 training data and 10 different ran-
dom splits we found that on average 447 peptides may
be declared differentially expressed using the adjusted
WT. 65% of those markers could be validated in the test
data (Additional file 6). The fact that using a pilot study
of larger size results in more markers being declared

significant clearly applies here too, as readily seen from
the figure in the Additional file 7. The learning curve of
this dataset also shows clearly the inverse power law
behaviour (Figure in Additional file 8) and suggests that
for the CD-DN case fewer subjects than in the male-
female comparison may be required to obtain a classifi-
cation of comparable performance.

Conclusions
In this report we have examined what requirements
have to be met in order to identify significant proteomic
biomarkers and establish classifiers that have a high
probability of being valid and can be generalized. To
avoid misinterpretation: we did not aim at actually iden-
tifying biomarkers that we claim to be gender-asso-
ciated. The aim of this study was purely to analyse and
delineate approaches which ensure a robust study
design. In addition, we realize that a study aiming at the
identification of biomarkers for classifiers is associated
with further challenges, like the above mentioned verifi-
cation bias. However, some of the main challenges in
biomarker discovery may best be investigated using a
well defined experimental system, as the one chosen
here. In regard to the first major challenge: how to
improve the detection of biomarkers clearly associated
to disease, we show that the WT test seems to be best
suited for this challenge. However, it also is evident that
statistical analysis must be adjusted for multiple testing
[43], and we demonstrate the deleterious effects of the
avoidance of multiple testing. This effect is even more
pronounced when only a small number of samples is
being used for the analysis. The un-adjusted p-values
obtained from a small sample set are essentially mean-
ingless, and are not at all connected with the probability
of a certain molecule to be a true biomarker in the test
set. In fact, the commonly made silent assumption that
among the apparently significant biomarkers (based on
unadjusted testing), true significant biomarkers can be
found with higher probability than in the apparently
non-significant group, could not be verified (data not
shown). In our dataset the actual significant features
were evenly distributed in these two artificial groups
(unadjusted p-values below and above 0.05), which are
only generated due to inappropriate statistics, hence
they should be considered to be artefacts. This again
underlines the notion that unadjusted p-values should
not be reported in the absence of other evidence. The
lack of statistical power, as well as the unadjusted
p-values that erroneously are often considered significant,
are mostly a consequence of an incorrect estimation of
the true distribution. Due to the relatively high variability
observed (in the datasets employed here mostly due to
biological variability), the true mean cannot be correctly
assessed based on a small set of samples. The incorrect

Table 3 Test errors for different classifiers

Ntrain SVM Hierarchical
Bayes

AdaBoost Random
Forest

Tree GLM

7 44.7% 32.8% 43.2% 40.2% 48.1% 41.1%

20 40.2% 30.6% 40.2% 35.8% 43.2% 42.5%

33 32.0% 26.1% 23.1% 34.3% 38.1% 38.5%

67 16.4% 21.6% 14.1% 17.1% 26.0% 46.7%

The test errors for different classifiers and different sizes of the training set
(Ntrain). The results are based on a test set of 67 males and 67 females.
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distribution suggests significant differences, which in fact
are not true. Only upon investigation of a sufficiently
large number of samples can the true mean in the cases
and controls be determined. This is also evident from the
example shown in Figure 7. We also show that confi-
dence in the identified biomarkers can be further
improved by resampling of the data, thereby generating a
larger number of experiments. Biomarkers that appear
significant in each of these experiments, are likely also
significant in an independent test set, hence can be

