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Abstract

Background: Gene regulatory networks have an essential role in every process of life. In this regard, the amount of
genome-wide time series data is becoming increasingly available, providing the opportunity to discover the time-
delayed gene regulatory networks that govern the majority of these molecular processes.

Results: This paper aims at reconstructing gene regulatory networks from multiple genome-wide microarray time
series datasets. In this sense, a new model-free algorithm called GRNCOP2 (Gene Regulatory Network inference by
Combinatorial OPtimization 2), which is a significant evolution of the GRNCOP algorithm, was developed using
combinatorial optimization of gene profile classifiers. The method is capable of inferring potential time-delay
relationships with any span of time between genes from various time series datasets given as input. The proposed
algorithm was applied to time series data composed of twenty yeast genes that are highly relevant for the cell-
cycle study, and the results were compared against several related approaches. The outcomes have shown that
GRNCOP2 outperforms the contrasted methods in terms of the proposed metrics, and that the results are
consistent with previous biological knowledge. Additionally, a genome-wide study on multiple publicly available
time series data was performed. In this case, the experimentation has exhibited the soundness and scalability of
the new method which inferred highly-related statistically-significant gene associations.

Conclusions: A novel method for inferring time-delayed gene regulatory networks from genome-wide time series
datasets is proposed in this paper. The method was carefully validated with several publicly available data sets. The
results have demonstrated that the algorithm constitutes a usable model-free approach capable of predicting
meaningful relationships between genes, revealing the time-trends of gene regulation.

Background
The genome encodes thousands of genes whose products
enable cell survival and numerous cellular functions. The
amount and the temporal pattern in which these
products appear in the cell are crucial to the processes of
life. Gene Regulatory Networks (GRNs) govern the levels
of these gene products. A GRN is the collection of
molecular species and their interactions, which together
control gene product abundance [1,2]. Numerous cellular
processes are affected by regulatory networks.
Innovations in experimental methods have enabled

large scale studies that allow parallel genome-wide gene
expression measurements of the products of thousands

of genes at a given time, under a given set of conditions
and for several cells/tissues of interest. This technology,
called DNA microarray, introduces a variety of data ana-
lysis issues (due to the large amount of information to
analyze) that are not present in traditional molecular
biology [3].
Over the past few years, several statistical and artificial

intelligence techniques have been proposed to carry out
the reverse engineering of GRNs from monitoring and
analyzing gene expression data [1-6]. These techniques
vary from the simplest Boolean models to Continuous
and Single Molecule Level models [2]. In this regard,
model-free approaches are decidedly attractive because
of the complexities of dynamic molecular networks [7].
Moreover, most of gene networks are hard to be
mapped precisely by any parsimonious mathematical
model. Then, data mining approaches offer a way to
identify regulatory mechanisms directly from the input/
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output data without any underlying model. In particular,
rule-based approaches offer several advantages when
data-driven analysis is performed. They are highly
abstract model-free techniques and hence, they require
the least amount of data, with an important ability to
perform inferences [2]. Additionally, the simplicity of
these approaches allows the inference of large size mod-
els with a higher speed of analysis. On the other hand,
they can merely display qualitative dynamic behavior [2].
Another important aspect to be considered, when deal-

ing with this biological problem, is constituted by the
manner in which the temporal patterns of a GRN are cap-
tured. As it was mentioned in some other studies [8,9], the
time-delayed gene regulation is a common phenomenon.
Thereby, multiple time-delayed gene regulations can be
considered the norm, while single time-delayed associa-
tions the exception [7]. This issue of the time-delayed
gene regulations is well recognized by several authors
[7,10-13], although, in most cases, they merely deal with
the gene networks delayed for one unit of time due to the
inherent complexity and computational cost involved.
In this paper, a new machine-learning approach for the

inference of time-lagged rules from time series gene
expression data is assessed. The discovered relationships,
that represent potential interactions between genes, may
be used to predict the gene expression states of a gene in
terms of the gene expression values of other genes and, in
this way, a putative GRN may then be reconstructed by
applying and combining these rules. The approach offers
several relevant and distinguishing features in relation to
most of the existing methods. First of all, the gene expres-
sion value discretization criterion performed in this work
is neither arbitrary nor uniform. Secondly, it can infer
rules with multiple time-delays. Also, the results can be
easily interpreted since the rules are derived from schemes
that classify the different regulation states. As well, the
algorithm can infer the relationships between genes auto-
matically from multiple microarray time series data.
Finally, the new method is capable of processing large
scale datasets in order to perform genome-wide studies.
The rest of the paper is organized as follows: in the

next subsection, several machine learning techniques
available in the literature for GRN inference are over-
viewed. Following, the underlying methodology and the
main characteristics of the new algorithm are presented.
Next, two experimental phases are described. The first
one is constituted by a detailed comparison with several
related methods; the second one contains a performance
analysis of the method in a genome-wide scale. Finally,
some conclusions are put forward.

Related work
As it was aforementioned, several statistical and artificial
intelligence techniques have been proposed in order to

reconstruct a GRN from gene expression data. In this
section, some of the approaches from the area of
machine learning will be summarized. For a more
detailed review please refer to [2,3,6].
Clustering techniques are one of the most used com-

putational strategies for analyzing microarrays [14-16].
These approaches approximate regulatory networks by
identifying groups of co-expressed genes and by analyz-
ing relationships between their regulatory regions and
DNA binding motifs targeted by known transcription
factors. However, determining the interactions that can
exist between different genes is not easily achieved by
direct clustering, particularly because genes can partici-
pate in more than one gene network. Another limitation
of these approaches is that they assume co-expression is
always equivalent to regulation. Moreover, these meth-
ods imply symmetric relationships between the genes,
which might not always correspond to biological phe-
nomena [10].
Bayesian Networks also constitute the basis of several

approaches for GRN inference [11,17,18]. These meth-
ods employ conditional probabilistic distributions for
gene interaction modeling. Particularly, Friedman et al.
[17] proposed a heuristic algorithm to produce networks
which appeared biologically plausible for the yeast cell
cycling array data. As another example, in Zou and
Conzen [18] a model for genetic regulatory interactions
that combines the simple Boolean logic semantics of
Boolean Networks and the uncertainty offered by Baye-
sian Networks was proposed. Despite the strong theore-
tical rationale behind these approaches, the exponential
explosion of the parameter space required for these
models, together with the large quantity of data needed
to make reliable inferences, reduces their capacity to
infer complex GRNs by only using gene expression data.
Moreover, since they are acyclic directed graphs, they
cannot represent an auto regulation or a time-course
regulation in a straightforward way [19].
As well, the Apriori Algorithm is also a classic

method, designed to operate on databases for learning
association rules [20]. In Baralis et al. [21], this data
mining technique was used for the extraction of time-
delayed association rules in gene expression data. They
mine the rules by means of the application of the algo-
rithm on matrices of time-lagged gene expression pro-
files, similar to those used in [7]. Following the same
basis, in Nam et al. [22] a modified version of the
Apriori Algorithm was proposed. In this work, they
extended the original method in order to consider tem-
poral item sets, allowing the extraction of temporal
association rules. Since the performance of this method
highly depends on the parameters set being selected,
they employ a parameter fitting phase that uses known
regulation information in order to find the best setup
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for a given dataset. However, Apriori based methods
also scale poorly and are sometimes impractical with
high dense datasets such as microarrays [3], due to the
high-computational cost of the evaluation of candidate
and test sets.
Decision trees are also among the most popular classi-

fication algorithms in current use within data mining
and machine learning research areas. In this sense, Soi-
nov et al. [12] approached the task of reconstructing
GRNs as a classification problem, proposing the applica-
tion of decision trees to infer classifiers that may repre-
sent regulatory rules (relationships) between genes. In
this work the authors have considered at most one unit
of time-delay and have applied the C4.5 algorithm to
infer the decision trees [23]. In the same regard, Li et al.
[7] proposed the application of decision trees to infer
relationships with one or more units of time-delay, as a
generalization of Soinov’s method. For each target gene,
they constructed its time-delayed gene expression profile
and then used a decision tree to discover the time-
delayed regulations that modulate the activities of the
target gene. Although these are sound and conceptually
interesting approaches, working directly on large data-
sets of thousands of genes, they can be computationally
highly demanding.
Boolean Networks were one of the first models to be

employed in GRNs inference [24,25] and new variations
of this approach have been recently published [26].
These models basically aim at inferring logical rules
from a discretization of gene expression time series.
Even though these models can be easily applied, they
depend on arbitrary discretizations of the gene expres-
sion values [12], which impose strong assumptions and
restrictions about the biological system under study. In
order to overcome this limitation, Ponzoni et al. [10]
proposed a machine-learning algorithm called GRNCOP
based on combinatorial optimization that does not
assume arbitrary nor uniform gene expression value dis-
cretizations. The thresholds are calculated dynamically
by applying the same continuous-valued attribute discre-
tization techniques as those used for classification algo-
rithms based on decision trees. However, this
discretization is performed merely for regulatory genes,
since the thresholds for the target genes are calculated
by using the mean expression value. Another limitation
is that it is only able to infer rules of one unit of time-
delay at most. This method is in fact the antecessor of
the approach proposed in this work, called GRNCOP2,
in which all these limitations are overcome.
With the exception of clustering approaches, all of the

aforementioned rule-based mining algorithms have been
assessed only for highly reduced datasets. Although per-
forming over a small amount of data can give an idea of
the performance of a method, in any real scenario the

large size and the amount of datasets available impose
another challenge on the reconstruction of GRNs that
few authors have considered: the scalability problem [3].
This issue represents one of the most important weak-
nesses of the previously cited studies for rule-based
inference methods, due to the lack of evidence that they
can actually perform over large datasets, thus preventing
their applicability in any complex study. In this context,
the algorithm presented in this work exhibits most of
the desirable features mentioned before, and in addition
it successfully deals with the main drawbacks detected
in the existing methods.

