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Validation of differential gene expression
algorithms: Application comparing fold-change
estimation to hypothesis testing
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Abstract

Background: Sustained research on the problem of determining which genes are differentially expressed on the
basis of microarray data has yielded a plethora of statistical algorithms, each justified by theory, simulation, or ad
hoc validation and yet differing in practical results from equally justified algorithms. Recently, a concordance
method that measures agreement among gene lists have been introduced to assess various aspects of differential
gene expression detection. This method has the advantage of basing its assessment solely on the results of real
data analyses, but as it requires examining gene lists of given sizes, it may be unstable.

Results: Two methodologies for assessing predictive error are described: a cross-validation method and a posterior
predictive method. As a nonparametric method of estimating prediction error from observed expression levels, cross
validation provides an empirical approach to assessing algorithms for detecting differential gene expression that is fully
justified for large numbers of biological replicates. Because it leverages the knowledge that only a small portion of
genes are differentially expressed, the posterior predictive method is expected to provide more reliable estimates of
algorithm performance, allaying concerns about limited biological replication. In practice, the posterior predictive
method can assess when its approximations are valid and when they are inaccurate. Under conditions in which its
approximations are valid, it corroborates the results of cross validation. Both comparison methodologies are applicable
to both single-channel and dual-channel microarrays. For the data sets considered, estimating prediction error by cross
validation demonstrates that empirical Bayes methods based on hierarchical models tend to outperform algorithms
based on selecting genes by their fold changes or by non-hierarchical model-selection criteria. (The latter two
approaches have comparable performance.) The posterior predictive assessment corroborates these findings.

Conclusions: Algorithms for detecting differential gene expression may be compared by estimating each
algorithm’s error in predicting expression ratios, whether such ratios are defined across microarray channels or
between two independent groups.
According to two distinct estimators of prediction error, algorithms using hierarchical models outperform the other
algorithms of the study. The fact that fold-change shrinkage performed as well as conventional model selection cri-
teria calls for investigating algorithms that combine the strengths of significance testing and fold-change estimation.

Background
Continual invention of new microarray data analysis
algorithms for the identification of which genes express
differently across two groups calls for objectively com-
paring the performance of existing algorithms [1]. While
there have been thorough empirical comparisons
between supervised learning methods of classifying

microarrays [2], comparisons between methods of
detecting differential gene expression have tended to
depend heavily on either theory or simulation and thus
on strong underlying assumptions [3,4]. More empirical
alternatives include the use of biologically-derived prior
information regarding which experiments are more
likely to contain differentially expressed genes [5] and
the use of spike-in data sets [4,6,7]. The latter can repre-
sent equivalently expressed genes better than simula-
tions, but the artificial spike-in levels do not necessarily
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correspond to levels of differentially expression across
conditions of biological interest.
An early report of the MicroArray Quality Control

(MAQC) project [8] may mark a turning point in the
methodology of comparing of statistical methods
designed to identify differential gene expression on the
basis of microarray observations. The critical advantage
of this “concordance” (percentage of overlapping genes)
method is its validation entirely on the basis of the
microarray data without resorting to spiking in known
quantities of analytes or to prior information from other
types of experiments; it is thus applicable to any microar-
ray data set with sufficient replication. Validation by non-
microarray information such as RT-PCR measurements
of gene expression or public pathway/functional informa-
tion on genes does have great value in overcoming short-
comings in microarray platforms [9]. For that very
reason, however, such validation has markedly less value
in judging the performance of statistical methods of
detecting differential gene expression. For example, the
inability of RT-PCR to validate a microarray prediction of
differential gene expression might indicate a problem
with the statistical assumptions used to make the predic-
tion, but it may instead refect a problem with cross hybri-
dization due to the microarray platform. Participants in
the MAQC project avoided such confounding between
microarray platform effects and statistical method effects
by quantifying the degree of overlap between gene lists
produced by an algorithm on the basis of two indepen-
dent data sets [8]. Although a significant step forward,
this way of comparing algorithms, like that of [10],
requires examining gene lists of given sizes, which is why
Chen et al. [11] consider the concordance to be too
unstable for use as an algorithm performance criterion.
Without depending on arbitrarily selected numbers of

genes, the platform-algorithm confounding may be over-
come by cross validation, which instead uses a test set of
microarrays to validate predictions made on the basis of
a separate training set of microarrays, while maintaining
the empirical nature of the concordance method. Like
concordance, cross validation does not incorporate
knowledge that only a small portion of genes are differ-
entially expressed. Encoding this information when
appropriate into a hierarchical model enables a more
reliable assessment of the performance of differential
expression detection algorithms if only a few biological
replicates are available. These methods are explained in
Section 2 and illustrated in Section 3; implications are
discussed in Section 4.

