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Abstract

Background: Combining multiple evidence-types from different information sources has the potential to reveal
new relationships in biological systems. The integrated information can be represented as a relationship network,
and clustering the network can suggest possible functional modules. The value of such modules for gaining
insight into the underlying biological processes depends on their functional coherence. The challenges that we
wish to address are to define and quantify the functional coherence of modules in relationship networks, so that
they can be used to infer function of as yet unannotated proteins, to discover previously unknown roles of
proteins in diseases as well as for better understanding of the regulation and interrelationship between different
elements of complex biological systems.

Results: We have defined the functional coherence of modules with respect to the Gene Ontology (GO) by
considering two complementary aspects: (i) the fragmentation of the GO functional categories into the different
modules and (ii) the most representative functions of the modules. We have proposed a set of metrics to evaluate
these two aspects and demonstrated their utility in Arabidopsis thaliana. We selected 2355 proteins for which
experimentally established protein-protein interaction (PPI) data were available. From these we have constructed
five relationship networks, four based on single types of data: PPI, co-expression, co-occurrence of protein names in
scientific literature abstracts and sequence similarity and a fifth one combining these four evidence types. The
ability of these networks to suggest biologically meaningful grouping of proteins was explored by applying Markov
clustering and then by measuring the functional coherence of the clusters.

Conclusions: Relationship networks integrating multiple evidence-types are biologically informative and allow
more proteins to be assigned to a putative functional module. Using additional evidence types concentrates the
functional annotations in a smaller number of modules without unduly compromising their consistency. These
results indicate that integration of more data sources improves the ability to uncover functional association
between proteins, both by allowing more proteins to be linked and producing a network where modular structure
more closely reflects the hierarchy in the gene ontology.

Background
The ever-increasing availability of high-volume proteo-
mic, genomic and transcriptomics datasets has led to
multiple studies aimed at the systems-level interpreta-
tion of this information using biological networks and
relationship networks. Biological networks are graphs

where the nodes are molecules and edges indicate inter-
actions between them [1,2]. As explained in [1], in this
type of network an allowance can be made for “suppres-
sion of detail”, e.g. the intermediate components of
some interactions may be omitted and instead repre-
sented by an edge. Most commonly this type of abstrac-
tion is used to represent gene regulation, where the
DNA-protein interaction, transcription and translation
are represented by just one edge between the regulator
and its target protein. Relationship networks [3] are a
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superset of biological networks, where there is no longer
a restriction that an edge must represent an actual real-
life process that links the two molecules, but instead
may indicate a shared property, such as two proteins
having the same type of protein domain or being men-
tioned in the same publication.
The types of data used for construction of such

networks include, but are not limited to, sequence
similarity [4], shared sequence features [5,6], genetic
interactions [6-10], gene co-expression [5,6,11-14], pro-
tein-protein interaction [5-7,11,15-18], domain interac-
tion [19,20] and term co-occurrence in the scientific
literature [3,5,10,11,21]. These types of information can
be analysed independently or integrated together in
order to encompass a wider range of biological mechan-
isms, provide additional evidence of association between
entities in the network and connect disjoint parts of the
network. In these studies, different techniques have
been developed for the analysis of relationship networks,
but they follow similar approaches: partitioning the net-
work into modules, identifying the graph-theoretic prop-
erties of the network and relating these to biological
function. In this work we have adopted a similar
approach and have devised a set of metrics for quantify-
ing the functional coherence of the modules in order to
explore the effect of using multiple evidence-types in an
integrated relationship network of Arabidopsis thaliana
proteins.
Clustering approaches work by identifying densely

interconnected areas within a network [2] and are com-
monly used to detect modular structure in graphs. In
the context of biologically-relevant networks, these
groups are often referred to as functional modules [2,7].
Functional modules in biological networks are groups of
molecules that are more linked to the other members of
the group than to non-members and have similar func-
tion [1]. The modular structure can be used to infer
function of as yet unannotated proteins [16], to discover
previously unknown roles of proteins in diseases [22] as
well as for better understanding of the regulation and
interrelationship between different elements of complex
biological systems [12]. The function of a module is
commonly identified from the annotation of its mem-
bers with respect to the Gene Ontology (GO) [23].
GO consists of three separate categories - Biological

