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Abstract

Background: With the exploding volume of data generated by continuously evolving high-throughput
technologies, biological network analysis problems are growing larger in scale and craving for more computational
power. General Purpose computation on Graphics Processing Units (GPGPU) provides a cost-effective technology
for the study of large-scale biological networks. Designing algorithms that maximize data parallelism is the key in
leveraging the power of GPUs.

Results: We proposed an efficient data parallel formulation of the All-Pairs Shortest Path problem, which is the key
component for shortest path-based centrality computation. A betweenness centrality algorithm built upon this
formulation was developed and benchmarked against the most recent GPU-based algorithm. Speedup between
11 to 19% was observed in various simulated scale-free networks. We further designed three algorithms based on
this core component to compute closeness centrality, eccentricity centrality and stress centrality. To make all these
algorithms available to the research community, we developed a software package gpu-fan (GPU-based Fast
Analysis of Networks) for CUDA enabled GPUs. Speedup of 10-50× compared with CPU implementations was
observed for simulated scale-free networks and real world biological networks.

Conclusions: gpu-fan provides a significant performance improvement for centrality computation in large-scale
networks. Source code is available under the GNU Public License (GPL) at http://bioinfo.vanderbilt.edu/gpu-fan/.

Background
Cellular systems can be modeled as networks, in which
nodes are biological molecules (e.g. proteins, genes,
metabolites, microRNAs, etc.) and edges are functional
relationships among the molecules (e.g. protein interac-
tions, genetic interactions, transcriptional regulations,
protein modifications, metabolic reactions, etc.). In sys-
tems biology, network analysis has become an important
approach for gaining insights into the massive amount
of data generated by high-throughput technologies.
One of the essential tasks in network analysis is to

determine the relative importance, or centrality, of the
nodes based on network structure. Different centrality
metrics have been proposed in the past [1]. Among
them there is an important group of metrics that uses
shortest path information (Table 1). Sequential imple-
mentations of the shortest path-based centrality calcula-
tion are provided in software packages such as igraph
[2] and NetworkX [3]. However, these algorithms have

limited applicability for large real world biological net-
works due to poor scalability [4]. Parallel implementa-
tions using MPI (Message Passing Interface) [4] and
multi-threading [5] have been proposed to speed up
graph algorithms.
Owing to its massive parallel processing capability,

General Purpose computation on Graphics Processing
Units (GPGPU) provides a more efficient and cost effec-
tive alternative to conventional Central Processing Unit
(CPU)-based solutions for many computationally inten-
sive scientific applications [6]. A GPU device typically
contains hundreds of processing elements or cores.
These cores are grouped into a number of Streaming
Multiprocessors (SM). Each core can execute a sequen-
tial thread, and the cores perform in SIMT (Single
Instruction Multiple Thread) fashion where all cores in
the same group execute the same instruction at the
same time. NVIDIA’s CUDA (Compute Unified Device
Architecture) platform [7] is the most widely adopted
programming model for GPU computing. In bioinfor-
matics, GPU-based applications have already been
implemented for microarray gene expression data
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analysis, sequence alignment and simulation of biologi-
cal systems [8-11].
Parallel algorithms for centrality computation have

been developed on various multi-core architectures
[12-14]. However, as pointed out by Tu et al. [15], chal-
lenges such as dynamic non-contiguous memory access,
unstructured parallelism, and low arithmetic density pose
serious obstacles to an efficient execution on such archi-
tectures. Recently, several attempts at implementing
graph algorithms, including breadth first search (BFS)
and shortest path, on the CUDA platform have been
reported [16-18]. Two early studies process different
nodes of the same level in a network in parallel [16,17].
Specifically, for the BFS implementation, each node is
mapped to a thread. The algorithms progress in levels.
Each node being processed at the current level updates
the costs of all its neighbors if the existing costs are
higher. The algorithms stop when all the nodes are vis-
ited. This approach works well for densely connected net-
works. However, for scale-free biological networks [19] in
which some nodes have many more neighbors than the
others, these approaches can potentially be slower than
implementations using only CPUs due to load imbalance
for different thread blocks [18]. A recent study by Jia et
al. exploits the parallelism among each node’s neighbors
to reduce load imbalance for different thread blocks and
achieves better performance in All-Pairs Shortest Path
(APSP) calculation and shortest path-based centrality
analysis [18]. However, the APSP algorithm can only use
one thread block per SM due to excessive memory dupli-
cation, which is an inefficient way of executing threads
blocks and may result in low resource utilization [20].
In this paper, we developed a new APSP algorithm