Results and Discussion
For this work, the time series encoded in the gene expres-
sion dataset are represented by means of a gene expression
data matrix, X, where the rows and columns represent
genes and time-points, respectively. In this way, each ele-
ment xij of X contains the expression value of genei in the
time-point (sample or experimental condition) j. Although
the gene expression values belong to a continuous range
of the real numbers, it is possible to define a finite expres-
sion state set for each gene by means of a discretization
procedure. Such a procedure is required in order to
encode the inputs for any combinatorial optimization pro-
cess or machine-learning method. In this paper we work
with two states for each gene: upregulated (when the gene
is expressed with a value greater than a specific discretiza-
tion threshold) and downregulated (when the gene is
expressed with a value lower or equal to a specific discreti-
zation threshold).
Therefore, the inference process requires the definition

of discretization thresholds in order to infer putative reg-
ulatory relationships between genes. These “discretization
thresholds” have traditionally been estimated as unique
static values for all of the genes under study. For exam-
ple, ad hoc methods based on mean expression values
have been applied. However, a more biologically mean-
ingful scheme should model the fact that a gene may
actually have distinct discretization thresholds in relation
to different genes in the GRN [10]. For example, regard-
ing the regulatory network under study in this work that
corresponds to the Saccharomyces cerevisiae organism,
the CLB2 and SWI5 genes are shown to be potentially
activated by CLB1 gene, but their respective upregulation
thresholds are different. Therefore, a fundamental pro-
blem consists in the estimation of the regulation thresh-
olds for each gene in relation to every potential target
gene, which can reflect significant interactions between
them with a higher level of accuracy.
In this regard, two different types of discretizations are

defined in this paper. Broadly, the first one is to set the
state of each target gene, and it is called Target Discreti-
zation Threshold (TDT). The second one is to evaluate
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the potential interaction between each pair of genes and
it is calculated in an adaptive gene-pair-specific way.
This last discretization is called Relative Regulation
Threshold (RRT).
At this point, our hypothesis is stated as follows: rules

- potential regulatory relationships - may be accurately
inferred from gene time series data to reveal how the
present and future state of a gene may be affected by
the gene expression values of the other genes, taking
into account their RRT. In this paper, we consider time-
lagged rules that represent the situation in which the
state of a genei in a time-point j depends on the gene
expression values of other genes in the previous time-
point (that is to say, previous experimental condition) j
- w, where w is a non-negative integer value represent-
ing the time-delay in the relation. The syntax of the
rules is: < symbol >< gener>w®< symbol >< genei>
where gener and genei stand for gene regulator and
gene target respectively. The symbol + (-) on the left
side of the rule indicates above (below) some RRT for
the gener w.r.t. genei, whereas the symbol + (-) on the
right side of the rule indicates upregulated (downregu-
lated) state, depending on the TDT for the genei. For
example, the rule +/- CLB1 3® +/- CLB5 denotes that,
if CLB1 is above its RRT in relation to CLB5, tCLB1,CLB5,
in a time-point j, then CLB5 will be upregulated in the
time-point j+3 and, if CLB1 is below or equal to tCLB1,
CLB5in a sample j, then CLB5 will be downregulated in
the sample j+3. The types of rules obtained through this
scheme are similar to those studied in [7,10-12]. The
main difference is that this scheme allows the represen-
tation of both simultaneous and time-lagged rules
spanned in any unit of time-interval, which constitutes
the kind of rules that GNRCOP2 is capable of inferring.
GRNCOP2 infers the association rules described above

by exploring the possible combinations of interactions
between each pair of genes. In this sense, six particular
cases are assumed, which are represented by the non null
integer numbers between -3 and 3, and a special case that
indicates the absence of any relation represented by the
number 0. All of these cases are described in Table 1.

In mathematical terms, the inference of the rules to
reconstruct a GRN can be expressed as the following
combinatorial optimization problem:

n⋃
i=1

max
π i∈P

σ ∗ (π i, δ (X, i)) , (1)

subject to:

• n is the number of genes in the microarray dataset.
• m is the number of time-points in the microarray
dataset.
• X Î ℜnxm is the matrix with the expression data.
• P is the space of all vectors v of dimension n such
that v(r) Î {-3, -2, -1, 0, 1, 2, 3} ∀ r, r = 1..n.
• δ (X, i) is the discretization function such that δ
(X, i) = Di and Di Î {-1,1}nxm.
• π i Î P is a classifier for Di.
• s*(π i, Di) is a general performance function of π i

as a classifier of Di.

From now on, the symbol ∏w indicates the set of
optimal classifiers, ∏w = {π1, π2, ..., πn}, for a given
time-delay w. It is important to note that the general
optimization problem is the same for all the time-lagged
rules. The only difference lies in the definition of the
discretization function δ (X, i), because the delayed rules
are based on expression value discretizations of X that
consider the required temporal shift.

Algorithm
Although the basic ideas behind GRNCOP, more spe-
cifically the adaptive regulation thresholds and the
combinatorial optimization of rules classifiers, remain
in GRNCOP2, the new method constitutes a signifi-
cant evolution of the previous algorithm due to the
challenges that impose the improvements being pro-
posed. Figure 1 shows an abstract representation of
the approach. The machine-learning process used to
obtain the rules iteratively performs the search
through all the datasets for all the required time-
delays. The algorithm receives as input a set of K
microarray time series datasets and returns an array П
of dimension W that contains, in each position w, the set
of rules obtained with a time-delay w. The following sub-
section will explain in detail the main characteristics of the
procedure.

An improved discretization technique
for the target genes
In order to obtain the TDTs of the target genes,
GRNCOP2 employs a technique that is able to
infer the gene states in a more precise way, compared
to the mean expression value used in GRNCOP. In

Table 1 Types of rules inferred by GRNCOP2

Rule type Time-lagged rule associated

-3 + gener w® - genei
-2 - gener w® + genei
-1 +/- gener w® -/+ genei
0 gener does not interact with genei
1 +/- gener w® +/- genei
2 + gener w® + genei
3 - gener w® - genei

Summary of the different types of rules inferred by GRNCOP2, where w
denotes the time-delay in the regulation.
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mathematical terms, the procedure for the discretiza-
tion of a genei can be defined as follows:

min
S1,S2⊂S

(var(S1) + var(S2)), (2)

subject to:

• S is the set of sample values for the genei.
• S1 ∩ S2 = ∅, S1 ∪ S2 = S, |S1|>1 and |S2|>1.
• var(S1) and var(S2) are the variance of S1 and S2
respectively.
• S1 and S2 represent the two expression states for
the genei.

Basically, the procedure divides the samples of the genei
in the two sets that have the minimum sum of its var-
iances. The cardinality of S1 and S2 is required to be
greater than one in order to avoid the effects of a possible
outlier in the samples, since it is improbable that a gene is
clearly expressed or inhibited in only one time-point.
Thus, when the samples of a genei are separated in a parti-
tion that violates this restriction, the genei is no longer
considered in the inference process for the actual datasets.
Another approach could have been to exclude the conflic-
tive time-point in the search of the partition. However,
this can lead to the same situation described before, thus
reintroducing the issue that was supposed to be fixed.
This technique is in essence a clustering procedure

similar to a k-means with k = 2. However, since the num-
ber of clusters is 2 and the elements of S have a total
ordering, the problem can be optimally and efficiently
solved through the following deterministic procedure:

• Sort the elements of S on an array L.
• Search for the element e such that var(L[1..e]) +
var(L[e+1 ..|S|]) be the minimum.
• Return (L[e]+L[e+1])/2 as the TDT of the genei.

It is important to state that, according to Figure 1,
TDT values are calculated for each dataset separately.

Rule Consensus Process
In essence, the main loop of the algorithm applies the
same inference method to the K microarray time series
datasets given as input, and then returns the intersection
of the results for all of the datasets. The objective of this
procedure, incorporated by GRNCOP2, is to automati-
cally assess the rules obtained by the algorithm through
different datasets, thus increasing the degree of evidence
required for the potential regulatory relationships to be
returned. The intersection of the rules obtained from
two datasets k1 and k2 is defined as follows:

�k1 ∩ �k2 = (�1
k1 ∩ �1

k2 ,�
2
k1 ∩ �2

k2 , ...,�
W
k1 ∩ �W

k2 ), (3)

where:

• W is the maximum time-delay established by the
researcher.
• �k1 and �k2 are the rules obtained from datasets k1
and k2 respectively in all time-delays W.
• �w

k1 and �w
k2 are the rules obtained from datasets k1

and k2 respectively with a time-delay w.