Process, Molecular Function and Cellular Component,
where each category consists of a controlled vocabulary
of terms structured as a directed acyclic graph with qua-
lified edges describing the semantic relationship between
these terms. Each protein can be annotated with multi-
ple GO terms and inherits the annotation of the parent
terms and this makes it challenging to quantify and ana-
lyse the functional similarity between GO annotations.
This has stimulated a number of studies that have

explored these problems in detail. In particular, the
importance of quantitative characterisation of GO term
specificity (information content, IC) was demonstrated
by [24] and based on this metric, several pair-wise quan-
titative measurements were developed that take into
account the structure and properties of the Gene Ontol-
ogy (reviewed in [25]). In a related set of efforts, a num-
ber of metrics were also designed to measure semantic
consistency of protein sets. Original approaches were
designed to identify the functional annotations for
which a group of proteins was significantly enriched and
did not take into account hierarchical structure of GO
[26]. Although useful, these methods have a number of
limitations, which were discussed in detail in the follow-
ing studies [26,27]. To address these shortcomings, a
number of extensions were proposed that combine
some aspects of enrichment-based methods with adjust-
ments for the relationship between the terms [28-30].
At the same time, another set of measures was also
developed for the quantification of overall relatedness of
annotations, rather than their overrepresentation within
the set [27,31-34]. In this study we have drawn upon
the insights that have emerged from this work in order
to define a descriptive measure for comparison of func-
tional annotation of protein sets.
We claim that to determine the biological relevance of

the partitioning of a set of proteins there are two impor-
tant aspects that need to be taken into consideration.
The first is that the set of GO terms that best describes
the common function of a representative proportion of
proteins in the modules can be found at any annotation
specificity level. However, at the higher levels, which are
close to the root of the Gene Ontology, the annotation
will not be particularly informative. This leads to a
trade-off between the specificity of annotation terms
and the number of proteins in the module to which it
applies. The needs of the particular application case may
dictate which of these two components is more impor-
tant, and metrics have been developed that allow the
emphasis to be placed on one or the other [35]. Using
the metric defined in this paper (AIC-MICA), we were
able to explore these two properties in five different
relationship networks. The second aspect to be consid-
ered is that the sets of proteins with the same GO anno-
tation can be fragmented, i.e. assigned to a number of
different clusters by the clustering algorithm. Not only
can the functionally similar group be spread across a
number of clusters, but also may be more or less con-
centrated in the clusters where it is present.
To assess the functional coherence of modules from a

relationship network both of these aspects, namely the
representative functions of modules and the fragmenta-
tion of functional categories, are also relevant. Here we
explore the potential of combined relationship networks
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to recover functional modules by considering four
sources of information: protein-protein interaction
(PPI), co-expression (COE), sequence similarity (SEQ)
and co-occurrence of terms in the scientific literature
(LIT). We have also constructed a combined network
(ALL), which is a union of these four networks. These
evidence types were chosen because they are often used
for inferring functional relationships among genes and
proteins and are readily available from the application of
high throughput ‘omics techniques. A large amount of
co-expression data are available for Arabidopsis thaliana
(see for example, [36]). Measurements of sequence simi-
larity can be obtained for all pairs of proteins [37] and
co-occurrence of protein terms in abstracts can be
extracted from the scientific literature [38]. We decided
to restrict the set of proteins in the network to those for
which protein-protein interaction information is avail-
able, as we currently consider this to be limiting for
Arabidopsis. This restriction means that we are only
considering a small subset of Arabidopsis proteins, but
has the advantage that it leads to a more balanced dis-
tribution of evidence types from the four information
sources among the relationships between proteins. This
setting allows us to evaluate to what extent patterns and
trends that were previously found in whole proteome-
based networks still hold in situations where only a sub-
set of the whole proteome is analysed. Another motiva-
tion is to evaluate the usefulness of these approaches to
extract the best possible information under conditions
when data are scarce or incomplete.
As we have demonstrated in our previous work [39],

by combining data from multiple resources it is possible
to assemble much larger and more comprehensive inte-
grated datasets. Several providers also offer pre-inte-
grated datasets for Arabidopsis, such as STRING [18]
and AtPIN [40]. However, the integration protocols of
these data sources are not always clearly described even
though the protocol can affect the structure of the net-
work [39].
We have used the Ondex data-integration and visuali-

zation platform [41] to integrate and analyse the infor-
mation sources and we have verified that the dataset
used for this study is sufficiently representative by per-
forming the same type of analysis on the data held in
the STRING database for the same set of proteins.

Results
Network properties
The contributions from the four information sources to
the edges in the network are shown in Table 1. There
are 2355 proteins and 25172 links in the in the com-
bined network - which is more than five times the num-
ber of links in the PPI dataset (4427). The links in the
network exclusive to the possible evidence sources: co-

expression (COE), co-occurrence of protein names
(LIT), protein interaction (PPI) or sequence similarity
(SEQ) are 36%, 18%, 14% and 25% respectively. The
intersection of all evidence types is also very small
(0.04%). This suggests that in this case each source of
evidence tends to introduce new links into the com-
bined network rather than reinforcing the relationships
already found in other sources.
The global properties for the relationship networks

constructed from the four constituent information
sources and the combined network (ALL) are shown in
Table 2. As expected, the combined network has fewer
connected components since evidence from the other
data sources connects previously unconnected nodes,
and the size of the largest component is larger than that
of any of the constituent networks. The diameters of the
largest connected component of the SEQ, LIT and com-
bined network (ALL) are of similar size (9, 9 and 10
respectively) and smaller than the COE and PPI net-
works (15 and 18 respectively), suggesting more cohe-
sive or dense graphs. The increased density and the
larger size of the main connected component indicate
that the ALL network is likely to be much harder to
optimally partition using a clustering approach. The
transitivity gives a measure of clique-likeness of a graph
and this is highest for the SEQ network (probably
reflecting protein family structures) and the COE net-
work possibly reflecting shared transcriptional regulatory
mechanisms.