that avoids data structure duplication and thus allows
scheduling units from different thread blocks to fill the
long latency of expensive memory operations. We
showed that our algorithm outperformed Jia’s algorithm
for betweenness centrality computation. Based on the
improved APSP algorithm, we developed a software
package gpu-fan (GPU-based Fast Analysis of Networks)

for computing four widely used shortest path-based cen-
trality metrics on CUDA enabled GPUs. Using simu-
lated scale-free networks and real world biological
networks, we demonstrated significant performance
improvement for centrality computation using gpu-fan
as compared to CPU implementations.

Implementation
Given a network G = (V, E) with |V| = n and |E| = m, we
implemented algorithms for computing four shortest
path-based centrality metrics as described in Table 1 on
the CUDA platform. There are currently two approaches
for computing shortest paths on GPUs. The first approach
processes different nodes of the same level in parallel [17].
The second one exploits the parallelism on the finest
neighborhood level [18]. Since biological networks typi-
cally exhibit a scale-free property [19], the first approach
can potentially cause serious load imbalance and thus
result in poor performance. Therefore, we adopted the
second approach in our implementation. Specifically, a
network is represented with two arrays. A pair of corre-
sponding elements from each array is an edge in the net-
work. For undirected networks, an edge is represented by
two pairs of elements, one for each direction. All four cen-
trality metrics are based on the APSP computation. The
APSP algorithm performs a BFS starting from each node.
During the BFS, each edge is assigned to a thread. If one
end of an edge is updating its distance value, the thread
checks the other node and updates the distance value if it
has not been visited yet. Each edge (thread) can proceed
independently of each other and therefore exploits the fin-
est level of parallelism to achieve load balance. After find-
ing all shortest paths, each centrality metric is computed
with additional GPU kernel function(s) as described in
[18]. For betweenness centrality, the implementation is
based on a fast serial version [21].
By design, the APSP algorithm in [18] requires dupli-

cated allocation of several large data structures in each
thread block. This effectively limits the number of
thread blocks that can be launched due to limited mem-
ory size on the device. Therefore the algorithm fixes the
number of thread blocks to be the number of available
SMs, which is typically in the range of 10-30 for the
current generation of CUDA enabled devices. Each
block uses the maximum number of threads allowed for
the device. In contrast, our algorithm does not duplicate
the data structures and can have enough thread blocks
and thus enough warps, the scheduling units on CUDA,
from different thread blocks to fill the long latency of
expensive memory operations. In other words, when
warps from one thread block stall, warps from other
thread blocks whose next instruction has its operands
ready for consumption can continue. In [20], the
authors proposed a metric called utilization to estimate

Table 1 Shortest path-based centrality metrics

Centrality Equation Description

Betweenness
(BC)