generalized. While such a strategy clearly comes at a
cost: the number of biomarkers identified is significantly
lower, this strategy may nevertheless represent a pre-
ferred option to define likely valid biomarkers, due to the
high level of confidence that can be reached. Based on a
representative proteomic data set, we also presented
methods for answering the second important question:
how to estimate the required sample size, both for class
comparison (differential sample size) and subject classifi-
cation (discriminative sample size). Our data demonstrate
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that estimation of the differential sample size required for
achieving significance in detecting a certain number of
specific biomarkers is possible based on resampling from
a relatively small dataset. While we have successfully
employed only 7 cases and controls, it seems advisable to
slightly increase this number to 12 [44]. A similar strat-
egy may be adopted for estimating the discriminative
sample size required for achieving a predefined confi-
dence of a given classifier. Based on the data subse-
quently obtained, we used the approach of fitting
learning curves. This approach may result in an overesti-
mation of the required discriminative sample size. This is
in fact beneficial, as it will generally avoid the initiation
of an underpowered study. Our data also indicate that
testing of biomarkers (e.g. by assessing the p-value) or
biomarker models (e.g. by cross validation) in the training
set will likely result in an overestimation of their quality.
As a consequence, it appears that the quality of biomar-
kers or combinations thereof can only be addressed with
confidence in an independent test set. Even when analys-
ing a significant number of samples, statistics appears to
overestimate the value of the potential biomarkers. Statis-
tics is based on the assumption of an even distribution of
the features across the training and test sets, that the
findings can be generalized, and on the association with
(in our example) gender only. This is apparently not even
the case when using the data from 134 cases and con-
trols. The expected result, that 95% of the significant bio-
markers should stay significant in the test set, could not
be observed. This may indicate that additional variables
influence the outcome, and result in an overestimation of
the statistical value. Especially when sample sizes are
small, even statistically valid results must be interpreted
with caution. In such situations, findings should be
viewed as tentative and exploratory rather than conclu-
sive. Our results further reveal that different machine
learning algorithms perform similarly well, and seem to
outperform linear classifiers. How-ever, we could also
clearly demonstrate that the assessment of the perfor-
mance of such a classifier can only be performed on an
independent test set, the results obtained from the train-
ing set (even when performing leave-one-out cross vali-
dation) may be misleading. Based on the data presented
here, it appears advisable to begin a study aiming at iden-
tification of biomarkers or classifiers by performing an
analysis of 12 cases and controls, estimate sample size
required for certain performance (e.g. accuracy of classifi-
cation, level of confidence for biomarkers) based on re-
sampling, and then perform the actual study with a suffi-
ciently large set of samples. Potential biomarkers must
pass WT, adjusted for multiple testing, preferably consis-
tently when employing a set of > 30 resamples that each
contain e.g. 70% of the available data. Classifiers are best
established employing any of the available machine

learning algorithms. The validity of both, biomarkers and
classifiers, is generally overestimated in the training set,
hence can only be addressed with confidence in an inde-
pendent test set. The methods proposed here are inde-
pendent on which clinical readout is considered. This
fact has been shown by applying them to a dataset com-
posed from diabetes type II either with normal kidney
function or diabetic nephropathy. This last case study
shows that the male-female case is reasonably representa-
tive of situations where the search for biomarkers and the
classification tasks are rather involved.

Methods
Patients, Procedures and Demographics
Second morning urine samples were collected from
apparently healthy volunteers in the course of the medi-
cal examination prior to employment at the Hannover
Medical School. Consent was given by all participants.
Samples were collected in 10 ml Sarstedt urine monov-
ettes and frozen immediately after collection without
the addition of any preservatives. All samples were col-
lected anonymously, only age and gender were recorded.
All samples were collected in Germany, and under
German law this study does not require IRB approval.

Sample preparation and CE-MS analysis
Urine samples were stored at 20°C for up to 3 years until
analysis. For proteomic analysis, a 0.7 mL aliquot of urine
was thawed immediately before use and diluted with 0.7
ml of 2 M urea, 10 mM NH4OH containing 0.02% SDS.
To remove higher molecular mass proteins, samples were
filtered using Centris-art ultracentrifugation filter devices
(20 kDa molecular weight cut-off; Sartorius, Goettingen,
Germany) at 3,000 rcf until 1.1 ml of filtrate was obtained.
This filtrate was applied onto a PD-10 desalting column
(Amersham Bioscience, Uppsala, Sweden) equilibrated in
0.01% NH4OH in HPLC-grade H2O (Roth, Germany) to
remove urea, electrolytes, and salts. Finally, all samples
were lyophilized, stored at 4°C, and suspended in HPLC-
grade H2O shortly before CE-MS analysis, as described in
[45]. CE-MS analysis was performed as described [45,46]
using a P/ACE MDQ capillary electrophoresis system
(Beckman Coulter, Fullerton, USA) on-line coupled to a
Micro-TOF MS (Bruker Daltonic, Bremen, Germany).
Data acquisition and MS acquisition methods were auto-
matically controlled by the CE via contact-close-relays.
The ESI spectra were accumulated every 3 s, over a range
of m/z 350 to 3000 Th. Accumulation time has been cho-
sen to be 3 s, since at peak width of ca. 15 sec at half peak
height, essentially no resolution is lost when accumulating
signal for 3 s. Faster sampling would result in any addi-
tional gain, but in loss in sensitivity, and also increase in
the size of the data file. Accuracy, precision, selectivity,
sensitivity, reproducibility, and stability are described in
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detail elsewhere [10,17,45]. In short, the detection limit is
in the range of 1 fmol, depending on the ionization prop-
erties of the individual peptide. This corresponds to 100 -
1000 fmol/ml in a crude urine sample (before processing).