Basically, the intersection of the results is the intersec-
tion of each component, i.e., time-delay w, of the set of
rules obtained from the K datasets. In an ideal scenario,
all the time series microarray datasets should have the
same sampling rate and then, a direct mapping between
the time-delay w and the real time-points would be
achieved. However, this is far from any real scenario

Figure 1 General schema of the GRNCOP2 Algorithm.
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due to the limited availability of replicas for the same
experiment. Moreover, the microarray time series
datasets might have been obtained under completely dif-
ferent experimental conditions, and then the sample
rates of each one may become incomparable due to pos-
sible delays in the regulation process introduced by
these experimental conditions. Nonetheless, this type of
consensus process for the rules was performed manually
by other authors [7,10,12] without any kind of
resampling or integration of the data. This leads to the
interpretation of a time-delay w as an abstract unit that
denotes a possible future relationship between the genes
participating in the rule, introducing the notion of
before, equal and after time, but not assuming when it
will exactly occur.
This type of consensus process does not limit the

number of microarray datasets employed in the infer-
ence process. Thus, the following question might arise:
is it necessary to assess the rules in all the microarray
datasets? And a straightforward answer is no. Thereby,
we have introduced a parameter on the consensus
process, called Rule Consensus Accuracy (RCA), which
specifies the minimum proportion of datasets in which a
rule must predict well in order to be returned by the
algorithm as a potential relationship. This parameter
does not impose any order of importance among the
datasets and thus, all of them have the same weight in
the consensus process. Thereby, for example, if the algo-
rithm is executed with 10 time series datasets and the
RCA parameter is set to 0.60, it means that the rules
returned by the algorithm predict well in at least any 6
datasets, no matter which ones. In this sense, and in
order to set this parameter, the researchers must take
into account the number of datasets available and,
following the previous example, a question like this
should be answered: is it enough evidence of a feasible
regulatory relationship for a rule to be supported by at
least 6 of 10 (RCA = 0.60) datasets? The answer will
naturally depend on the biological nature of the experi-
ments and on the criterion of the researcher.

Relative Regulation Thresholds
During the discretization, the real numbers correspond-
ing to the gene expression values, which are held in
matrix X, are mapped to values -1 and 1 using the func-
tion δ (X, i). The main question at this point is how to
define the RRTs for each gene in relation to the others. A
traditional approach consists in using the mean expres-
sion value of a gener over its corresponding sample set of
X. This solution is easy to implement, but it represents a
strong simplification of the reality because it assumes a
unique putative regulation threshold for each gene w.r.t.
the others. It is well known that the gene expression

value required by gener to activate (or inhibit) a genei1 is
not necessarily the same value required by the same
gener to activate (or inhibit) a genei2. For this reason, a
more flexible and dynamic threshold-selection policy that
calculates a specific regulation threshold for each pair of
genes is applied in GRNCOP2, as it was previously
employed in GRNCOP [10].
In essence, GRNCOP2 considers each expression value

shown by a gener in X as its potential discretization
threshold in relation to an already discretized genei. A
partition of the sample set of X into two subsets, namely
Do and Up (for downregulated and upregulated respec-
tively) is generated for each gener and each candidate
threshold t. Do contains all the samples where the gener
has an expression value smaller or equal to t, whereas Up
contains all the samples where the gener has an expres-
sion value greater than t. Thereby, Do and Up represent
a partition of the sample set of the gener where it has
values equal to -1 and 1, respectively, on the basis of t.
Here, t constitutes the candidate discretization regulation
threshold for the gener in relation to genei.
The next step consists in the calculation of the parti-

tion entropy, which is a statistical indicator of the quality
of a threshold t as a discretization value for gener w.r.t.
the genei. To further illustrate this concept, suppose that
we are trying to infer the potential regulators of the genei
(already discretized by using the TDT). Then, for each
gener (potential regulator of genei), GRNCOP2 selects
the threshold t, as the RRT, that minimizes the partition
entropy by using (4). In numerical terms, the partition
entropy is 0 when all the samples satisfy the same rule
type (ideal situation from a predictive viewpoint) and the
partition entropy is 1 when the samples belong to both
regulation scenarios in equal proportion (50 percent and
50 percent). Then, when the partition entropy value asso-
ciated with a discretization approximates to 0, the thresh-
old that generates this discretization represents a better
solution. Thus, such a threshold value allows to optimally
detect potential significant relationships between genei
and gener in terms of the rule type (see Table 1). The
entropy calculation is based on definitions given in [27]
and the entropies for Do and Up are based on the discre-
tized values of the genei obtained with the corresponding
TDT. The partition entropy equation was previously
applied by Kohani [28] as follows:

PEntropy(R, t;XS) =
|Do|
|XS| Entropy(Do) +

∣∣Up∣∣
|XS| Entropy(Up),

(4)

where:

• R identifies the gene under consideration (potential
regulator).
• t is the partition threshold.
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• XS is the set of samples of gener corresponding to
the time series X.
• Do is the subset of X with the samples where the
gene expression value of the gener is less than or
equal to t.
• Up is the subset of X with the samples where the
gene expression value of the gener is greater than t.

After that step, for each possible genei, the function δ
(X, i) maps the corresponding gene expression values in
X to the discrete matrix Di using the previously calcu-
lated thresholds. Thereby, each genei in the original
matrix X is associated with a discrete matrix Di. How-
ever, unlike GRNCOP and due to efficiency reasons, in
GRNCOP2 the discrete matrix Di is not actually calcu-
lated. Instead, each element of Di is computed by
demand by means of an indirect access to the global
matrix X, through the specific regulation threshold for
gener with respect to the genei, in the corresponding
time-delay w and dataset k, thus improving the compu-
tational time required for execution.

Time-Lagged Inference
The time-lagged inference process is represented as the
middle loop in Figure 1. It merely consists in iteratively
searching for rules in each time-delay w employing the
Classifier Inference Process. However, there are several
key aspects in this process that are important to remark.
For each discrete matrix Di, the actual time-delay w
under evaluation needs to be considered, i.e. the tem-
poral shift for the vector encoding the expression values
of the genei. Thereby, in order to evaluate all the possi-
ble regulators for the genei, it is necessary to remove of
the first w time-points of the genei, the last w time-
points of the rest of the genes (those that will act as
possible regulators for the genei) and subsequently rea-
lign the samples. Thus, as the value of w increases,
fewer are the samples from which the rules can be
inferred. This limits the max value of W to m-4, being
m the number of time-points of the dataset that has the
fewer amount of samples. This limitation is due to the
TDTs employed in this paper, since it requires at least 4
samples to determine the states of a genei. In the
extreme case that W is set to the max possible value,
the discrete matrix Di will have only four time-points
for that dataset, increasing the possibility of inferring
rules by chance due to the low number of samples.
Nonetheless, it is a requirement for the researcher to
establish the best value for W, depending on the
amount of time-points of the available datasets and on
the likelihood that such events can actually occur. In
this regard, suppose that K datasets are available with
mk time-points sampled at a Δtk time interval each.
Thereby, if the hypothesis regarding the nature of

biological experiments is that the regulatory events may
occur with at most a ΔtH time-delay, then W can be
calculated as follows:

W =

⎧⎪⎪⎨
⎪⎪⎩

⌈
�tH

/
min
1≤k≤K

(�tk)

⌉
if

⌈
�tH

/
min
1≤k≤K

(�tk)

⌉
≤ min

1≤k≤K
(mk) − 4

min
1≤k≤K

(mk) − 4 if otherwise
(5)

The previous equation is very simple and merely con-
sists in the ratio of the max regulatory delay given by
the hypothesis and the minimum time sampling of the
datasets, bounding this value to the maximum possible
time window for the K datasets.
Additionally, the discretization processes also need to

consider the time-delay. In the case of the discretization
of the target genes, the TDTs are calculated at the begin-
ning of the algorithm, for all time-delays W and for all
datasets K. This implies that the first w elements of the
samples, particularly when w ≥ 1, are omitted in the
calculation of the TDTs due to the temporal shift needed
to infer the time-lagged rules. In the same regard and in
the case of the discretization policy employed for the
potential regulatory genes, the RRTs are calculated omit-
ting the last w elements of the samples. However, it is
necessary to calculate the RRTs at the beginning of the
Rule Consensus Process in order to reduce the amount
of space required for all possible combination of gener,
genei, time-delays w and datasets k.