∑

s,t∈V

σ (s, t|u)
σ (s, t)

fraction of shortest paths between all
other nodes that run through node u

Closeness
(CC)

n − 1
∑

v∈V
d(u, v) reciprocal of average shortest path

distance

Eccentricity
(EC)

n − 1
max
v∈V

d(u, v) reciprocal of maximum shortest path
distance

Stress (SC)
∑

s∈V
s�=u

∑

t∈V
t �=u

σst(u) total number of shortest paths
between all other nodes that run
through u
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the utilization of the compute resources on the GPU.
The definition of the metric indicates that assigning a
larger number of thread blocks on each SM without vio-
lating local resource usage can result in higher resource
utilization. We let the number of threads per block vary
between 64 and 512. The best overall performance was
obtained with 256 threads per block (8 warps). Setting
the number of threads per block to 256 allows a total of

l/256 blocks when the APSP kernel launches, where l is
the length of the adjacency arrays. For undirected net-
works studied in this work, l is twice the number of
edges. Another advantage of setting the number of
blocks in this way is that for graphs with larger number
of edges, a proportionally larger number of blocks will
be deployed to proactively hide the potentially high
memory access latency. Figure 1 lists the pseudo-code

1 /* Main procedure */

2 bc[i] ← 0, for i = 0..n − 1;
3 Set the adjacency arrays a1[i], a2[i], for i = 0..2m − 1;
4 d[i], σ[i], δ[i] ← 0, for i = 0..n − 1;
5 p[i][j] ← 0, for i = 0..n − 1, j = 0..n − 1;
6 Set up APSP kernel execution configuration: grid1, threads1;
7 Set up back propagation kernel execution configuration: grid2, threads2;
8 for i ∈ 0..n − 1 do
9 /* APSP */

10 continue ← true;
11 dist ← 0;
12 while continue do
13 apsp kernel<<<grid1,threads1>>>(a1, a2, d, σ, p, done, dist);
14 dist++;

15 end
16 /* Back propagation */

17 done ← false;
18 while dist>1 do
19 back prop kernel<<<grid1,threads1>>>(a1, a2, d, σ, δ, p, dist);
20 Sync thread blocks;
21 back sum kernel<<<grid2,threads2>>>(i, dist, d, δ, bc);
22 dist--;

23 end

24 end
25 return bc

26 /* APSP kernel */

27 procedure apsp kernel(a1, a2, d, σ, p, done, dist)
28 foreach thread i do
29 u ← a1[i], w ← a2[i]; /* set the node ids for edge i */

30 if d[u]==dist then
31 if d[w]==-1 then
32 continue ← true; d[w] ← dist + 1;
33 end
34 if d[u]==dist+1 then
35 p[w][u] ← 1;
36 atomicAdd(σ[w],σ[u]);

37 end

38 end

39 end

40 /* Back propagation kernel */

41 procedure back prop kernel(a1, a2, d, σ, δ, p, dist)
42 foreach thread i do
43 u ← a1[i]; w ← a2[i]; /* set the node ids for edge i */

44 if d[u]==dist-1 then
45 if p[u][w]==1 then
46 atomicAdd(δ[w], σ[w]/σ[u] ∗ (1 + δ[u]));
47 end

48 end

49 end

50 procedure back sum kernel(s, dist, d, δ, bc, n)
51 foreach thread i do
52 if i�=s && d[i]== dist-1 then
53 bc[i] ← bc[i] + δ[i];
54 end

55 end

Figure 1 Pseudo-code for computing betweenness centrality on GPU. Lines 1-25 implement the main function that is executed on CPU.
Code between lines 26-39 is the kernel function that carries out the All-Pairs Shortest Path algorithm. Lines 40-55 implement the back
propagation where the final values of betweenness centrality for each node are set.
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of the betweenness centrality algorithm that uses the
improved APSP kernel, where n and m are the numbers
of nodes and edges in the network, respectively.

Results and Discussions
We tested both GPU and CPU implementations on a
Linux server. The server contains 2 Intel Xeon L5630 pro-
cessors at 2.13 GHz, each having 4 processing cores, and
an NVIDIA Tesla C2050 GPU card (448 CUDA cores,
3GB device memory). The CPU implementation was sin-
gle threaded and coded in C++. The kernel functions in
GPU version were implemented with CUDA C extension.
We first compared our algorithm with the one

described in [18] for betweenness centrality calculation.
Networks were generated with NetworkX based on