Data processing
Mass spectral ion peaks representing identical molecules
at different charge states were deconvoluted into single
masses using MosaiquesVisu software [47]. Migration
time and ion signal intensity (amplitude) were normal-
ized based on 29 collagen fragments that serve as inter-
nal standards [17]. These internal polypeptide standards
are the result of normal biological processes and have
proven to be unaffected by any disease state studied to
date (greater than 10,000 samples analysed to date) [48].
The resulting peak list characterizes each peptide by its
molecular mass [Da], normalized migration time [min],
and normalized signal intensity. All detected peptides
were deposited, matched, and annotated in a Microsoft
SQL database, allowing further analysis and comparison
of multiple samples (patient groups). To establish the
identity of peptides observed in different samples, a lin-
ear function was employed that allowed, depending on
the mass of the polypeptide, a 50 ppm absolute mass
deviation for peptides of 800 Da that increased linearly
to 100 ppm absolute mass deviation for peptides with a
maximum mass of 20 kDa. These values have been
found appropriate in several recent studies [11,49,50], as
a compromise between avoiding erroneous assignment
of the same identity to two different peptides, and
assigning two different identities to the same peptide in
different analyses, due to mass deviation, especially at
low abundance. A similar linear function was used when
comparing CE migration times, allowing a 4% absolute
deviation. CE-MS data of all individual samples can be
accessed in Additional files 1, 2.

Statistical methods, definition of biomarkers and sample
classification
All the statistical analyses were implemented with inter-
nal scripts, using the R core software [51] as well as the
contributed cran-packages ada, Kernlab, Ran-domForest,
rpart, WilcoxCv, multtest, and ROCR available at http://
cran.us.r-project.org.

Additional material

Additional file 1: Training set data file for the male-female study.
The pivot table CE-MS-male-female-train.xls contains the amplitudes of
each peptide in the 67 males (labelled as M...) and 67 females (labelled
as F...) used for defining the biomarkers and training the classifiers for
different Ntrain. The pivot tables also contain a worksheet named
“Peptides assignment” that shows the mass (Mass, in Da) and migration
time (CE-Time, in min) of peptides assigned to a certain Pep:ID, which is
subsequently utilized as the unique identifier in the database.

Additional file 2: Test set data file for the male-female study. The
table CE-MS-male-female-test.xls contains the amplitudes in the 67 males
and 67 females used for testing the concordance of the biomarkers and
estimating the errors of different classifiers. The pivot tables also contain
a worksheet named “Peptides assignment” that shows the mass (Mass, in
Da) and migration time (CE-Time, in min) of peptides assigned to a
certain Pep:ID, which is subsequently utilized as the unique identifier in
the database.

Additional file 3: Training set data file for the CD-DN study. The
pivot table CE-MS-DN-CN-train.xls contains the amplitudes of each
peptide in the 60 DN (labelled as DN...) and 60 CD (labelled as CN...)
used for defining the biomarkers and training the classifiers for different
Ntrain.

Additional file 4: Test set data file for the CD-DN study. The table
CE-MS-DN-CN-test.xls contains the amplitudes in the 60 DN and 60 CD
used for testing the concordance of the biomarkers and estimating the
errors of different classifiers.

Additional file 5: Typical effect size of a differentially expressed
marker in CD versus DN case. The distribution of two peptides,
ID:67632 (upper panel) and ID:48751 (lower panel), was investigated in
the complete training set (2 × 60) and 1000 re-sampled distributions.
Typical effect size δ = (μCD - μDN)/s (with μCD and μDN being the mean
logarithmic intensity for a given peptide in the CD and DN populations,
and s the pooled standard deviation) is shown. Effect sizes as extreme
as -4 and +8 are observed.

Additional file 6: Concordance in the biomarkers using CD-DN data
set. The concordance of the markers defined using 60-CD and 60-DN
subjects as training set in an independent test set of 60-CD and 60-DN is
reported using 10 random splits of the total (2 × 120) data. On average,
447 markers are reported as being significant and 65% of them may be
validated on average in the test data.

Additional file 7: Number of significant markers depends on sample
size. From the 2 × 60 training data, data sets of sizes Ndiff ranging from
7 to 60 were built via resampling. At each sample size the number of
significant biomarkers (defined as having a p-value after BH adjustments
< 0.05) is shown on the vertical axis. The procedure was repeated 10
times to generate the Box-Whisker plots. In all 10 experiments, no
biomarkers could be declared significantly differentially expressed below
a sample size of 7.

Additional file 8: Learning curve estimation of Ndisc. Cohorts with
sample sizes ranging from 2 × 7 - 2 × 58 (given on the x-axis) were
arbitrarily generated out of the entire 2 × 60 CD-DN training dataset. 20
repetitions were performed for each size cohort. An SVM-based classifier
was built for each dataset and its performance was tested in the
independent test set. In the left hand panel the area above the curve
AAC (AAC = 1-AUC) for each classifier is shown. The misclassification
error rate MER is shown on the right. The red curves represent the mean
AAC and mean MER. The inverse power law behaviour is obvious.