Table 1 Number of edges in the graph with evidence
from the four information sources after applying a
threshold on the relevant strength of the relationships
(as defined in the Methods section)

COE LIT PPI SEQ Exclusive
combinations

Inclusive
combinations

N % N %

✓ ✓ ✓ ✓ 9 0.04 9 0.04

✓ ✓ ✓ 34 0.14 43 0.17

✓ ✓ ✓ 83 0.33 92 0.37

✓ ✓ 84 0.33 210 0.83

✓ ✓ ✓ 17 0.07 26 0.10

✓ ✓ 63 0.25 123 0.49

✓ ✓ 15 0.60 260 1.03

✓ 9093 36.12 9534 37.88

✓ ✓ ✓ 123 0.49 132 0.52

✓ ✓ 482 1.91 648 2.57

✓ ✓ 692 2.75 907 3.60

✓ 4441 17.64 5948 23.63

✓ ✓ 240 0.95 389 1.55

✓ 3459 13.74 4427 17.59

✓ 6201 24.63 7516 29.86

Exclusive combinations count edges where the evidence that links two nodes
comes only from the sources indicated, while inclusive combinations allow
the possibility of additional evidence types also supporting that link.
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Since the initial dataset consisted of those proteins for
which interaction data was available we would expect
no unconnected proteins in the PPI and ALL networks.
The number of orphan proteins (i.e. unconnected) for
the SEQ, COE and LIT networks were 855, 1304 and
1343 respectively. The numbers of orphan proteins,
however, depend on the score thresholds chosen (refer
to Methods for the values used in this study).

Network Clustering
The four single information source networks and the
combined network (ALL) were clustered using the MCL
algorithm [42]. The distribution of cluster sizes is shown
in Figure 1. The SEQ and PPI networks have a large
number of clusters of size 2 and 3. The integrated net-
work (ALL) and protein interaction network (PPI) con-
tained the greatest number of larger clusters (size 20+).
In the ALL network there are a large number of clusters

of size 1. A total of 138 size 1 clusters contain 6.22% of
all proteins in the network. This may be related to the
cohesiveness of the ALL network, with tightly connected
groupings leading to the exclusion of nodes by the MCL
algorithm.
To explore the functional groupings of proteins in the

network, we combined Arabidopsis GO annotations
from three sources: IntAct [43], GOA-EBI [44] and
UNIPROT [45]. Information content-based measures
(see Methods section) were used to evaluate annotation
specificity.
We wished to explore (i) whether the clusters contain

proteins that are generally similar in terms of their func-
tions, as assigned by Gene Ontology terms (the most
representative GO terms in a cluster) (ii) the way in
which proteins with the same functional roles are dis-
tributed across different clusters (the fragmentation of
GO terms).

Table 2 A comparison of graph theoretic properties for the different evidence types

Evidence Network
Type

Transitivity Number of connected
components

Size of the largest connected
component

Diameter of the largest connected
component

LIT 0.223 15 981 9

COE 0.580 24 991 15

PPI 0.070 100 1882 18

SEQ 0.746 268 241 9

ALL 0.406 9 2330 10

0%

5%

10%

15%

20%

25%

30%

35%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+

%
 o

f a
ll 

pr
ot

ei
ns

 in
 t

he
 r

ef
er

nc
e(

PP
I)

 d
at

as
et

Cluster size

All

SEQ

COE

PPI

LIT

Figure 1 Histogram of cluster size in combined (ALL), protein-protein interaction (PPI), co-occurrence of protein names (LIT), sequence
similarity (SEQ) and co-expression (COE) networks.
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Coverage and specificity of the most representative
function of modules
The utility of clustering depends on being able to group
together a large enough number of proteins, so as to
facilitate exploring the modular structure of the network
without diluting the information content of the clusters
to such an extent that the groupings do not capture bio-
logically meaningful relationships.
The Average Information Content of the sets of these