Methods
If a gene is known to be differentially expressed at a cer-
tain level on average, then that level would predict
future measurements of gene expression better than

would making such predictions on the assumption that
there is on average no differential expression. Likewise,
if a gene is known to be equivalently expressed, then
using an expression level of 0 or an expression ratio of
1 would predict future measurements better than mak-
ing such predictions on the assumption that there is
some differential expression. Thus, a method of select-
ing genes as differentially expressed may be judged by
estimating its ability to predict future measurements of
gene expression. This estimation may be carried out by
a process of cross validation: the microarrays are divided
between a training set used to determine which genes
the method considers differentially expressed and a test
set used to estimate how well such results would agree
with future measurements.
The strategy of assessing gene selection algorithms by

estimated prediction error may be more precisely speci-
fied in mathematical notation. Let xi,j denote the loga-
rithm of the measured expression intensity or ratio of
intensities of the ith of m genes in the jth of n biological
replicates of the control or reference group; each value
of xi,j may represent an average over technically repli-
cated microarrays; xi = (xi,1,xi,2, ..., xi,n); x = (x1, x2, ...,

xm)
T. Likewise, xi j, denotes the logarithm of the mea-

sured expression intensity or ratio of intensities of the
ith gene in the jth of n’ biological replicates of the treat-
ment or perturbation group;

         x x x x xi i i i n m
Tx x x( , , , ); ( , , , ), , ,1 2 1 2  . The

observations xi,j and xi j, are realizations of the random

variables Xi and Xi , respectively. The ith gene is called

equivalently expressed if E( Xi - Xi) = 0 or differentially

expressed if E( Xi - Xi) ≠ 0. In hypothesis testing par-

lance, the null hypothesis associated with the ith gene is

Hi: E( Xi - Xi) = 0.

Gene selection algorithms
A gene selection algorithm a returns πa (Hi| x’, x), an
estimate of the posterior probability that the ith gene is
equivalently expressed; it follows that 1 - πa (Hi| x’, x)
is the algorithm’s probability that the gene is differen-
tially expressed across the perturbation and reference
groups. Many algorithms [12-21] give πa (Hi| x’, x)
directly as a local false discovery rate estimate [22,23],
whereas traditional false discovery rate estimates and
other non-Bayesian algorithms in effect assign πa (Hi|
x’, x) a value of either 0 or 1, depending on whether or
not a gene is considered differentially expressed at a
given threshold. For example, the practice of considering
a gene differentially expressed if exp (| |) x xi i , its
estimated fold change, is at least � may be expressed as
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The discontinuity can be removed by introducing
smooth functions on an ad hoc basis; here we use

 fold change shrinkage( | , ) .(exp(| |) )H ei
x xi i     x x 1 (2)

as an example of such a smooth function. The trivial
algorithms

 all nulls true( | , ) ,Hi  x x 1 (3a)

 all nulls false( | , ) ,Hi  x x 0 (3b)

which completely ignore the data, will serve as infor-
mative points of reference.
Some of the empirical Bayes algorithms implemented

in two R packages [24] are considered here [25-27].
From calculations based on a moderated (regularized) t-
statistic that are performed by the R package limma
[25], one may readily obtain pi ( t ), a one-sided p-value
of the ith null hypothesis;p ( t ) = (p1 ( t ), p2 ( t ), ..., pm
( t )). Given the moderated t-statistics and π (H0), the
proportion of genes expected to be equivalently
expressed, limma also computes logωi (π (H0)), the esti-
mated logarithm of the posterior odds that gene i is dif-
ferentially expressed rather than equivalently expressed,
from which the local false discovery rate may be readily
obtained as (1 +ωi (π (H0)))

-1 . Since, for use with the
log-odds, the author of the algorithm does not recom-
mend computing π (H0) using limma’s convest function
(Gordon Smyth, personal communication, 27 Oct.
2007), we instead iterated the log-odds function until
convergence by adapting a method [28] originally pro-
posed for another empirical Bayes algorithm [29]:

1. Let π1 (H0) = 90% and initialize k to 1.
2. Increment k by 1.
3. Let   k i ki

m
H H m( ) ( ( ( ))) /0 1 0

1
1

1  


 .
4. Repeat Steps 2-3 until the absolute value of the
proportion difference is sufficiently small, i.e., |πk

(H0) - πk-1 (H0)| < 1/1000, or until the sign of the
proportion difference changes, i.e.,

(πk (H0) - πk-1 (H0)) (πk-1 (H0) - πk-2 (H0)) < 0. The
number of iterations performed until such convergence
is denoted by K.
5. Let π (H0) = πK (H0).
Based on that value of π (H0), the estimated probabil-

ity of equivalent expression is derived by solving for it
in the definition of the odds of differential expression

(i.e., the ratio of the probability of differential expression
to the probability of equivalent expression), yielding


 moderated t stat. with limma( | , )

( ( ))
.H

i Hi  


x x
1

1 0
(4)

Also using standard distributions of test statistics
under the null hypothesis, the R package locfdr [26]
maps p, a vector of single-tailed p-values for all genes,
to estimates of a local false discovery rate (FDR), πlocfdr
(Hi, p| x’, x). The use of moderated t-statistics is incor-
porated by

 moderated t stat. with locfdr locfdr( | , ) ( , ( ) |H H ti i  x x p  xx x, ). (5)

More commonly, p (t), a vector of standard (1- or 2-
sample) t-test p-values, which also assume the normality

of Xi - Xi, or p (w), a vector of (signed-rank or rank-

sum) Wilcoxon test p-values, which do not assume nor-
mality, yield local false discovery rate estimates

 t stat. with locfdr locfdr( | , ) ( , ( ) | , ),H H ti i  x x p x x (6a)

 Wilcoxon stat. with locfdr locfdr( | , ) ( , ( ) | , )H H wi i  x x p x x ..(6b)

Alternatively, the locfdr package can employ an
empirical maximum-likelihood estimate of the null dis-
tribution [27] for computation of the local-false-discov-
ery-rate estimate πemp.null (Hi, p|x’,x):

 t stat. with emp. null emp. null( | , ) ( , ( ) | , ),H H ti i  x x p x x (7a)