List of abbreviationsused
1) AUC: area under the ROC curve; 2) AAC: area above the ROC curve; 3) BH:
Benjamini-Hochberg; 4) CE-MS: capillary electrophoresis coupled mass
spectrometry; 5) CD: diabetes type II with normal kidney function; 6) DN:
diabetic nephropathy; 7) ESI: electro-spray ionization; 8) FDR: false discovery
rate; 9) GLM: generalized linear model; 10) LC-MS: liquid chromatography
coupled mass spectrometry; 11) LOD: limit of detection; 12) LOOCV: leave-
one-out cross validation; 13) MALDI: matrix assisted laser desorption
ionization; 14) MER: misclassification error rate; 15) Ndiff: differential sample
size; 16) Ndisc: discriminative sample size; 17) ROC: receiver operating
characteristic; 18) SQL: structured query language; 19) SVM: support vector
machine; 20) WT: Wilcoxon rank sum test.

Acknowledgements
This work was funded in part by grants from the European Union through
InGenious HyperCare (LSHM-C7-2006-037093) and Geninca (HEALTH-F2-2008-
202230) to HM and the EuroKUP COST Action (BM0702) and AV from the

Dakna et al. BMC Bioinformatics 2010, 11:594
http://www.biomedcentral.com/1471-2105/11/594

Page 14 of 16

http://cran.us.r-project.org
http://cran.us.r-project.org
http://www.biomedcentral.com/content/supplementary/1471-2105-11-594-S1.XLS
http://www.biomedcentral.com/content/supplementary/1471-2105-11-594-S2.XLS
http://www.biomedcentral.com/content/supplementary/1471-2105-11-594-S3.XLS
http://www.biomedcentral.com/content/supplementary/1471-2105-11-594-S4.XLS
http://www.biomedcentral.com/content/supplementary/1471-2105-11-594-S5.PDF
http://www.biomedcentral.com/content/supplementary/1471-2105-11-594-S6.PDF
http://www.biomedcentral.com/content/supplementary/1471-2105-11-594-S7.EPS
http://www.biomedcentral.com/content/supplementary/1471-2105-11-594-S8.EPS


FP7 DECanBio (201333) and by the European Community’s 7th Framework
Programme, grant agreement HEALTH-F2-2009-241544 (SysKID). JPS
acknowledges financial support from the Agence Nationale pour la
Rechérche (ANR-07-PHYSIO-004-01), and support by Inserm, the “Direction
Régional Clinique” (CHU de Toulouse, France) under the Interface program.
WK is supported by the Science Foundation Ireland under Grant No. 06/CE/
B1129.

Author details
1Mosaiques diagnostics and therapeutics, Hannover, Germany. 2Water and
Environment Research Group, School of Engineering, University of Glasgow,
Glasgow, UK. 3Computer Science Department, University of Geneva, Geneva,
Switzerland. 4Laboratory of Tropical Crop Improvement, Katholieke
Universiteit, Leuven, Belgium. 5The Beatson Institute for Cancer Research and
Sir Henry Wellcome Functional Genomics Facility, University of Glasgow,
Glasgow, UK. 6Systems Biology Ireland, Conway Institute, Belfield, Dublin 4,
Ireland. 7Institut National de la Santé et de la Recherche Médicale (INSERM),
U858, Toulouse, France. 8Université Toulouse III Paul-Sabatier, Institut de
Médecine Moleculaire de Rangueil, Equipe n° 5, IFR150, Toulouse, France.
9Department of Nephrology, Hannover Medical School, Hannover, Germany.
10BHF Glasgow Cardiovascular Research Centre, University of Glasgow,
Glasgow, UK. 11Research Foundation, Academy of Athens, Athens, Greece.
12Department of Statistical Science, University College London, London, UK.

Authors’ contributions
All authors participated in the design of the study. MD and HM performed
the statistical analysis. HM performed the CE-MS analysis and initial data
evaluation. AK, KH, SC, MD, and MG developed the high dimensional
models. JPS and MH were involved in the recruitment of study participants.
All authors were involved in drafting the manuscript, have read and
approved the final manuscript.

Authors’ information
Joost P Schanstra, Antonia Vlahou and Harald Mischak are all members of
EUROKUP

Received: 3 November 2010 Accepted: 10 December 2010
Published: 10 December 2010

References
1. Rifai N, Gillette MA, Carr SA: Protein biomarker discovery and validation:

the long and uncertain path to clinical utility. Nat Biotechnol 2006,
24(8):971-83, [Rifai1, Nader Gillette, Michael A Carr, Steven A Research
Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review United
States Nature biotechnology Nat Biotechnol. 2006 Aug;24(8):971-83.].

2. Listgarten J, Emili A: Practical proteomic biomarker discovery: taking a
step back to leap forward. Drug Discov Today 2005, 10(23-24):1697-702.

3. Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM,
Mills GB, Simone C, Fishman DA, Kohn EC, Liotta LA: Use of proteomic
patterns in serum to identify ovarian cancer. Lancet 2002,
359(9306):572-7.