Classifier Inference Process
As defined in (1), the optimization problem consists in
finding a set of optimal π i which define potential rules
between the genei and the other genes (potential regula-
tors). Basically, π i is a vector that represents the set of
potential regulators of the genei. Each component r of
the vector holds an integer value between -3 and 3,
which represents one of the seven regulatory cases
shown in Table 1. Thus, π i (r) indicates the regulation
case detected between gener and genei, in other words,
π i is a gene profile classifier that represents the potential
regulators for the genei along with the characteristics of
these potential relationships.
Taking into account that the rules inferred by

GRNCOP2 are pair-wise qualitative, the components of
π i can be assumed as independent from each other
from an optimization point of view. Thus, the optimal
classifier corresponding to a discrete matrix Di can be
calculated in a greedy manner by means of a construc-
tive approach, maximizing a performance function on
each component π i(r). In our Classifier Inference
Process, the optimization process for π i, as it was intro-
duced in (1), is performed as follows:

max
π i∈P

σ ∗ (π i,Di) ≡ max
c∈{−3,−2,−1,1,2,3}

σ (π i(r),Di, c) ∀r, r = 1..n, (6)
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where

• c Î {-3,-2,-1,1,2,3} is one of the regulatory cases
shown in Table 1.

Note that the definition of s*(π i, Di) is not necessary
due to the assumption of independence among the com-
ponents of π i. In this work, the following performance
function is used for optimize the r-th component of π i:

σ (π i(r),Di, c) =
(

TPc
TPc + FPc

)
×

(
TNc

TNc + FNc

)
, (7)

where

• TPc (True Positives for the rule type c) is the num-
ber of positive cases of Di correctly classified by π i(r)
when it is considered as a rule of type c.
• FNc (False Negatives for the rule type c) is the
number of positive cases of Di incorrectly classified
by π i(r) when it is considered as a rule of type c.
• TNc (True Negatives for the rule type c) is the
number of negative cases of Di correctly classified by
π i(r) when it is considered as a rule of type c.
• FPc (False Positives for the rule type c) is the num-
ber of negative cases of Di incorrectly classified by
π i(r) when it is considered as a rule of type c.

In the previous formula, the first factor is the positive
predictive value, whereas the second one is the negative
predictive value. Both factors generate values between 0
and 1 and consequently s(π i(r), Di, c) is always in this
range. The best scenario for a potential interaction
between a genei and a gener is obtained when s(π i(r),
Di, c) = 1 because this represents the situation where all
expression states were correctly classified, whereas s
(π i(r), Di, c) = 0 refers to the opposite case. Note that c
= 0 is not considered in the maximization of the perfor-
mance function since the values of TPc, TNc, FPc and
FNc cannot be determined in that case. The main differ-
ence between this performance function and the for-
mula employed in [10] is that this one is focused on the
precision of the rules as defined in Table 1.
In practice, a threshold value (namely the Accuracy

parameter) is established in order to return the rules
that achieve a score above that specific value. This value
acts as a cut off for the components of π i, discarding
those rules that do not predict well according to the
maximum value of (7). The discarded rules are consid-
ered as rules of type 0 according to Table 1. For the
cases 1 and -1, the performance function in (7) is
applied as stated, differing only in the way that the posi-
tive and negative cases are considered. For instances 2,
3, -2 and -3, only one factor of the performance func-
tion is employed (the one corresponding to the rule

type) and, in order to avoid the rules that perform
above the Accuracy parameter with a small TP (TN) (in
relation to the number of samples), an additional para-
meter called Sample Coverage Percentage (SCP) is
defined. This parameter establishes the minimum pro-
portion of TP (TN) that a rule of the cases 2, 3, -2 and
-3 needs to achieve in order to be returned by the
algorithm. Both parameters (Accuracy and SCP) where
also utilized in the previous version. Since GRNCOP2
automatically assesses the rules in multiple microarray
datasets, the accuracy assigned to each rule that suits
the consensus process is the minimum value achieved
on all datasets, i.e., the most conservative approach.
Regarding the best setting for these parameters,

several authors [7,10-12] consider that the confident
relationships between genes are those that perform with
an accuracy above 0.70. In this sense, and as a rule of
thumb, an Accuracy parameter of 0.75 should be enough
in order to return high quality regulatory relationships
between genes in terms of (7). In the case of the SCP
parameter, the rules of the cases -2, 2, -3 and 3 are
more likelihood to be obtained by chance. Thereby, the
only way to ensure confident rules of these cases is by
means of the set of the SCP parameter close to the max
value (i.e. 1). If the SCP parameter is set to 1, then none
rule of these cases is returned by the algorithm. As
stated above, GRNCOP2 calculates π i using the same
constructive approach employed in [10], which explores
all possible combinations of values for its components
π i(r). To sum up, GRNCOP2 computes the performance
function defined in (7) for each possible interaction case
value (encoded by values ranging from -3 and 3) and
assigns the rule type c that maximizes it to π i (r). After
repeating this for each π i (r), with r = 1..n, the resulting
π i is the optimal gene profile classifier. Thereby, for a
gene expression dataset of n genes and m samples, the
computational complexity of the Classifier Inference
Process is of O(m.n2) in the worst case. If the whole
inference algorithm is considered, the time required to
infer the time-lagged rules from K datasets in W time-
delays is of O(K.W.m.n2). Although at first glance the
algorithm seems to be considerably time consuming in
terms of computational complexity, it can be efficiently
optimized in order to perform genome-wide studies, as
it will be demonstrated in the next sections.

Testing
Two different goals are devised for the study of the new
method’s performance. First, it is important to analyze
the quality of the results of GRNCOP2 with respect to
the previous version [10] and with respect to other
related approaches available in the literature [7,11,12].
For this analysis, GRNCOP2 was tested using the same
20 yeast genes selected by [7,10-12] from the microarray
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data in [16], in order to achieve a fair comparison. How-
ever, although performing over these reduced datasets
can give an adequate view of the method’s performance
for the comparison with other approaches, the scalability
problem imposes another great challenge [3]. To this
end, in a second experimental phase the performance of
GRNCOP2 on a genome-wide study for the Saccharo-
myces cerevisiae organism with complete datasets was
carried out.

Performance assessment
In order to measure the quality of the results of a gene
rule mining algorithm, the most frequently used tech-
nique is the rule-by-rule analysis of the biological rele-
vance of the relationships obtained by the method.
This is done by means of a search through the litera-
ture, looking into known biological interactions for the
genes under consideration. This approach proves to be
sound when a single method is evaluated; however, it
has drawbacks that make its application in most sce-
narios almost impossible. First, it is only applicable
when a small set of rules is evaluated, since the whole
process is performed manually. Another disadvantage
is that it can not be used for comparing several meth-
ods, since the quality of a rule is biased by the expert
that evaluates it, and therefore it is impossible to
establish a fair order of merit for the algorithms under
consideration. We do not claim that the use of this
evaluation process for a gene rule mining method is
inadequate; we just say that it needs to be used as a
complement of some other technique that allows fast,
direct and unbiased evaluation and comparison of
different approaches.
In this context, several complex analyses of potential

associations between genes are available in different
databases for the yeast organism [29-33]. These studies
can be used for the automatic assessment of the quality
of the results obtained by an algorithm measuring
several well-known data mining metrics, such as preci-
sion, sensitivity and specificity. Regarding the Yeastnet
v. 2 [29], 102.803 linkages among 5.483 yeast genes
were reported as potential gene-pairs associations,
assigning a score value for each association (with stron-
ger associations scoring higher). In the same way, the
Gene Ontology (GO) annotation [30] is another source
of potential associations for genes. In [29], 66.174 refer-
ence gene pairs representing all gene pairs sharing any
GO biological process terms between levels 2-10 of a
Gene Ontology annotation (downloaded from the
Saccharomyces cerevisiae Genome Database (SGD) [30])
were used as a benchmarking set. Additionally, the co-
citation approach [31-33] offers another source of inde-
pendent information in order to benchmark the results of
gene rule mining algorithms. In this case, a set of 29.135

Medline abstracts that included the word “Saccharomyces
cerevisiae“ for perfect matches to either the standardized
names or common names (or their synonyms) of 5.794
yeast genes was analyzed in [33]. They report a set of
29.483 gene pairs assigning a score value for each associa-
tion (with stronger associations scoring higher).
Therefore, the main idea for the evaluation framework

of the methods is to measure the precision, sensitivity
and specificity achieved regarding each one of the pre-
viously mentioned studies. Additionally, in the case of
[29] and [33], the score measured as the average score
values of the rules found by a method is assessed. How-
ever, since this kind of information does not consider
either the time-delay in the rules inferred by the meth-
ods or the direction of the actual interaction (none of
the genes are stated as regulator or target), a convention
must be introduced in order to make a fair comparison
between the different algorithms. In this regard, the
results of an algorithm will be transformed in order to
represent the same kind of information of the bench-
marking sets, i.e., only the actual set of gene-gene inter-
actions will be considered for the measurement, leaving
aside the notions of time-delay and regulator-target of
the rules being inferred. This avoids the repeated valida-
tion of multiple rules (due to different time-delays or
symmetric links) through the same match in the bench-
marking sets, a situation that might produce an unfair
comparison. Nonetheless, only equal time-delayed infer-
ence intervals will be considered during the comparison
of the algorithms.