 Wilcoxon stat. with emp. null emp. null( | , ) ( , ( )H H wi i x x p || , ).x x (7b)

Whereas the empirical Bayes algorithms provide
approximations to a posterior probability of a hierarchi-
cal Bayesian class of models, we included comparisons
to the posterior probability πBayes factor (Hi| x’, x) under
a non-hierarchical set of models. The data densities
under the non-hierarchical models are based on the
same assumptions as those of standard linear regression:
unconstrained data means under the alternative hypoth-
esis (differential expression) and, for each gene, normal
IID noise and equal variance within each group in the
unpaired case. Let Hi represent the hypothesis of dif-
ferential expression (in contrast to Hi, which was
defined as the hypothesis of equivalent expression). The
posterior odds of differential expression under these
models are

i
P Hi
P Hi

P d d Hi
P d d Hi

,
( )
( )

( , | )
( , | )

,Bayes factor 

 

x x
x x

(8)
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where P (dx’, dx| h) is the prior predictive density or
integrated likelihood under hypothesis h. The left-hand
side of equation (8) is the posterior odds of equivalent
expression to differential expression; on the right-hand
side, the first factor is the prior odds of equivalent
expression to differential expression, and the second fac-
tor is known as the Bayes factor. Since we take P (Hi) =
P( Hi ) = 1/2, our posterior odds is equal to the Bayes
factor; thus putting equal prior mass on each hypothesis
does not share the conservatism of the above empirical
Bayes algorithms. Additional file 1 gives the analytical
derivation of the resulting posterior probability, which
may be expressed in terms of some additional notation.
Define

k n k k
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if Xi and Xi are independent. Then the posterior
probability is given by


Bayes factor

Bayes factor
( | , )

,
,H

i
i  


x x

1
1

(11)
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( )

( )
.


(12)

We also applied two “information criteria” used in
model selection to estimate the posterior probability; the
information criteria were applied to the same linear
regression framework used in the above Bayes factor
computation. In model selection terminology, each cri-
terion selects either model Hi or model Hi (that is,
equivalent expression or differential expression, respec-
tively) for the ith gene, but we instead averaged the

estimates corresponding to the two models for each
gene as follows. We first applied the Bayesian Informa-
tion Criterion (BIC) [30]. Up to a factor of - 1/2 and a
constant term, the BIC approximates the logarithm of
the prior predictive probability density given a statistical
model and a sufficiently diffuse proper prior distribution
under the given model without requiring specification of
such a prior. With a prior mass on each model consid-
ered, the BIC leads to an approximation of a posterior
probability that is less conservative than that of the
above Bayes factor.
The general formula for the BIC under a model with

normal errors is

BIC  




N

SSR
N

k Nlog log , (13)

where N is the number of data points and k is the
number of parameters in the model. For paired data, N
= n; under Hi the only parameter is the data variance,
giving k = 1, while under Hi the model includes both
the data mean and data variance, giving k = 2. Therefore
the BIC for each hypothesis is

BIC ( ) log log , 
H n

SSRHi
n

ni 








  2 (14)

BIC ( ) log log ,H n
SSRHi

n
ni 









  (15)

with SSRh as defined in (9).
For independent data, N = n+ n’; under Hi the model

includes a single mean log-expression level and the data
variance, giving k = 2, while under Hi the model
includes two distinct mean log-expression levels (one
for the treatment group and one for the control group)
and the data variance, giving k = 3. Therefore the BIC
for each hypothesis is

BIC ( ) ( ) log log( ), 
H n n

SSRHi
n n

n ni   
 









   3 (16)

BIC ( ) ( ) log log( ),H n n
SSRHi
n n

n ni   
 









   2 (17)

with SSRh as defined in (10). Since we again use P (Hi)
= P ( Hi ), the BIC approximation of the posterior odds
(ωi,BIC) is equal to its approximation of Bayes factors
corresponding to a wide class of priors on the model
parameters. Transformed from the logarithmic scale to
the probability scale [31], the result is an equation of
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the same form as (11),
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The second information criterion we assessed was the
Akaike Information Criterion corrected for small samples
(AICc). While - AICc/2 plus a constant term is in general
only an approximately unbiased estimator of the expected
Kullback-Leibler distance between the model/hypothesis
and the unknown true data generating distribution [32], it
is exactly unbiased for linear regression models with nor-
mal errors [33], a class that includes the present non-hier-
archical models. Under the name of Akaike weights, it and
other AlC-like criteria have been used to generate predic-
tions that take model uncertainty into account in a man-
ner exactly analogous to Bayesian model averaging [32],
giving rise to an equation of the same form as(18).
The general formula for the AICc under a model with

normal errors is

AICc 
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N

kN
N k

log ,
2

1
(20)

The particular values of N and k for paired and inde-
pendent data under Hi and Hi are the same as those
given above for the BIC. For paired data, the AICc

values of the hypotheses or models are

AICc( ) log , 
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with SSRh as defined in (9); for independent data, the
AICc values are
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with SSRh as defined in (10). Transforming from the
logarithmic scale yields the effective probability


AICc
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Where

i

Hi

Hi
,

exp ( )

exp ( )
AICc

AICc

AICc














1
2
1
2



is the ratio of Akaike weights.
These algorithms were chosen as representatives of

various classes of possible approaches. Whereas the
fold-change-dependent algorithms represent algorithms
that take no account of the data variance, the informa-
tion criterion algorithms and the non-hierarchical Baye-
sian algorithm represent algorithms that do take data
variance into account but do not share information
across genes. The local FDR algorithms based on classi-
cal p-values share information across genes for the pur-
pose of determining false discovery rates, thus
accounting for multiple comparisons, but do not share
information for estimating data variance. Algorithms
employing the moderated t-statistic share information
across genes to account for multiple comparisons and
also to estimate data variance.