Barabási-Albert’s preferential attachment model [22].
The model has two parameters, n and b, where n repre-
sents the number of nodes in the network and b con-
trols the preferential attachment process. Specifically,
new nodes are added to the network one at a time, and
each new node is connected to b existing nodes with a
probability that is proportional to the number of edges
that the existing nodes already have. We considered 25
networks with n varied from 10, 000 to 50, 000 and var-
ied from 10 and 50. As shown in Figure 2, our algo-
rithm outperformed Jia’s by 11-19% for randomly
generated networks owing to higher resource utilization.
Based on the improved APSP algorithm, we developed

a software package gpu-fan (GPU-based Fast Analysis of
Networks) for computing four shortest path-based
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Figure 2 Performance improvement over the most recent GPU-based betweenness centrality algorithm. We benchmarked our
betweenness centrality algorithm against the one described in [18]. Results are based on 25 randomly generated scale-free networks with n
varied from 10, 000 to 50, 000 and b varied from 10 and 50. n represents the number of nodes in the network and b controls the preferential
attachment process for generating the scale-free networks.
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centrality metrics and then compared the performance
with corresponding CPU implementations. Overall, a
speedup of 11-56× over CPU implementations was
observed for the aforementioned networks. Figures 3(a)
and 3(b) depict representative results for the fixed n of
30, 000 and fixed b of 30. When n is fixed, networks
with larger b exhibited higher speedup due to increased
available data parallelism and arithmetic operations.

When b was fixed, larger network size led to more
arithmetic operations but not necessarily increased data
parallelism. As a result, the speedup levels were more
stable across different network sizes. The running times
for a randomly generated scale-free network with n =
30, 000 and b = 50 are given in Table 2.
Finally, we tested gpu-fan on a human protein-protein

interaction (PPI) network and a breast cancer gene
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Figure 3 Speedup of centrality computation with GPU as compared to CPU implementations. (a) Speedup as a function of b when
network size is fixed. (b) Speedup as a function of network size n when b is fixed. (c) Speedup of four centrality metrics for a human protein-
protein interaction network. (d) Speedup of four centrality metrics for a breast cancer gene co-expression network. n represents the number of
nodes in the network and b controls the preferential attachment process for generating the scale-free networks. BC: betweenness centrality; CC:
closeness centrality; EC: eccentricity centrality; SC: stress centrality.
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co-expression network [23]. The human PPI has 11, 660
nodes and 94, 146 edges, while the co-expression net-
work has 7, 819 nodes and 195, 928 edges. Although
these two networks have relatively low edge density, we
still obtained a speedup of around 10× as shown in
Figures 3(c) and 3(d).
For the computation of betweenness centrality, a two

dimensional array p of size n × n is used to keep prede-
cessor information, where p(i, j) = 1 indicates that there
is a shortest path passing from node i to node j. This
limits our implementation from processing graph with
large number of nodes because of the limited global
memory size on GPU. Since this array will likely be
sparse, using sparse matrix representation can help
reduce memory usage. As a future work, we will investi-
gate the use of sparse matrix and its potential effect on
the overall performance.

Conclusions
We developed a software package for computing several
shortest path-based centrality metrics on GPUs using
the CUDA framework. The algorithms deliver significant
speedup for both simulated scale-free networks and real
life biological networks.

Availability and requirements
Project name: gpu-fan (GPU-based Fast Analysis of
Networks)
Project home page: http://bioinfo.vanderbilt.edu/gpu-

fan/
Operating system: Unix/Linux
Programming language: CUDA, C/C++
Other requirements: CUDA Toolkit 3.0 or higher,

GPU card with compute capability 2.0 or higher
License: GPL v3

Abbreviations
GPGPU: General Purpose computation on Graphics Processing Units; CUDA:
Compute Unified Device Architecture; GPU: Graphics Processing Unit; SIMT:
Single Instruction Multiple Thread; SM: Streaming Multiprocessor; APSP: All-
Pairs Shortest Path; BFS: Breadth First Search.
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