Comparative study
In this section, the performance of GRNCOP2 will be
compared with the functioning of some representative
machine learning methods that are presented in the lit-
erature. The predictive efficacy was tested using the
microarray data in [34], which also includes data from
Saccharomyces cerevisiae cell cultures [35]. These data-
sets were synchronized by three different methods:
cdc15, cdc28, and alpha-factors, and they were sampled
at intervals of 10 min, 10 min and 7 min respectively.
Therefore, the corresponding gene expression datasets
may be defined as statistically independent [13]. For the
analysis performed in this section, the following 20
genes were used in order to agree with the studies in
[7,10-12]: CLN1-3, CLB1-2, CLB4-6, MCM1, SIC1,
CDC28, CDC53, MBP1, CDC34, SWI4-6, SKP1, CDC20
and HCT1. Only adjacent equidistant measurements at
the same units of time were considered with the aim of
facilitating the interpretation of time-delayed rules. In
this context, several time points for the dataset cdc15
were truncated resulting in a total of 15, 17 and 18
available time points for the cdc15, cdc28 and alpha-
factor datasets respectively.
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In this comparative study, the precision, specificity and
sensitivity were calculated regarding the reduced search
space determined by the 20 genes. Table 2 shows the
characteristics of this search space, which consists of
190 possible gene-gene interactions (where the time-
delay rules and the symmetric links are not considered
in order to match the type of information of the bench-
marking sets). It is important to note that, in this case,
the precision of the 190 possible combinations of gene-
pairs in the reference studies determines the probability
of randomly selecting a pair of genes that are validated
by these sets. In other words, the values in the precision
and score columns of Table 2 would be the expected
values if random sets (uniformly distributed) of gene-
pairs were selected. Thereby, it is very important that
the algorithms perform above these numbers.
Due to differences in the availability of the methods

and in the results reported by [7,10-12], this analysis is
performed in three different stages. In subsection A, an
evaluation of the improvements of GNRCOP2 with
respect to the previous version is presented. Subsection
B corresponds to the comparison with the other selected
methods available in the literature [7,11,12]. Finally, in
subsection C, the biological relevance of the rules found
by GNRCOP2 for this reduced problem instance is
discussed.
A. Performance of GRNCOP2 vs. GRNCOP
The analysis of the improvements of GRNCOP2 over
GRNCOP [10] was performed for the 20 yeast genes
previously mentioned on the cdc15, cdc28 and alpha-
factor datasets. In order to perform a fair comparison,
both algorithms employ the Rule Consensus Process
previously described with the RCA parameter set to 1.
In this way, several runs of each algorithm were per-
formed varying the Accuracy parameter from 0.60 to
0.90 with increments of 0.05, and the SCP parameter
from 0.60 to 0.95 with increments of 0.05. This result
on a total of 56 runs for each method, and the set of
associations obtained in each case were measured in
terms of the precision, sensitivity, specificity and score
metrics previously defined. The Accuracy value of 0.95
was omitted since both algorithms were unable to find
any rule with this setting. It is also important to state
that the focus was put on simultaneous and single time-
delayed rules (i.e. W = 1 in the case of GRNCOP2),
since GRNCOP was not designed for searching rules
with multiple time-delays [10]. The average results of

the 56 runs in term of precision, specificity and
sensitivity on Yeasnet [29], GO [30] and Co-citation [33]
are shown in Table 3 together with the average score in
the case of [29,33]. The results of both algorithms in
each individual run regarding the previously mentioned
metrics are available in the additional file 1.
As it can be observed, GRNCOP2 outperforms (on

average) GRNCOP in several of the proposed metrics,
whereas both algorithms perform significantly above the
random selection, as expected. In particular, while
GRNCOP2 is on average more precise and more specific
than GRNCOP, this last one recovers on average a big-
ger number of the “relevant interactions” (i.e. it is more
sensitive). These results may be explained by the fact
that GRNCOP actually recovers on average twice the
amount of the associations obtained by GRNCOP2.
However, since the values in Table 3 represent the
average of the 56 runs, the real picture may be misun-
derstood. Therefore, in order to correctly establish the
behavior of each algorithm, several graphics were per-
formed. Figures 2a to 2e depict the precision and score
metrics achieved by both algorithms in each of the 56
runs w.r.t. the Coverage Percentage of the Combinatorial
Search Space (namely CP-CSS), i.e., the percentage of
associations returned by the methods in relation to all
possible gene pair-wise combinations (see Table 2.).
Three important observations can be inferred from

these figures. The first one is that in various cases,
specifically at low values of the Accuracy parameter (see
additional file 1 for more details), GRNCOP returns
almost the 80% of all possible gene pair-wise combina-
tions. In this way, its performance decreases at almost
the level of a random selection due to the excessively
large amount of associations that are found. This
explains the higher values on the average sensitivity and
number of associations showed in Table 3. Moreover,
this behavior in not desirable at all since it may limit
their applicability in genome-wide contexts, where the
number of possible combinations of associations reaches
a very high dimensionality. The second but not less
important observation is that at the same number of
associations returned by the algorithms, the interactions
found by GRNCOP2 seem (in general) to be more
precise and with higher scores than those found by
GRNCOP. This is particularly relevant since this beha-
vior evidences the improvements achieved by the modi-
fications included to the inference algorithm previously

Table 2 Characteristics of the 190 possible gene pair-wise interactions

Yeastnet Co-citation GO number of possible associations

precision score precision score precision

All gene pair-wise combinations 51.58% 1.53033843 43.68% 1.3487118 45.26% 190

Characteristics of the 190 possible gene pair-wise interactions for 20 genes in terms of precision and score metrics on the Yeastnet, Co-citation and GO reference sets.
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detailed. The third observation has to do with the differ-
ent shapes in the distribution of the points of both
methods in the figures. Along with the high number of
associations discussed above, it seems that GRNCOP
has fewer variation in the precision and score values
achieved w.r.t. those obtained by GRNCOP2. However,
this can be explained by the fact that GRNCOP is
almost insensible to variations of its SCP parameter on
the values employed in this comparison (see additional
file 1). This is most likely related to the mean expression
value employed by GRNCOP for the discretization of
target genes. In general, an average value of the expres-
sion profile of a gene will tend to split the samples into
two partitions of approximately the same size (except in
the presence of samples with high relative absolute
value w.r.t. the others). Thus, only a small number of
rules of the cases -3, -2, 2 and 3 will satisfy the SCP
threshold; in other words, GRNCOP requires even lower
values of the SCP parameter in order to obtain more
rules of these types. Moreover, this situation increases
the probability of finding by chance these kinds of rules,
given that there are fewer samples for the inference pro-
cess. Nonetheless, these observations do not invalidate
the conclusions regarding the improvements of
GRNCOP2 over GRNCOP, since it has been observed
that, at lower values of the SCP parameters, both algo-
rithms tend to perform worse in terms of the proposed
metrics (see additional file 1 for more details).
Finally, it is also important to analyze the behavior of

both algorithms in relation to the sensitivity and specifi-
city metrics. Figures 3a to 3c depict the sensitivity vs.
specificity of the algorithms on the three benchmarking
sets for the 56 runs. It is easy to note that, in general,
GRNCOP2 is superior to GRNCOP, since at the same

levels of sensitivity (specificity), the specificity (sensitivity)
achieved by the former is higher. Moreover, although
GRNCOP is able to recover almost 80% of the relevant
associations in all the cases, this is due to the large
number of interactions returned by the algorithm, as it
was previously discussed. Therefore, these results show
that, in this case of study, GRNCOP2 performs better
than GRNCOP, and that the modifications proposed in
the new methodology really improve the inference pro-
cess since the results seem to be more relevant in terms
of the precision, sensitivity, specificity and score metrics.
B. Performance of GRNCOP2 vs. rule-based methods
In this section, the performance of GRNCOP2 in terms
of the proposed metrics w.r.t. other algorithms described
in the literature will be compared. This comparison is
limited conforming to the results reported by [7,11,12]
due to the unavailability of the algorithms. To make a
fair comparison with these methods according to the
Rule Consensus Process of GRNCOP2 with an RCA
parameter of 1, the rules found by the three approaches
were filtered in accordance with the accuracy reported.
In this way, only the rules which achieved an accuracy
of at least 0.75 on the three datasets (cdc15, cdc28 and
alpha-factor) were selected for this study. In the case of
[11] and [12], the comparison is carried out only with
simultaneous rules since the single time-delayed rules in
[11] were validated with just one dataset (cdc15) and in
[12] the accuracy values were not reported for those
rules. Therefore, Table 4 shows the results of the pro-
posed metrics for the simultaneous rules of [11,12] and
GRNCOP2 executed on the three datasets with an
Accuracy of 0.75, a SCP of 0.95, an RCA of 1 and with W
= 0. Table 5 shows the same metrics for the rules with
time-delays from 1 to 5 of [7] and for GRNCOP2 with
the same previous parameterization, except for W which
was set to 5 and then, the simultaneous rules were
removed in order to make the comparison. This parame-
terization has been established as follows: W = 0 denotes
that GRNCOP2 will only perform the search of the
simultaneous rules; in the case of W = 5, it denotes that
the search will be carried out upon five units of time-
delay; RCA = 1 says that the rules must predict well in all
the datasets; SCP = 0.95 aims to obtain rules of the cases
-3,-2, 2 and 3 with high TP (TN) rates; and the Accuracy
= 0.75 is intended to represent the same level of accuracy
of the other methods, although this is not necessarily
true due to the different criteria employed in each algo-
rithm for the evaluation of the rules. Note that the values
of the metrics in Table 4 and Table 5 were calculated
considering only the pair-wise interaction sets of the
genes, as it was previously explained.
As shown, GRNCOP2 performs equally or better with

this level of accuracy in terms of almost all the proposed
metrics. The differences w.r.t. the referential methods