4. McLerran D, Grizzle WE, Feng Z, Thompson IM, Bigbee WL, Cazares LH,
Chan DW, Dahlgren J, Diaz J, Kagan J, Lin DW, Malik G, Oelschlager D,
Partin A, Randolph TW, Sokoll L, Srivastava S, Thornquist M, Troyer D,
Wright GL, Zhang Z, Zhu L, Semmes OJ: SELDI-TOF MS whole serum
proteomic profiling with IMAC surface does not reliably detect prostate
cancer. Clin Chem 2008, 54:53-60.

5. Diamandis EP: Point: Proteomic patterns in biological fluids: do they
represent the future of cancer diagnostics? Clin Chem 2003, 49(8):1272-5.

6. Ransohoff DF: Bias as a threat to the validity of cancer molecular-marker
research. Nat Rev Cancer 2005, 5(2):142-9.

7. Mischak H, Apweiler R, Banks RE, Conaway M, Coon J, Dominiczak A,
Ehrich JHH, Fliser D, Girolami M, Hermjakob H, Hochstrasser D, Jankowski J,
Julian BA, Kolch W, Massy ZA, Neusuess C, Novak J, Peter K, Rossing K,
Schanstra J, Semmes OJ, Theodorescu D, Thongboonkerd V, Weissinger EM,
Van Eyk JE, Yamamoto T: Clinical proteomics: A need to define the field
and to begin to set adequate standards. PROTEOMICS - Clinical
Applications 2007, 1(2):148-156[http://dx.doi.org/10.1002/prca.200600771].

8. Decramer S, Gonzalez de Peredo A, Breuil B, Mischak H, Monsarrat B,
Bascands JL, Schanstra JP: Urine in clinical proteomics. Mol Cell Proteomics
2008, 7(10):1850-62.

9. Fliser D, Novak J, Thongboonkerd V, Argiles A, Jankowski V, Girolami MA,
Jankowski J, Mischak H: Advances in Urinary Proteome Analysis and
Biomarker Discovery. J Am Soc Nephrol 2007, 18(4):1057-1071[http://jasn.
asnjournals.org/cgi/content/abstract/18/4/1057].

10. Haubitz M, Good DM, Woywodt A, Haller H, Rupprecht H, Theodorescu D,
Dakna M, Coon JJ, Mischak H: Identification and validation of urinary
biomarkers for differential diagnosis and evaluation of therapeutic
intervention in anti-neutrophil cytoplasmic antibody-associated
vasculitis. Mol Cell Proteomics 2009, 8(10):2296-307.

11. Good DM, Zürbig P, Argilés n, Bauer HW, Behrens G, Coon JJ, Dakna M,
Decramer S, Delles C, Dominiczak AF, Ehrich JHH, Eitner F, Fliser D, Fromm-
berger M, Ganser A, Girolami MA, Golovko I, Gwinner W, Haubitz M, Herget-
Rosenthal S, Jankowski J, Jahn H, Jerums G, Julian BA, Kellmann M, Kliem V,
Kolch W, Krolewski AS, Luppi M, Massy Z, Melter M, Neusüss C, Novak J,
Peter K, Rossing K, Rupprecht H, Schanstra JP, Schiffer E, Stolzenburg JU,
Tarnow L, Theodorescu D, Thongboonkerd V, Vanholder R, Weissinger EM,
Mischak H, Schmitt-Kopplin P: Naturally Occurring Human Urinary
Peptides for Use in Diagnosis of Chronic Kidney Disease. Molecular and
Cellular Proteomics 2010, 9(11):2424-2437[http://www.mcponline.org/
content/9/11/2424.abstract].

12. Mischak H, Allmaier G, Apweiler R, Attwood T, Baumann M, Benigni A,
Bennett SE, Bischo R, Bongcam-Rudloff E, Capasso G, Coon JJ, DHaese P,
Dominiczak AF, Dakna M, Dihazi H, Ehrich JH, Fernandez-Llama P, Fliser D,
Frokiaer J, Garin J, Girolami M, Hancock WS, Haubitz M, Hochstrasser D,
Holman RR, Ioannidis JPA, Jankowski J, Julian BA, Klein JB, Kolch W,
Luider T, Massy Z, Mattes WB, Molina F, Monsarrat B, Novak J, Peter K,
Rossing P, Sanchez-Carbayo M, Schanstra JP, Semmes OJ, Spasovski G,
Theodorescu D, Thongboonkerd V, Vanholder R, Veenstra TD,
Weissinger E, Yamamoto T, Vlahou A: Recommendations for Biomarker
Identification and Qualification in Clinical Proteomics. Science
Translational Medicine 2010, 2(46):46ps42[http://stm.sciencemag.org/
content/2/46/46ps42.abstract].

13. Alonzo TA, Kittelson JM: A novel design for estimating relative accuracy
of screening tests when complete disease verification is not feasible.
Biometrics 2006, 62(2):605-12, [Alonzo, Todd A Kittelson, John M R01
GM54438/GM/NIGMS NIH HHS/United States Comparative Study Research
Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t United States
Bio-metrics Biometrics. 2006 Jun;62(2):605-12.].