Methods of assessing gene selection algorithms
Each of the next subsections describes a different
method of quantifying the performance of gene selection
algorithms. The first, cross validation, has the advantage
that it is an unbiased estimator of squared prediction
error (defined below) without assuming any parametric
model. The second, the computation of posterior pre-
dictive loss, takes advantage of the knowledge that gene
expression is approximately lognormal and that rela-
tively few genes will have substantial differential expres-
sion, the vast majority being equivalently expressed for
all practical purposes. The two methods will differ in
results; if nearly all genes have only negligible differen-
tial expression, the latter is deemed more reliable except
in the case of extensive biological replication since the
former achieves low bias by admitting a high variance of
performance estimates.
Cross validation
Algorithm a’s best prediction of future values of Xi -
Xi is the posterior expected degree of expression,

E posterior( ) ( | , )( ) ( ( | , ))(, ,      X X H Hi new i new i i  x x x x0 1 x xi i, ).


(26)
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The term (| |) x xi i is the best estimator of the
degree of expression conditional on definite knowledge
that gene i is differentially expressed; it is multiplied by
(1 - πa (Hi|x’, x)), the posterior probability of differential
expression. (The other product in the posterior expecta-
tion corresponds to equivalent expression, and is there-
fore identically zero.) The posterior expected degree of
expression has been compared to a method of correct-
ing estimates for gene selection bias [34]. For a new
observation of gene i, the squared prediction error is,

ε , , ,[( ) ( ( | , ))( , )] .i i new i new i i iX X H       E 1 2X X X X (27)

The squared prediction error does not directly target
the question of which genes are differentially expressed;
instead, it addresses the question of what the value of
the next observation will be. However, good perfor-
mance of one algorithm relative to another on either of
these questions implies good performance on the other,
as can be seen by considering that in general the mean
squared prediction error is the sum of an algorithm’s
squared predictive bias and the data variance. The
squared predictive bias term summarizes the ability of
an algorithm to correctly distinguish differentially
expressed genes from equivalently expressed genes. It is
more fexible than the 0/1 loss in that it penalizes algo-
rithms not just for being wrong, but for how wrong
they are. The data variance sets the scale for “wrong-
ness”, in that for one algorithm to appear significantly
worse than another, its squared predictive bias must
dominate the data variance term.
Under the “all nulls false” reference algorithm, the

best prediction of future values of Xi - Xi for all genes

is the maximum likelihood estimator (| |) x xi i . Other

algorithms make gains over this reference by correctly
assigning equivalently expressed genes, thereby avoiding
the contribution of the variance of the MLE to the
squared prediction error. Under the “all nulls true”
reference algorithm, the best prediction of future values

of Xi - Xi for all genes is 0. Other algorithms make

gains over this reference by correctly assigning differen-
tially expressed genes, thereby avoiding the contribution

of the squared bias (that is, [E ( Xi - Xi)]
2) to the

squared prediction error.
The squared prediction error criterion therefore quan-

tifies the relative costs of false positives and false nega-
tives in terms of the bias-variance trade-off. To estimate
the squared prediction error, we used leave-one-out
cross validation,
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if Xi and Xi are independent, where (-j) means the
jth replicate is omitted:
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, (30b)

       x n x x ni j i i j,( ) ,( ) / ( )1 , and
x nx x ni j i i j,( ) ,( ) / ( )   1 .
For example, suppose that xi j, is paired with xi,,j and

the data for gene i were xi = (0,1,1) and xi = (2,0,-2). For

j from 1 to 3, ( ) ( , , ),( ), , ,( ) ,( )       x x x xi j i j i j i j2 1 3 =

(2, 0.5,-0.5), and using the fold change shrinkage calcula-

tion of equation 2, 1 - πa (Hi|   x ( )j , x(-j)) = (0.95,

0.78,0.39). (Note that the FDR estimation algorithms
require all the other genes’ data to calculate πa

(Hi|   x ( )j , x(-j)).) The individual terms in the sum in

equation 28 are (-2 - 0.95 - 2)2, (1 - 0.78 - 0.5)2, and (3 -
0.39 - (-0.5))2, and their mean is 8.6. If the given data
were independent instead of paired, the calculation
would involve each of the 9 subsets obtained by leaving
out one perturbation data point and one control data
point.
We considered measuring error relative to always pre-

dicting that Xi - Xi = 0 on a gene-wise basis using the
ratio

ˆ
ˆ ,

ˆ ,
,, 

 i
i

i


ε

εall nulls true
(31)

with two measures of central tendency,

( ) ( , ,..., ),, , ,relative error mode HSM      1 2 m (32)
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( ) .,relative error mean  

1

1
m i

i

m

(33)

(The half-sample mode (HSM) [35] is a fast, robust
estimator of the mode that is suitable as for asymmetric
distributions. It is implemented as the hsm function in
the modeest package of R.) We also considered an abso-
lute error criterion,

( ) ,

,
;absolute error

base model


 