Table 3 Average values for the metrics achieved by
GRNCOP2 and GRNCOP

GRNCOP2 GRNCOP RANDOM

average precision 84.50% 76.69% 51.58%

average sensitivity 16.25% 28.13% -

Yeastnet average specificity 94.66% 82.43% -

average score 2.79 2.49 1.53033843

average precision 84.13% 74.86% 43.68%

Co-citation average sensitivity 19.02% 30.46% -

average specificity 95.28% 82.76% -

average score 2.91 2.50 1.3487118

average precision 70.73% 52.25% 45.26%

GO average sensitivity 13.93% 22.55% -

average specificity 91.48% 76.60% -

average number of associations 20.84 43.73 -

Average precision, sensitivity, specificity and score values achieved by GRNCOP2
and GRNCOP over 56 runs. The precision and score of the random selection is
also included. The bolded scores denote the best values.
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Figure 2 Precision and score values achieved by GRNCOP2 and GRNCOP. Values of precision and score metrics achieved by GRNCOP2 and
GRNCOP in each of the 56 runs w.r.t. the CP-CSS. Figure 2a: yeastnet precision. Figure 2b: yeastnet score. Figure 2c: co-citation precision. Figure
2d: co-citation score. Figure 2e: GO precision.
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are more evident in the case of the simultaneous rules
(see Table 4) than in the case of the time-lagged rules
(see Table 5). However, in this last scenario, GRNCOP2
is able to recover twice as many relevant interactions
(see the sensitivity values) as Li et al. with the same
level of precision. Although these results are not conclu-
sive in the determination of the best method since it is

limited to only one case of study in one level of
accuracy, they provide insight regarding the real perfor-
mance of the proposed approach. In this sense, these
observations clearly indicate that GRNCOP2 is a
method capable of inferring relevant interactions with
high levels of precision that other methods of the litera-
ture are unable to find.
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Figure 3 Sensitivity and specificity of GRNCOP2 and GRNCOP. The sensitivity and specificity values achieved by GRNCOP2 and GRNCOP on the
three benchmarking sets for the 56 runs. Figure 3a: sensitivity vs. specificity regarding the Yeastnet set. Figure 3b: sensitivity vs. specificity regarding
the Co-citation set. Figure 3c: sensitivity vs. specificity regarding the GO set.

Table 4 Values of the metrics achieved by GRNCOP2, Soinov et al. and Bulashevska and Eils

GRNCOP2 Soinov et al. Bulashevska and Eils RANDOM

Yeastnet precision 93.33% 50.00% 88.89% 51.58%

sensitivity 14.29% 3.06% 8.16% -

specificity 98.91% 96.74% 98.91% -

score 3.04 1.84 2.77 1.5303384

Co-citation Precision 93.33% 50.00% 88.89% 43.68%

sensitivity 16.87% 3.61% 9.64% -

specificity 99.07% 97.20% 99.07% -

score 3.26 1.85 2.84 1.3487118

GO precision 73.33% 50.00% 55.56% 45.26%

sensitivity 12.79% 3.49% 5.81% -

specificity 96.15% 97.12% 96.15% -

number of associations 15.00 6.00 9.00 -

Values achieved by GRNCOP2, Soinov et al. and Bulashevska and Eils for the proposed metrics, for simultaneous rules at an accuracy level of 0.75. The precision
and score of the random selection is also included. The bolded scores denote the best values.
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C. Biological relevance of the results
The rules obtained by GRNCOP2 with an Accuracy =
0.75, a SCP = 0.95, RCA = 1 and W = 5, for the cdc15,
cdc28 and alpha-factor datasets are summarized in
Table 6. The results depicted in this table are in fact the
same as those employed in the comparison study of the
previous subsection. The only difference lies in that, in
this case, the time-delay and the symmetric links of the
interactions are maintained, given that the evaluation
with the benchmarking sets is not performed. The last
three columns indicate interaction relationships that
were also inferred by the other methods, using the same
three datasets and the same level of accuracy, as it was
previously described. Only rules of the cases 1 and -1
were found due to the high SCP value employed. Note
that multiple time-delays allow for discovery of addi-
tional interactions that are not visible in GRNCOP.
Also, none of the time-delayed rules found by
GRNCOP2 were found by [7], and thus the correspond-
ing column was omitted on Table 6. This fact might be
related to the different discretization processes, since in
[7] a fixed threshold (zero) was employed to determine
the states of all genes in all time-delays.
The biological relevance of the inferred rules was esti-

mated by analyzing whether such relationships reflected
key functional properties relating to the different cell
cycle phases: G1, S, G2, M, M/G1. Genes CLN1 and
CLN2 transcribe G1-cyclins, while CLB5 and CLB6 tran-
scribe B-cyclins. They share a similar expression pattern
and attain their highest expression levels during the G1
phase, which can be verified in the analyzed experimen-
tal data [36-38]. This knowledge is consistent with the
rules: +/-CLB6 0® +/-CLB5, +/-CLB6 0® +/-CLN2,
+/-CLN2 0® +/-CLB5, +/-CLB5 0® +/-CLB6, +/-CLN1

0® +/-CLB6, +/-CLN2 0® +/-CLB6, +/-CLN1 0® +/-
CLN2 and +/- CLB6 1® +/-CLN2. These rules are also
consistent with some observations on the partial func-
tional redundancy existing among CLB5, CLN1 and
CLN2, which has been reported by Epstein and Cross
[39] and Levine et al. [40]. In particular, the short time-
delay link indicated by the rule +/-CLB6 1® +/-CLN2,
detected only by GRNCOP2, can be explained in terms
of the progression of the mRNA concentrations of genes
CLB5, CLB6 and CLN2 at the beginning of the yeast cell
cycle, as it is detailed in the budding yeast molecular
model presented by Chen et al. [37].

Table 5 Values of the metrics achieved by GRNCOP2 and
Li et al

GRNCOP2 Li et al. RANDOM

precision 100.00% 100.00% 51.58%

Yeastnet sensitivity 10.20% 5.10% -

specificity 100.00% 100.00% -

score 3.03 2.89 1.5303384

Precision 100.00% 100.00% 43.68%

Co-citation sensitivity 12.05% 6.02% -

specificity 100.00% 100.00% -

score 3.37 2.99 1.3487118

precision 90.00% 80.00% 45.26%

GO sensitivity 10.47% 4.65% -

specificity 99.04% 99.04% -

number of associations 10.00 5.00 -

Values achieved by GRNCOP2 and Li et al. for the proposed metrics, for rules
with time-delays from 1 to 5 at an accuracy level of 0.75. The precision and
score of the random selection is also included. The bolded scores denote the
best values.

Table 6 Rules inferred by GRNCOP2

Rule found by

Rules GRNCOP Soinov
et. al.