14. Buzoianu M, Kadane JB: Adjusting for verification bias in diagnostic test
evaluation: a Bayesian approach. Stat Med 2008, 27:2453-2473.

15. Page JH, Rotnitzky A: Estimation of the disease-specific diagnostic marker
distribution under verification bias. Computational Statistics and Data
Analysis 2009, 53(3):707-717[http://www.sciencedirect.com/science/article/
B6V8V-4SX9FTT-1/2/a708b210a358c83a359bd1c2ca7bef7f].

16. Mischak H, Coon JJ, Novak J, Weissinger EM, Schanstra JP, Dominiczak AF:
Capillary electrophoresis-mass spectrometry as a powerful tool in
biomarker discovery and clinical diagnosis: an update of recent
developments. Mass Spectrom Rev 2009, 28(5):703-24.

17. Jantos-Siwy J, Schiffer E, Brand K, Schumann G, Rossing K, Delles C,
Mischak H, Metzger J: Quantitative urinary proteome analysis for
biomarker evaluation in chronic kidney disease. J Proteome Res 2009,
8:268-81.

18. Wang P, Tang H, Zhang H, Whiteaker J, Paulovich AG, Mcintosh M:
Normalization regarding non-random missing values in high-throughput
mass spectrometry data. Pac Symp Biocomput 2006, 315-326.

19. Helsel R: Nondetects and data analysis: statistics for censored
environmental data. New York: Wiley-Interscience; 2005.

20. Taylor S, Pollard K: Hypothesis tests for point-mass mixture data with
application to ‘omics data with many zero values. Stat Appl Genet Mol
Biol 2009, 8:Article 8.

21. Broadhurst D, Kell D: Statistical strategies for avoiding false discoveries in
metabolomics and related experiments. Metabolomics 2006, 2(4):171-196
[http://dx.doi.org/10.1007/s11306-006-0037-z].

22. Dakna M, He Z, Yu WC, Mischak H, Kolch W: Technical, bioinformatical and
statistical aspects of liquid chromatography-mass spectrometry (LC-MS)
and capillary electrophoresis-mass spectrometry (CE-MS) based clinical
proteomics: a critical assessment. J Chromatogr B Analyt Technol Biomed
Life Sci 2009, 877:1250-1258.

23. Oberg AL, Vitek O: Statistical Design of Quantitative Mass Spectrometry-
Based Proteomic Experiments. Journal of Proteome Research 2009,
8(5):2144-2156.

Dakna et al. BMC Bioinformatics 2010, 11:594
http://www.biomedcentral.com/1471-2105/11/594

Page 15 of 16

http://www.ncbi.nlm.nih.gov/pubmed/16900146?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16900146?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16376831?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16376831?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11867112?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11867112?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18024530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18024530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18024530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12881441?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12881441?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15685197?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15685197?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21136664?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21136664?dopt=Abstract
http://dx.doi.org/10.1002/prca.200600771
http://www.ncbi.nlm.nih.gov/pubmed/18667409?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17329573?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17329573?dopt=Abstract
http://jasn.asnjournals.org/cgi/content/abstract/18/4/1057
http://jasn.asnjournals.org/cgi/content/abstract/18/4/1057
http://www.ncbi.nlm.nih.gov/pubmed/19564150?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19564150?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19564150?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19564150?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20616184?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20616184?dopt=Abstract
http://www.mcponline.org/content/9/11/2424.abstract
http://www.mcponline.org/content/9/11/2424.abstract
http://www.ncbi.nlm.nih.gov/pubmed/20739680?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20739680?dopt=Abstract
http://stm.sciencemag.org/content/2/46/46ps42.abstract
http://stm.sciencemag.org/content/2/46/46ps42.abstract
http://www.ncbi.nlm.nih.gov/pubmed/16918926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16918926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17979150?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17979150?dopt=Abstract
http://www.sciencedirect.com/science/article/B6V8V-4SX9FTT-1/2/a708b210a358c83a359bd1c2ca7bef7f
http://www.sciencedirect.com/science/article/B6V8V-4SX9FTT-1/2/a708b210a358c83a359bd1c2ca7bef7f
http://www.ncbi.nlm.nih.gov/pubmed/18973238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18973238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18973238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19012428?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19012428?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17094249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17094249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19222391?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19222391?dopt=Abstract
http://dx.doi.org/10.1007/s11306-006-0037-z
http://www.ncbi.nlm.nih.gov/pubmed/19010091?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19010091?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19010091?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19010091?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19222236?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19222236?dopt=Abstract


24. Benjamini Y, Hochberg Y: Controlling the False Discovery Rate: A Practical
and Powerful Approach to Multiple Testing. Journal of the Royal Statistical
Society. Series B (Methodological) 1995, 57:289-300[http://vorlon.case.edu/
~sray/mlrg/controlling_fdr_benjamini95.pdf].