ε

ε

ii
m

ii
m

1

1
(34)

this measure is relative to a base model such as the
“all nulls true” model or the “all nulls false” model
because we expect only the relative performances of the
estimators to be meaningful. We found that the relative
error mean essentially reproduced the absolute error
relative to the “all nulls true” model, and the relative
error mode often evaluated estimators as not practically
different from the “all nulls true” benchmark. Therefore,
we show only the results for the absolute error measure.
The use of cross-validation for estimation of classifica-

tion error, appropriate for the problem of categorizing
samples or microarrays given known classifications for
use in the training and test sets, differs from the use
cross-validation for estimation of squared prediction
error, appropriate for the distinct problem of determin-
ing which genes are differentially expressed without
knowledge of which genes are differentially expressed
for use in the training and test sets. Jeffery et al. [36]
used a cross-validation approach to estimate the predic-
tive error of a variety of gene selection algorithms, but
with microarray classification error rather than equa-
tions (32)-(34) as the performance criterion. Such classi-
fication error depends not only on the gene selection
algorithm, but also on the particular classifier for which
that algorithm selects features. Since our interest lies
strictly in identifying differentially expressed genes, our
methods instead quantify performance in terms of pre-
dicting new measurements. We have also addressed the
problem using estimation error in place of prediction
error [37].
Posterior predictive expected squared error
The local FDR shrinkage algorithm can be used to
define an estimator’s posterior predictive expected
squared error. In general, the posterior predictive
expected squared error is

E Eposterior posterior( ) (, , , ,  



   X X X Xi new i new i i new

2
ii new i i new i newX X, , , ,) var ( ),    

2
posterior (35)

where Xi new, and Xi,new are random variables for new
observations, ˆ , i is algorithm a’s point prediction for
Xi new, - Xi ,new, and Eposterior and varposterior are the

expectation and variance with respect to the posterior
distribution. The effective posterior distribution that
leads to estimators of the form (26) is
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We use the local FDR estimator with t-statistics and
theoretical null distribution as our gold standard model
for the computation of πa (Hi|x’,x); this model will be
accurate under the reasonable assumption that few
genes are differentially expressed at appreciable levels.
To fully express the posterior predictive loss, we must

define the posterior predictive distribution for Xnew -

Xnew under both the null and alternative hypotheses for
both paired and non-paired data. Conditional on each
hypothesis, we use improper prior distributions for con-
venience. Strictly speaking, this is inconsistent with our
choice of πa (Hi| x’, x), an empirical Bayes approxima-
tion to a posterior probability; under a full Bayesian ana-
lysis, posterior probabilities of hypotheses can only be
computed under proper priors for the parameters condi-
tional on each hypothesis, as in the Bayes factor algo-
rithm of equation (11). Our choice of πa (Hi| x’,x)
enables sharing information across genes to give a sensi-
ble empirical Bayes posterior probability for the hypoth-
eses but otherwise relies on the same assumptions as
our conditional prior distributions.
For paired data under the null hypotheses, Xnew -

Xnew has a normal sampling distribution with zero mean
and sampling variance estimated from the data. Under
the usual improper prior for the sampling variance (that
is, πprior (s2)∝ s-2), the posterior distribution for the
sampling variance is a scaled-inverse-c2 distribution

with degrees of freedom n and scale 1 2
1n x xj jj

n
( )  .

The posterior predictive density is the expectation of
the sampling density with respect to the posterior distri-
bution of the sampling variance,
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where N (·|·,·) is the normal distribution parameterized
in terms of mean and variance, and tv (· |c,s2) is a
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shifted, scaled version of the t distribution with v
degrees of freedom, center c, and scale factor s. (That is,
if Y is distributed as tv (·|c, s

2), then (Y - c)/s is distribu-
ted as the usual tv distribution.)
For paired data under the alternative hypothesis, Xnew

- Xnew has a normal sampling distribution with both
mean and sampling variance estimated from the data. It
can be shown that under the usual improper joint prior
for mean μ (μ = E(X’ - X)) and the sampling variance
(that is, πprior (μ, s2) ∝ s-2), the posterior predictive dis-
tribution for Xnew - Xnew is,

 posterior

post

       X X H t x x x x snew new n new new| ( | , ),
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2

eerior     


X X H
n
n

snew new | , 1
3

2
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1
2 , i.e.,

s2 is the usual unbiased variance estimator.
For non-paired data under the null hypothesis, if the

treatment and control data are modeled as having dis-
tinct sampling variances (consistent with the assump-
tions used to specify πa (Hi| x’, x)) then the posterior
predictive distribution is

   posterior posteN( | ) | , ( )       


X X H x xnew new new new

0

2 20 rrior    2 2 2 2

0

,( ) ( ) ,  


 d d

where (s’)2 and s2 are the sampling variance for treat-
ment and control data respectively. This integral is
intractable because πposterior (s2, (s’)2)has a non-stan-
dard form (see Additional file 1). We estimated it by
drawing samples from πposterior (s2, (s’)2) using Markov
chain Monte Carlo (MCMC) [38] and then calculating
the MCMC average,
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where the subscript k indicates the kth MCMC draw
of parameter values (after suitable burn-in) and K is
the total number of draws. In the present case, the
MCMC algorithm we use is an inherently multi-chain
procedure; we used 10 chains. We used a burn-in of
20 samples per chain, followed by 100 samples per
chain, for a total of K = 1000 samples. For each gene
in a randomly chosen subset of genes from the com-
plete data set, a contour plot of the posterior density
was superimposed on a scatter plot of the MCMC
draws of parameter values. The scatter plots visually
conformed to the contours of the posterior densities,
verifying that the MCMC draws of parameter values
provided a good approximation to the posterior
distributions.