Bulashevska
and Eils

+/- CLB1 0 ® +/- CLB2 * - +

+/- CLB1 3 ® +/- CLB5

+/- CLB1 3 ® +/- CLB6

+/- CLB1 0 ® -/+ CLN2 *

+/- CLB1 0 ® +/- SWI5 *

+/- CLB2 0 ® +/- CDC20

+/- CLB2 0 ® +/- CLB1 * * +

+/- CLB2 3 ® +/- CLB5

+/- CLB2 3 ® +/- CLB6

+/- CLB2 0 ® -/+ CLN2

+/- CLB2 0 ® +/- SWI5 *

+/- CLB5 4 ® +/- CLB2

+/- CLB5 0 ® +/- CLB6 * +

+/- CLB5 3 ® -/+ CLB6

+/- CLB6 0 ® -/+ CLB1 +

+/- CLB6 0 ® +/- CLB5 * +

+/- CLB6 3 ® -/+ CLB5

+/- CLB6 0 ® +/- CLN2 *

+/- CLB6 1 ® +/- CLN2

+/- CLN1 0 ® +/- CLB6 *

+/- CLN1 2 ® -/+ CLB6

+/- CLN1 0 ® +/- CLN2 *

+/- CLN2 4 ® +/- CLB2

+/- CLN2 0 ® +/- CLB5 *

+/- CLN2 0 ® +/- CLB6 *

+/- CLN2 2 ® -/+ CLB6

+/- CLN2 3 ® -/+ CLB6

+/- SIC1 0 ® +/- CLB5

+/- SWI4 0 ® +/- CLB5

+/- SWI4 4 ® -/+ CLB5

+/- SWI5 0 ® +/- CDC20 *

+/- SWI5 0 ® +/- CLB2 * +

+/- SWI5 3 ® +/- CLB6

Rules inferred by GRNCOP2 using 20 cyclin genes of the datasets from
Spellman et al. (1998). The last three columns indicate whether the rules were
found by any of the other methods. The complete rules are represented by
an *; + for positive regulatory relationship, and - for the negative regulatory
relationship.
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CLB1 and CLB2 are specific cyclins of the G2 phase,
and there is biological evidence that they are
co-expressed in this process [41]. Gene SWI5 is a tran-
scription factor whose activation occurs during the G2
phase. These facts justify the following rules: +/-CLB2
0® +/-CLB1, +/-CLB1 0® +/-CLB2, +/-CLB1 0®
+/-SWI5, +/-CLB2 0® +/-SWI5, +/-SWI5 0® +/-CLB2,
which are further supported by biological evidence pre-
sented by Koranda et al. [42]. In particular, the rule
+/-SWI5 0® +/-CLB2 was only discovered by the algo-
rithm GRNCOP2. Furthermore, the transcription of
SWI5 is activated later in phase S, and its peak of
mRNA concentration occurs during the G2 phase [43];
whereas CLB6 is active in phase G1 of the cell cycle.
This information is consistent with the time-lagged rule:
+/-SWI5 3® +/-CLB6.
It is also well know that in budding yeast the G1

cyclins, such as CLN1 and CLN2, are expressed in G1
and S phases, while mitotic cyclins such as CLB1 and
CLB2 are expressed in G2 and M phases. Amon et al.
[44] found that the CLBs play a central role in the tran-
sition from S to G2 phases, showing evidence that CLBs
repress CLNs. This negative regulation of CLNs may
occur via the transcription factor SWI4, because CLBs
are necessary for G2 repression of SCB-regulated genes
like CLN1 and CLN2. On the other hand, Andrews and
Measday [45] present evidence that the Cyclin/CDK
complexes (CDC28/CLN1 and CDC28/CLN2) regulate
CLB proteolysis. This data is consistent with the inhibi-
tory relationships inferred between G1- and G2-specific
genes: +/-CLB1 0® -/+CLN2, +/-CLB6 0® -/+CLB1
and +/-CLB2 0® -/+CLN2. In particular, the last rule
was only inferred by GRNCOP2. The reader is referred
to [41,43] and [46] for additional detailed information
on the biological relevance of these associations.
With regard to SIC1, it is well known that this gene is

an inhibitor of CLB complexes, and that it is active
during the G1 phase - together with CLB5 and CLB6 -
inhibiting CLB1 and CLB2 [47]. This knowledge vali-
dates the new rule: +/-SIC1 0® +/-CLB5 inferred by
GRNCOP2. CDC20 and SWI5 are transcribed later in
the S/G2 phase [38], which explains the association
represented by the rule: +/-SWI5 0® +/-CDC20. This
rule was not detected by the methods compared with
GRNCOP2. Printz et al. [48] presented evidence that
CLB2 stimulates the synthesis of CDC20. This feature is
captured by the rule: +/-CLB2 0® +/-CDC20.
The protein SWI4 is a component of the SBF com-

plex, which controls the expression of genes during
phase G1 [49]. This is in accord with the activator role
of SWI4 on the genes expressed in the G1 phase, as
represented by the rule: +/-SWI4 0® +/-CLB5. These
observations offer evidence of the biological relevance of
the association rules inferred by GRNCOP2.

Finally, the opposite behavior between G1- and
G2-specific genes - as it is evidenced by rules obtained
from the analysis of simultaneous time-points of the
microarray datasets - turns into similar activation pat-
terns when some time-delay is considered, as a conse-
quence of the pattern comparison through the different
cellular phases. In other words, if GRNCOP2 matches
the behavior of a G1-cycling gene in G1 phase with the
behavior of a G2-cycling gene in G2 phase a positive
correlation is inferred. This is the case of the following
rules: +/-CLB1 3® +/-CLB5, +/-CLB1 3® +/-CLB6,
+/-CLB2 3® +/-CLB5, +/-CLB2 3® +/-CLB6, +/-CLB5
4® +/-CLB2 and +/-CLN2 4® +/-CLB2. In a similar
way, when GRNCOP2 compares the activation patterns
of genes with high expression levels during the G1
phase in contrast with the expression pattern of these
same genes during G2 phase, some opposite and logical
relationships may emerge: +/-CLB5 3® -/+CLB6,
+/-CLB6 3® -/+CLB5, +/-CLN1 2® -/+CLB6, +/-CLN2
2® -/+CLB6, +/-CLN2 3® -/+CLB6 and +/-SWI4 4®
-/+CLB5. Take for example the rule +/-SWI4 4®
-/+CLB5 which has a contradictory interaction with the
rule +/-SWI4 0® +/-CLB5. Figure 4 shows the real and
discretized expression profiles of both genes with 0 (left)
and 4 (right) units of time-delay for the cdc15 dataset.
As it can be observed, both rules are perfectly inferable
from the algorithmic point of view and, a priori, equally
probable in biological terms. Thus, in such cases of con-
tradictory interactions, a deeper analysis is required in
order to establish the actual relation between the genes.
Nonetheless, it is important to note that the inference
of these time-lagged contradictory interactions can help
in the analysis of the dynamic behavior pattern of acti-
vation and repression of the genes along the different
cell-cycle phases, and may assist in the identification of
the phase transitions in the data.
Apart from the previous analysis, it is necessary to

clarify that we do not claim that the rules inferred by
GRNCOP2 always represent confident regulatory asso-
ciations between genes. We think that our extracting-
rules approach can be useful for the identification of
some promising hypothesis, whose corroboration by
biological experiments will always be mandatory in
order to obtain curated new knowledge. In addition to
this, it should be clear that important known interac-
tions will not be found by GRNCOP2 (and by any other
data driven approach) if the microarray data does not
have correlations among the genes involved in such
relations in the time-lags being analyzed.

Genome-wide study
The aim of this study is to show the usefulness and cap-
ability of GRNCOP2 in genome-wide studies. To
account for this, we have applied the proposed
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algorithm to several microarray time series datasets
[16,50-54] for the Saccharomyces cerevisiae organism,
downloaded from the Gene Expression Omnibus (GEO)
database [55] and from some other sources [16]. The
complete list of sources is summarized in Table 7.
In order to perform rule inferences from these data-

sets, a few previous steps were performed. Since the list
of genes reported in each dataset slightly differs from
the other datasets, we have selected those genes that
have been measured in all the studies. Moreover, this
list was filtered according to those genes of the bench-
marking databases described before. This results in a
final list of 5245 yeast genes over which this study was
focused. Additionally, the samples of some datasets
[50,51,53] were separated in two different sets based on
the experimental conditions described for each one,
resulting in 12 different datasets. The whole set of sam-
ples was employed for this analysis. Finally, the missing
values were estimated employing a bayesian missing
value estimation method [56]. It is necessary to clarify
that despite the fact that datasets actually have different
sampling rates no normalization of these ratios was per-
formed. Thus, the time-delayed rules must be inter-
preted as it was previously discussed in the Rule
Consensus Process section.
For this analysis, 63 runs of the GRNCOP2 algorithm

were performed, which result from the variation of the
Accuracy parameter from 0.70 to 1 with increments of

0.05 and from the variation of the RCA parameter from
0.60 to 1 with increments of 0.05.
Additionally, only the rules with a span up to 4 time-

delay units (W = 4) were inferred since we consider that
this value is appropriated (regarding its magnitude) to
assess the genome-wide scalability of the algorithm.
However, in order to obtain meaningful time-lagged
relationship between genes, the researchers are

+/- SWI4 0® +/- CLB5                                                         +/- SWI4 4® -/+ CLB5 
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Figure 4 Discretized values for SWI4 and CLB5 genes on the cdc15 dataset. Real and discretized expression profiles of SWI4 and CLB5
genes with 0 (left) and 4 (right) units of time-delay for the cdc15 dataset.