25. Hemelrijk J: Note on Wilcoxon’s Two-Sample Test when Ties are Present.
Annals of Mathematical Statistics 1952, 23:133-135.

26. Soares AJ, Santos M, Trugilho M, Neves-Ferreira A, Perales J, Domont G:
Differential proteomics of the plasma of individuals with sepsis caused
by Acinetobacter baumannii. Journal of Proteomics 2009, 73(2):267-278
[http://www.sciencedirect.com/science/article/B8JDC-4X9NVD1-1/2/
e97759e56b52f471a9361b9d05d3072b].

27. Matsubara J, Ono M, Honda K, Negishi A, Ueno H, Okusaka T, Furuse J,
Furuta K, Sugiyama E, Saito Y, Kaniwa N, Sawada J, Shoji A, Sakuma T,
Chiba T, Saijo N, Hirohashi S, Yamada T: Survival Prediction for Pancreatic
Cancer Patients Receiving Gemcitabine Treatment. Molecular and Cellular
Proteomics 2010, 9(4):695-704[http://www.mcponline.org/content/9/4/695.
abstract].

28. Ma Y, Peng J, Huang L, Liu W, Zhang P, Qin H: Searching for serum tumor
markers for colorectal cancer using a 2-D DIGE approach. Electrophoresis
2009, 30(15):2591-2599.

29. Altman DMD, TN B, MJ G: Statistics with Confidence: Confidence intervals
and statistical guidelines. London: BMJ Books;, 2 2000.

30. Cairns DA, Barrett JH, Billingham LJ, Stanley AJ, Xi-narianos G, Field JK,
Johnson PJ, Selby PJ, Banks RE: Sample size determination in clinical
proteomic profiling experiments using mass spectrometry for class
comparison. Proteomics 2009, 9:74-86.

31. Jackson D, Herath A, Swinton J, Bramwell D, Chopra R, Hughes A,
Cheeseman K, Tonge R: Considerations for powering a clinical proteomics
study: Normal variability in the human plasma proteome. PROTEOMICS -
CLINICAL APPLICATIONS 2009, 3(3):394-407.

32. Efron B, Tibshirani R: An Introduction to the Bootstrap. Boca Raton:
Chapman & Hall/CRC; 1993.

33. Strimmer K: A unified approach to false discovery rate estimation. BMC
Bioinformatics 2008, 9:303.

34. Lesaffre E, Scheys I, Frohlich J, Bluhmki E: Calculation of power and
sample size with bounded outcome scores. Stat Med 1993, 12:1063-1078.

35. Walters SJ: Sample size and power estimation for studies with health
related quality of life out-comes: a comparison of four methods using
the SF-36. Health Qual Life Outcomes 2004, 2:26.

36. Lin WJ, Hsueh HM, Chen JJ: Power and sample size estimation in
microarray studies. BMC Bioinformatics 2010, 11:48.

37. Mukherjee S, Tamayo P, Rogers S, Rifkin R, Engle A, Campbell C, Golub TR,
Mesirov JP: Estimating dataset size requirements for classifying DNA
microarray data. J Comput Biol 2003, 10(2):119-42.

38. Kenneth RH, Caimiao W: Learning Curves in Classification With Microarray
Data. Seminars in oncology 2010, 37:65-68.

39. Dobbin KK, Zhao Y, Simon RM: How large a training set is needed to
develop a classifier for microarray data? Clin Cancer Res 2008, 14:108-14.

40. Dobbin KK, Simon RM: Sample size planning for developing classifiers
using high-dimensional DNA microarray data. Biostatistics 2007, 8:101-117.

41. Braga-Neto UM, Dougherty ER: Is cross-validation valid for small-sample
microarray classification? Bioinformatics 2004, 20(3):374-80.

42. Molinaro AM, Simon R, Pfeiffer RM: Prediction error estimation: a
comparison of resampling methods. Bioinformatics 2005, 21(15):3301-7.

43. Dudoit S, van der Laan M: Multiple Testing Procedures with Applications
to Genomics. New York: Springer; 2008.

44. Hogg R, Tannis E: Probability and Statistical Inference. Prentice Hall:
Pearson;, 8 2010.

45. Theodorescu D, Wittke S, Ross MM, Walden M, Conaway M, Just I,
Mischak H, Frierson HF: Discovery and validation of new protein
biomarkers for urothelial cancer: a prospective analysis. Lancet Oncol
2006, 7(3):230-40.

46. Wittke S, Mischak H, Walden M, Kolch W, Radler T, Wiedemann K: Discovery
of biomarkers in human urine and cerebrospinal fluid by capillary
electrophoresis coupled to mass spectrometry: towards new diagnostic
and therapeutic approaches. Electrophoresis 2005, 26(7-8):1476-87.