For non-paired data under the alternative hypothesis,
Xnew and Xnew each have a normal sampling distribu-

tion with both mean and sampling variance estimated
from the data. It can be shown that under the usual
improper joint prior for the individual means and sam-
pling variances, the posterior predictive distributions for
Xnew and Xnew are
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To summarize gene-wise posterior predictive expected
squared error over all genes in a data set, we considered
quantities analogous to the relative errors and absolute
errors of equations (32)-(34), with gene-wise posterior
predictive expected squared errors replacing cross-vali-
dation-derived prediction errors. Again, we found that
the relative error mean essentially replicated the results
of the absolute error relative to the “all nulls true”
benchmark; relative error mode evaluated the perfor-
mance of all estimators as identical to the “all nulls
true” benchmark. Therefore, we show only the results
for the absolute error measure for posterior predictive
expected squared error.

Results
To illustrate the proposed methods of quantifying the
performance of gene selection algorithms, we applied
them to two example data sets, one relevant to agricul-
ture and the other to medicine. Since this study is lim-
ited to the evaluation of high-level algorithms of
detecting differentially expression, we did not consider
multiple pre-processing schemes. The agricultural data
sets were processed as described in [39]; the medical
data sets were pre-processed according to the specifica-
tions of the chip manufacturer [8].

Agricultural data
Dual-channel microarrays were used to measure in
tomatoes the expression ratios (mutant/wild type) of m
= 13,440 genes at the breaker stage of ripening and at 3
and 10 days thereafter [39]. Each of the later two stages
has six biological replicates (n = 6), but one of the biolo-
gical replicates is missing at the breaker stage of ripen-
ing (n = 5). The next subsection compares algorithms of
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determining which genes are differentially expressed
between mutant and wild type at each point in time,
whereas Subsection 3.2 uses the same data to instead
compare algorithms of determining which genes are dif-
ferentially expressed between one point in time and
another point in time.
Pairing across microarray channels
In order to determine the genes for which expected
values of logarithms of mutant-to-wild-type ratios dif-
fer from 0, let xi j, be the expression level of the
mutant sample with mRNA hybridized to the same
microarray as that of a wild type sample with expres-
sion level xi,j at 0, 3, or 10 days after the breaker stage.
Then xi j, - xi,j is the logarithm of the observed ratio
for the ith gene and jth microarray. Due to this depen-
dence structure, paired (1-sample) t-tests and Wil-
coxon signed-rank tests were used to obtain p-values,
and equation (34) was used to estimate prediction
error. We measured absolute error relative to the local
FDR using the t-statistic and the theoretical null
(labelled “t stat. with locfdr”) because this model had
the best or near-best performance in seven out of the
nine data sets considered in this paper. Thus, its use
as the base model facilitated the plotting of multiple
data sets in a single figure; this same model was used
as the base model for all subsequent figure. The

estimated prediction errors for all algorithms men-
tioned above are displayed as Figure
Two independent groups
In order to determine which genes differ in mutant-to-
wild-type ratios between different periods of time after
the breaker stage, let xi j, and xi,j denote the logarithms
of ratios observed at two different points in time for
gene i and for microarrays j’ and j. Since the measure-
ment errors of observations made at one time point are
independent of those made at the other time point, 2-
sample t-tests and Wilcoxon rank-sum tests were used
to obtain p-values, and equation (34) was used to aver-
age estimated prediction error (Figure 3). Figure 4
shows, for each non-paired tomato data set, the total
posterior predictive expected squared error (equation
(35)) for each estimator relative to that of the gold stan-
dard model.

Biomedical data
MAQC researchers [8] measured gene expression
responses to a rat liver treatment on four different plat-
forms: Applied Biosystems, Affymetrix, Agilent, and GE
Healthcare. Each data set has six treatment biological

Figure 1 Assessment of estimator performance by cross
validation for the paired tomato data sets. Average estimated
prediction error, defined by equation (34) and based on cross
validation, at the breaker stage of ripening (squares), 3 days after
ripening (diamonds) and 10 days after ripening (triangles). The
values of a displayed correspond to the gene selection algorithms
of equations (1)-(7).

Figure 2 Assessment of estimator performance by posterior
predictive expected squared error for the paired tomato data
sets. Total posterior predictive squared error (defined by equation
(34)) relative to that of the gold standard model (the local-FDR
mean expression estimator calculated using t-statistics and the
theoretical null, labeled “t stat. with locfdr” in the figure) for 0, 3, and
10 day tomato data sets. Algorithm definitions are the same as
those of Figure 1. Results for the 3 day and 10 day tomato data sets
with the “all nulls true” estimator are greater than 1.1 and are not
plotted.

Yanofsky and Bickel BMC Bioinformatics 2010, 11:63
http://www.biomedcentral.com/1471-2105/11/63

Page 9 of 14



replicates and six control biological replicates. As in
Subsection 3.1.2, observations in the treatment group
are not paired with those of the control group. The
Applied Biosystems data set (m = 26,857 genes) and the
two Affymetrix data sets (m = 31, 099 genes each) were
used to assess gene selection criteria on the basis of pre-
diction error (Figure 5). Figure 6 shows, for each MAQC
data set, the total posterior predictive expected squared
error (equation (35)) for each estimator relative to that
of the gold standard model.