Table 7 List of genome-wide datasets

Microarray time-series
dataset

Reference Sample
count

GDS1752_d1 Ronen and Botstein
[50]

12

GDS1752_d2 14

GDS2003_d1 Lai et al. [51] 15

GDS2003_d2 15

GDS2347 Pramila et al. [52] 13

GDS2350_d1 Pramila et al. [53] 25

GDS2350_d2 25

GDS759 Sapra et al. [54] 24

ELUTRIATION Spellman et al. [16] 14

ALPHA FACTOR 18

CDC15 24

CDC28 17

List of datasets employed in the genome-wide study. Some datasets were
separated into two different sets of samples based on the experimental
conditions described for each one.
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encouraged to follow the recommendation given by (5)
considering their hypothesis about the time-delayed reg-
ulations that may be present in the experiments. The
SCP parameter was fixed in 0.95 following the suggested
criterion as the objective is to analyze the behavior of
the algorithm varying the proportion of datasets that

support the rules. Each run took 30 min of execution
on a six core processor with 8 gb of ram. As regards the
results, Figure 5 shows the precision and score metrics
on the reference sets and the number of associations
achieved by GRNCOP2 in each run. The points of the
upper-right corner of the figures (where the Accuracy

Figure 5 Precision and score values achieved by GRNCOP2 with different Accuracy and RCA parameters. Values of the precision and score
metrics achieved by GRNCOP2 with the Accuracy and RCA parameters varying from 0.70 to 1 and from 0.60 to 1 respectively, with the SCP
parameter fixed in 0.95 and with W = 4. The number of associations is also showed. Figure 5a: yeastnet precision. Figure 5b: yeastnet score. Figure
5c: co-citation precision. Figure 5d: co-citation score. Figure 5e: GO precision. Figure 5f: number of associations.
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and the RCA parameter get closer to 1) are omitted
since the algorithm was unable to obtain any rule with
those parameter values. The details of each run are
available in the additional file 2.
As it can be observed, as the values of the Accuracy

and the RCA parameters increase, the precision and
score values achieved by the algorithm improve (see
Figures 5a to 5e). This is important by the fact that it
shows a proper behavior of the Rule Consensus Process
and of the objective function (7), since the significance
of the set of rules is directly related to the values of
those parameters. On the other side, the number of
interactions also decreases considerably (see Figure 5f).
Even more, if the sensitivity metric is considered,
GRNCOP2 is only able to recover at most 4.69%, 1.23%
and 1.85% of the interactions in the Yeastnet, Co-cita-
tion and GO reference sets respectively, values that
decrease with the reduction of the number of associa-
tions (see additional file 2 for details). Although, even
though the method seems to achieve a poor perfor-
mance regarding the sensitivity metric, it must be kept
in mind the real scale of the genome-wide study per-
formed here, since only 0.70%, 0.20% and 0.45% of all
possible gene-pair interactions belong to the Yeastnet,
Co-citation and GO benchmark sets respectively. More-
over, these reference sets were obtained employing dif-
ferent sources of information, thus it is not even
realistic to expect that they may be recovered using only
these microarray data, especially if the information is
not present in the gene expression data. Note that in
the previous discussion, the specificity metric was
avoided due to the large amount of TNs that the three
reference sets impose, making the algorithm to perform
always above the 99% on this measure.
However, the previous analysis says nothing about the

biological nature of the GRN obtained from these data-
sets. Thus, a deeper analysis was performed with the
aim of discovering the actual knowledge recovered by
GRNCOP2. Figure 6 depicts the GRN obtained in one
of the previous runs, which corresponds to an Accuracy
and RCA of 0.75 and 0.75 respectively. This GRN con-
sists of 352 genes and 559 rules (see additional file 3 for
details on the rules). The genes were grouped according
to their connectivity so as to improve the visualization.
It is easy to conclude that the resulting GRN is not a

totally connected graph. Instead, several sub-networks
can be visually identified together with other rules that
are absolutely disconnected. Therefore, the following
question might arise: is it possible for the genes that
form each sub-network to be related in some way? This
question will be answered performing an ontological
analysis over these gene groups. Therefore, the Biologi-
cal Process, Molecular Function and Cellular Compo-
nent for the eight largest sub-networks were examined

using Onto-Express [57], assuming a hyper-geometric
distribution and referencing the calculations by the 5245
genes analyzed. These results are reported in Table 8,
together with the values obtained when the whole GRN
is considered.
As shown in Table 8, all of the sub-networks achieved

a relatively high non-trivial ontological enrichment in at
least one of the categories, and these results are statisti-
cally significant at an a level of 0.01. Moreover, the
proportion of gene enrichment of each group is higher
than the proportion of gene enrichment of the whole
GRN. These results demonstrate that the genes of each
sub-network are highly related to each other, relations
that are also established directly or indirectly through
the rules discovered by GRNCOP2.

Conclusions
In this paper, a model-free combinatorial optimization
algorithm designed for the inference of putative GRNs
called GRNCOP2 was presented. Although the basic
ideas behind GRNCOP remain in GRNCOP2 (that is,
the adaptive regulation thresholds and the combinatorial
optimization of rules’ classifiers), the method presented
in this article is a new algorithm that constitutes a
relevant evolution of the previous method due to the
challenges that impose the proposed improvements. The
new algorithm incorporates novel features such as infer-
ence of rules with multiple time-delays and on an
unlimited number of time series datasets, and improve-
ments over the whole inference process. This last

D A C H B
F

G

E

Figure 6 Reconstructed GRN with Accuracy = 0.75, RCA = 0.75,
SCP = 0.95 and W = 4.
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feature was demonstrated by the fact that the results
achieved by GRNCOP2 are significantly better than
those obtained by the previous version. As well, the rele-
vance of the new method became more evident since
the scores achieved by GRNCOP2 were superior to
those obtained by other related algorithms in terms of
the proposed metrics. In addition, the relationships
inferred by GRNCOP2 proved to be biologically rele-
vant. Even more, it was able to obtain new potential
interactions between genes, consistent with previous
biological knowledge, that were not discovered by the
other methods.
Additionally, the ability of GRNCOP2 to perform gen-

ome-wide studies was assessed. In this regard, a study
was performed over several genome-wide time series
datasets, for which the proper functioning of the algo-
rithm in terms of the proposed metrics was discussed.
Also, with the realization of an ontological analysis it
has been showed that the results were significant in bio-
logical terms, since the genes of the discovered sub-net-
works were found to be highly related in statistical
terms.
However, this study does not claim that the data-driven

machine learning approach proposed in this paper is suf-
ficient to infer biologically meaningful regulatory net-
works. Nevertheless, this tool offers significant evidence
necessary to aid scientists in exploring and identifying
biologically relevant associations, whose assessment by

biological experiments is obligatory in order to achieve
curated new knowledge.

Additional material

Additional file 1: Individual values of the metrics for each run of
GRNCOP2 and GRNCOP. The individual results of each run of both
algorithms measured in terms of precision, sensitivity, specificity and score
metrics regarding the reference sets are depicted in the table of the file.
This is the information used in the comparison of GRNCOP2 and
GRNCOP in the subsection A of the comparative study.

Additional file 2: Individual values of the metrics for each run of
GRNCOP2 in the genome-wide study. The individual results of each
run of the GRNCOP2 algorithm measured in terms of precision, sensitivity,
specificity and score metrics regarding the reference sets are depicted in
the table of the file. This is the information used in the discussion about
the performance of GRNCOP2 in the genome-wide study.

Additional file 3: Rules of the GRN corresponding to Figure 6. The
rules obtained for the genome-wide study with an Accuracy, RCA, SCP,
and W of 0.75, 0.75, 0.95 and 4 respectively, is reported in a Table
separated value file. The last two columns indicate the Accuracy and RCA
achieved for each rule.

Acknowledgements
This work was supported by the research project PIP 112-2009-0100322
founded by the CONICET (National Research Council of Argentina) and by
the research project PGI 24/ZN15 founded by the Universidad Nacional del
Sur (Bahía Blanca, Argentina).

Author details
1Laboratorio de Investigación y Desarrollo en Computación Científica
(LIDeCC), Departamento de Ciencias e Ingeniería de la Computación,

Table 8 Ontological analysis for the eight largest sub-networks

Biological Process Molecular Function Celullar Component number
of genes

annotation percentage corrected
p-value

annotation percentage corrected
p-value

annotation percentage corrected
p-value

A translation 100% 0 structural
constituent of

ribosome

100% 0 ribosome 100% 0 5

B chromatin assemby
or disassembly

88.89% 0 DNA binding 88.89% 0 nucleosome 88.89% 0 9

C cell cycle 50% 5.80E-04 DNA binding 35.71% 0.06779 nucleus 71.43% 0.04154 14

D DNA replication 37.14% 0 DNA binding 40% 0 nucleus 71.43% 3.40E-04 35

E ribosome
biogenesis

53.74% 0 molecular function 38.79% 0.02142 nucleus 62.62% 0 214

F cell division 75.00% 0.00247 molecular function 50.00% 0.35995 cytoplasm 50.00% 0.73076 4

G methionine
biosynthetic

process

100.00% 0 transferase activity 75.00% 0.01018 cytoplasm 100.00% 0 4

H biological process 60.00% 0.18427 nucleic acid
binding

80.00% 3.00E-05 cellular
component

60.00% 0.04812 5

all ribosome
biogenesis

35.51% 0 molecular function 33.24% 0.31227 nucleus 57.39% 0 352

The eight largest sub-networks, with their respective ontological enrichment, for the Biological Process, Molecular Function and Cellular Component categories.
The annotation column denotes the most common annotation for the genes in the sub-network, whereas the percentage is the percentage of genes w.r.t. the
number of genes in the sub-network that receives such annotation. The corrected p-value is the statistical significance of the annotation. Finally, the bolded
categories and scores remark the cases where the annotation was statistically significant at an a level of 0.01.
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