47. Neuhoff N, Kaiser T, Wittke S, Krebs R, Pitt A, Bur-chard A, Sundmacher A,
Schlegelberger B, Kolch W, Mischak H: Mass spectrometry for the
detection of differentially expressed proteins: a comparison of surface-
enhanced laser desorption/ionization and capillary electrophoresis/mass
spectrometry. Rapid Commun Mass Spectrom 2004, 18(2):149-56.

48. Coon JJ, Zurbig P, Dakna M, Dominiczak AF, Decramer S, Fliser D,
Frommberger M, Golovko I, Good DM, Herget-Rosenthal S, Jankowski J,
Julian BA, Kellmann M, Kolch W, Massy Z, Novak J, Rossing K, Schanstra JP,
Schiffer E, Theodorescu D, Vanholder R, Weissinger EM, Mischak H, Schmitt-
Kopplin P: CE-MS analysis of the human urinary proteome for biomarker
discovery and disease diagnostics. Proteomics Clin Appl 2008, 2:964.

49. Alkhalaf A, Zürbig P, Bakker SJL, Bilo HJG, Cerna M, Fischer C, Fuchs S,
Janssen B, Medek K, Mischak H, Roob JM, Rossing K, Rossing P, Rychlík I,
Sourij H, Tiran B, Winklhofer-Roob BM, Navis GJ, for the PREDICTIONS
Group: Multicentric Validation of Proteomic Biomarkers in Urine Specific
for Diabetic Nephropathy. PLoS ONE 2010, 5(10):e13421[http://dx.doi.org/
10.1371%2Fjournal.pone.0013421].

50. Maahs DM, Siwy J, Argilés n, Cerna M, Delles C, Dominiczak AF, Gayrard N,
Iphöfer A, Jänsch L, Jerums G, Medek K, Mischak H, Navis GJ, Roob JM,
Rossing K, Rossing P, Rychlík I, Schiffer E, Schmieder RE, Wascher TC,
Winklhofer-Roob BM, Zimmerli LU, Zürbig P, Snell-Bergeon JK: Urinary
Collagen Fragments Are Significantly Altered in Diabetes: A Link to
Pathophysiology. PLoS ONE 2010, 5(9):e13051[http://dx.doi.org/10.1371%
2Fjournal.pone.0013051].

51. R Development Core Team: R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing, Vienna,
Austria; 2010 [http://www.R-project.org], [ISBN 3-900051-07-0].

doi:10.1186/1471-2105-11-594
Cite this article as: Dakna et al.: Addressing the Challenge of Defining
Valid Proteomic Biomarkers and Classifiers. BMC Bioinformatics 2010
11:594.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Dakna et al. BMC Bioinformatics 2010, 11:594
http://www.biomedcentral.com/1471-2105/11/594

Page 16 of 16

http://vorlon.case.edu/~sray/mlrg/controlling_fdr_benjamini95.pdf
http://vorlon.case.edu/~sray/mlrg/controlling_fdr_benjamini95.pdf
http://www.ncbi.nlm.nih.gov/pubmed/19782774?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19782774?dopt=Abstract
http://www.sciencedirect.com/science/article/B8JDC-4X9NVD1-1/2/e97759e56b52f471a9361b9d05d3072b
http://www.sciencedirect.com/science/article/B8JDC-4X9NVD1-1/2/e97759e56b52f471a9361b9d05d3072b
http://www.ncbi.nlm.nih.gov/pubmed/20061307?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20061307?dopt=Abstract
http://www.mcponline.org/content/9/4/695.abstract
http://www.mcponline.org/content/9/4/695.abstract
http://www.ncbi.nlm.nih.gov/pubmed/19637221?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19637221?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19053145?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19053145?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19053145?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613966?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8341866?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8341866?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15161494?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15161494?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15161494?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20100337?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20100337?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12804087?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12804087?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20172367?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20172367?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18172259?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18172259?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16613833?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16613833?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14960464?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14960464?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15905277?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15905277?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16510332?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16510332?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15765478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15765478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15765478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15765478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14745763?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14745763?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14745763?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14745763?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20130789?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20130789?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20975990?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20975990?dopt=Abstract
http://dx.doi.org/10.1371%2Fjournal.pone.0013421
http://dx.doi.org/10.1371%2Fjournal.pone.0013421
http://www.ncbi.nlm.nih.gov/pubmed/20927192?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20927192?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20927192?dopt=Abstract
http://dx.doi.org/10.1371%2Fjournal.pone.0013051
http://dx.doi.org/10.1371%2Fjournal.pone.0013051
http://www.R-project.org

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and Discussion
	Biomarker selection
	Resampling as means to define “better biomarkers”
	Estimation of the sample sizes

	Estimation of the differential sample size
	Estimation of the discriminative sample size
	Classification
	Applications to the CD-DN case study

	Conclusions
	Methods
	Patients, Procedures and Demographics
	Sample preparation and CE-MS analysis
	Data processing
	Statistical methods, definition of biomarkers and sample classification

	Acknowledgements
	Author details
	Authors' contributions
	Authors' information
	References