Discussion
Fold change versus testing
Fold change performs about as well as simple (non-hier-
archical) model selection criteria except when it is pena-
lized by the imposition of a hard threshold. Algorithms
based on hard thresholds for fold change are outper-
formed by shrinkage fold-change and by all other non-
trivial algorithms that are not restricted by arbitrary
thresholds: Tables 1 and 2 show that hard-threshold
algorithms are never ranked in the top four by either
cross validation or posterior predictive expected loss.
While the best local-FDR-based methods outperform
shrinkage fold-change, as can be seen in Figures 1, 2, 3,
4, 5 and 6, shrinkage fold change has performance com-
parable to simple model selection criteria as represented
by the Bayes factor, BIC, and AICc methods.

Figure 3 Assessment of estimator performance by cross
validation for the non-paired tomato data sets. Average
estimated prediction error for the comparing expression at 10 days
to 0 days, 10 days to 3 days, and 3 days to 0 days after the breaker
stage of ripening. Error and algorithm definitions are the same as
those of Figure 1.

Figure 4 Assessment of estimator performance by posterior
predictive expected squared error for the non-paired tomato
data sets. Total posterior predictive squared error relative to that of
the gold standard model (the local-FDR mean expression estimator
calculated using t-statistics and the theoretical null, labeled “t stat.
with locfdr” in the figure) for 0 days vs. 3 days, 0 days vs. 10 days,
and 3 days vs. 10 days tomato data sets. Error definitions are the
same as those of Figure 2. Algorithm definitions are the same as
those of Figure 1.

Figure 5 Assessment of estimator performance by cross
validation for the MAQC data sets. Average estimated prediction
error for the Applied Biosystems, Affymetrix 1, and Affymetrix 2 data
sets of the rat toxicogenomics subset of the MAQC study. Error and
algorithm definitions are the same as those of Figure 1. Results for
both Affymetrix data sets with the “fold change > 4” hard threshold
estimator, the “all nulls true” estimator, and the local FDR estimator
based on t statistics and the empirical null are greater than 1.7 and
are not plotted.
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Herein we examined only algorithms that fall into one
of two distinct categories:

1. The shrinkage and hard-threshold fold-change
algorithms are based on estimated fold change with-
out regard for statistical significance or estimates of
variance.
2. All other algorithms of the present study compute
levels of significance without regard for fold change
estimates. (We converted the results of these algo-
rithms into predictions for the sole purpose of com-
paring the predictive performance of different
algorithms.)

Since these categories represent opposite extremes,
their algorithms might be outperformed by those that
instead employ both fold-change information and var-
iance/significance information. Our observation that fold
change performs as well as simple model-selection cri-
teria suggests consideration of less extreme algorithms
that combine the advantages of the ones studied herein.
Investigators reported that the estimation of fold-change
following a non-stringent significance filter performs
better than does either type of algorithm alone [8,40],
and [37] have recently demonstrated that further
improvement is possible by smoothly shrinking esti-
mates of fold change according to statistical significance
levels.
Adjusting fold-change estimates according to signifi-

cance levels is not the only way to combine the two
types of information. A complementary strategy
instead adjusts significance levels according to fold-
change thresholds. In fact, the seemingly inferior

Figure 6 Assessment of estimator performance by posterior
predictive expected squared error for the MAQC data sets.
Total posterior predictive squared error relative to that of the gold
standard model (the local-FDR mean expression estimator
calculated using t-statistics and the theoretical null, labeled “t stat.
with locfdr” in the figure) for Applied Biosystems, Affymetrix 1, and
Affymetrix 2 data sets of the rat toxicogenomics subset of the
MAQC study. Error definitions are the same as those of Figure 2.
Algorithm definitions are the same as those of Figure 1. Results for
the Applied Biosystems data set with the “all nulls true” estimator
and for the both Affymetrix data sets with the local FDR estimator
with empirical null (based on both Wilcoxon statistics and t
statistics), the fold change shrinkage estimator, all fold change hard
threshold estimators, the “all nulls true” estimator, and the “all nulls
false” estimator are greater than 1.023 and are not plotted.

Table 1 Number of tomato data sets for which each
estimator ranked in the top four.

algorithm cross validation
posterior

predictive
expected loss

Wilcoxon stat. with emp. null 3 2

t stat. with emp. null 1 1

Wilcoxon stat. with locfdr 1 1

t stat. with locfdr 6 6

moderated t stat. with locfdr 5 5

moderated t stat. with limma 3 1

fold change shrinkage 1 1

Bayes factor 2 1

BIC 0 0

AICc 1 5

fold change > 1.41 0 0

fold change > 1 0 0

fold change > 2 0 0

all nulls true 1 1

all nulls false 0 0

Table 2 Number of MAQC data sets for which each
estimator ranked in the top four.

algorithm cross validation
posterior

predictive
expected loss

Wilcoxon stat. with emp. null 0 0

t stat. with emp. null 0 0

Wilcoxon stat. with locfdr 0 0

t stat. with locfdr 1 3

moderated t stat. with locfdr 3 3

moderated t stat. with limma 2 0

fold change shrinkage 0 0

Bayes factor 3 0

BIC 2 3

AICc 1 3

fold change > 1.41 0 0

fold change > 1 0 0

fold change > 2 0 0

all nulls true 0 0

all nulls false 0 0
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performance of statistical methods that do not make
use of fold-change estimates has been explained in
terms of a distinction between statistical and biological
significance [41], which would call for the incorpora-
tion of the lowest fold change considered biologically
relevant into the statistical hypotheses under consid-
eration. Recent statistical methods designed to find
genes expressed at biologically important levels include
those utilizing false discovery rates [42,43], empirical
and full Bayesian analyses [44-46], and the likelihood
paradigm of measuring the strength of statistical evi-
dence [47].

Corroboration of cross validation by posterior predictive
expected loss
In general, cross-validation is subject to high variance
when sample sizes are small. If each of the features had
independent data of finite variance, the central limit the-
orem would nonetheless guarantee a small variance in
the overall measure of performance (34). In the present
case, however, due to gene-gene interactions, the
numerator and denominator of the overall measure of
performance are sums of positively correlated quantities.
To address this concern, we performed an additional
assessment of the differential-expression-detection algo-
rithms using posterior predictive expected squared error
methodology.
The posterior predictive expected squared error

requires the choice of a particular gold standard model,
a Bayesian model consisting of a family of sampling dis-
tributions refecting knowledge about the biological sys-
tem and a prior distribution. Here, we based our
posterior predictive expected squared error on the
implicit Bayesian model approximated by the local-FDR
mean expression estimator calculated using t-statistics
and the theoretical null distribution. The key assump-
tion of the model is that few genes are differentially
expressed at any notable level; the model also assumes
that gene expression ratios are lognormally distributed.
The model accommodates unequal variances for non-
paired data using conventional improper priors under
each hypothesis since we have little prior information
about the specific parameter values. (As such priors are
arbitrary and carry their own information, a more thor-
ough Bayesian analysis would require a study of the sen-
sitivity of results to the choice of prior.) Naturally, the
model’s corresponding estimator had the lowest poster-
ior predictive expected squared error, but provided the
assumptions encoded in the model hold, the posterior
predictive expected squared error will nonetheless be a
good way to rank the performance of the estimators.
The fitting of the gold-standard model generated esti-

mates for the proportions of equivalently expressed
genes, allowing the verification of the assumption that

most genes were equivalently expressed. For the 0 days,
3 days, and 10 days data sets, the estimated proportion
of equivalently expressed genes were 0.91, 0.89, and
0.73, respectively; for the 10 days vs. 3 days, 10 days vs.
0 days, and 3 days vs. 0 days data sets, they were 0.83,
0.83, and 1.00, respectively; and for the Applied Biosys-
tems, Affymetrix 1, and Affymetrix 2 data sets, they
were 0.62, 0.59, and 0.60, respectively. The six tomato
data sets have relatively high proportions, showing that
these data sets more closely satisfy the assumption of a
proportion close to 1. Therefore, the local-FDR-based
rankings for the estimators in these data sets should be
accurate. The MAQC data sets have lower proportions,
indicating that the model assumption is a poor approxi-
mation. It is not surprising that the MAQC data sets
have many differentially expressed genes, as they are
derived from liver tissue treated with a potent toxin.
As noted before, the cross-validation performance

measure ranks the gold standard model highly for the
tomato data sets, that is, for the data sets that we expect
good estimation from the gold standard model. Further-
more, a careful inspection of Figures 1, K2, K3 and K4
revealed that the rankings of the estimators according to
the posterior predictive assessment and the cross-valida-
tion assessment largely agreed. (Some notable excep-
tions were the AICc, which was rated highly by
posterior predictive expected loss but poorly by cross-
validation for the 0 days and 3 days data sets (Figures 1-
2), and the moderated t-statistic with limma, which was
rated highly by cross-validation but poorly by posterior
predictive expected loss for the 0 days, 3 days, 10 days
vs. 3 days, and 3 days vs. 0 days data sets (Figures 1, K2,
K3 and K4).) In addition, the cross-validation perfor-
mance measure does not rank the gold standard model
as highly for the Affymetrix data sets; the gold standard
model itself has determined that its assumption of a
high proportion of equivalently expressed genes fails for
precisely those data sets. (The Applied Biosystems data
set is unusual in that its median gene variance was
roughly five times larger than the median gene variances
of the other data sets. As a result, there is little power
to distinguish between estimators: the gold standard
model estimator, the Bayes Factor estimator, and the
AICc estimator are essentially tied for best performance
(Figure 5) These observations suggest that the cross-
validation methodology was able to accurately rank esti-
mators even though the number of biological replicates
was small.

Conclusion
The posterior predictive methodology helped to confirm
that the cross-validation methodology was effective for
measuring estimators’ relative performances. The results
support the use of local-FDR-based statistical algorithms
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over both conventional model-select ion criteria and
over algorithms based only on fold change. In particular,
the estimator based on the local FDR calculated using t-
statistics and the theoretical null had the overall best
performance when the proportion of equivalently
expressed genes was high. As a second choice, the esti-
mator based on the local FDR calculated using moder-
ated t-statistics also performed quite well. Tables 1 and
2 show that it was ranked in the top four for eight data
sets out of nine, including all three MAQC data sets.
The fact that fold-change shrinkage performed as well

as conventional model selection criteria calls for investi-
gating algorithms that combine the strengths of signifi-
cance testing and fold-change estimation.

Additional file 1: This file contains a heuristic overview and detailed
derivation of our Bayes factor approach to calculating probabilities of
differential expression.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
63-S1.DOC ]
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