Most Informative Common Ancestor GO terms (AIC-
MICA) was used to determine the coverage and the
specificity of the most representative function of mod-
ules (AIC-MICA is defined in the Methods). If a clus-
ter contained proteins that were of very diverse
function, we would expect that the GO categories cor-
responding to the most representative functions would
not be very specific, i.e. the Most Informative Common
Ancestor (MICA, see [24]) would be close to the root
of the Ontology tree and thus would not represent a
functionally meaningful grouping. Given that the links
in a relationship network may not always reflect accu-
rate functional relationships, we do not look for the
MICA of all the proteins in the cluster. Instead we
measure the Average Information Content (AIC) asso-
ciated with a set of MICA of at least a certain coverage
(percentage of all proteins in a cluster), sampled at
10% increments from 40% to 90%. This method allows
simultaneous detection of functional similarities in
more than one functional category and is more robust
to outliers - as only a certain proportion of the pro-
teins in the cluster need to share functional similarity
in order for their ancestor GO term to be included in
the set.
In Figure 2 the AIC-MICA is plotted for the five rela-

tionship networks constructed for this study as well as
for the weighted version of the STRING database. As
expected, the average information content of the repre-
sentative GO terms decreases with the increase in clus-
ter coverage, namely the requirement that the common
ancestor includes a greater proportion of proteins in the
cluster. Average information content in the LIT network
is similar to the ALL at lower coverage range (40%-
50%), but declines very sharply and is second worst at
the higher coverage level. This may be an indication
that although useful associations can be found using
term co-occurrence, these clusters tend to be less coher-
ent at the whole-cluster level. Clusters in the COE net-
work have the lowest information content at all
coverage levels. The information content at coverage
level of 90%, (namely the information content of most
informative common ancestor that includes 90% of the
proteins in a cluster) is highest for the SEQ network fol-
lowed by the ALL network. In the SEQ network, how-
ever, only 1496 proteins are assigned to clusters (of size

greater than 1) whereas in the ALL network this figure
is 2217. For proteins that cannot be assigned to a mod-
ule this means that no inference can be made using the
guilt-by-association principle. So, for only 5.9% of pro-
teins, no insight can be gained from clustering the ALL
network, whereas for the SEQ network this figure is
36.5%. Therefore, the ALL network has a much greater
potential for suggesting biological context, supporting
our hypothesis that the integration of multiple informa-
tion sources can be beneficial when identifying func-
tional modules.
The STRING comparison analysis was undertaken

using a complete set of information from the STRING
database for the same set of 2355 proteins. The results
indicate that the performance of STRING at the higher
coverage (80-90%) levels was comparable to that of the
ALL network. We have also considered individual evi-
dence types from STRING (coexpression, literature and
experimental PPI detection), which were found to be
similar to the results obtained for the corresponding
datasets constructed for this paper, if the data are inter-
preted as an un-weighted network. The results of this
analysis can be found in the Additional File 1: additional
figures and analysis.

Modules in the ALL relationship network and their most
representative functions
Figure 3 shows the modular structure found in the ALL
network produced by application of the MCL algorithm.
The clusters are annotated with the most informative of
the representative GO terms at 80% level. This high-
level view illustrates the meta-structure of the relation-
ship network as it was resolved by the clustering algo-
rithm. The overview shows that, although the network
is very densely interconnected, the clustering algorithm
has performed reasonably well, with only a few cases
where a very large number of links were made between
two clusters. One example of where the clustering was
not optimal is where two clusters with the same annota-
tion “regulation of cellular transcription, DNA-depen-
dent” were linked together by more than 800 edges, but
were not brought together. In total there were 6 of the
36 clusters with this same annotation, even though the
annotation level is quite specific, where information
content lies in the middle of the range (4.0 - coloured
green). Interestingly, this phenomenon was also seen in
other annotations relating to signalling and regulation of
transcription. The two clusters with the most informa-
tive annotation are both related to hormone signalling
(coloured red). There is also one large cluster annotated
to “modification-dependant protein degradation”, a simi-
lar cluster related to protein catabolism was also found
in other studies that analysed PPI and co-expression
networks [16,46].
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Figure 2 The Average Information Content across clusters of the Most Informative Common Ancestor (AIC-MICA) requiring that the
information content measure includes 40% to 90% of the proteins in a cluster. The solid line is the average IC and the shaded areas are
25 and 75 percent quartiles.

10 30 50 70 90

10 229 448 667 886

0.5 2.125 3.75 5.375 7

Edge width - number of links between the clusters

Node size - number of proteins in the cluster

Node color - information content of the most
informative GO term at 80% coverage

Figure 3 Modular structure of the combined network of all evidence types. Nodes show all clusters with 10 or more members with edges
indicating the number of links between them. All clusters are annotated with the most informative GO term at 80% of the clusters proteins
annotated with the GO term.
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We have explored the possibility of further post-pro-
cessing the clusters produced by the MCL algorithm by
looking at the average FSWeight [47,48] of the pairs of
clusters; but the results proved inconclusive. Further
information about this analysis is included in the Addi-
tional File 1: additional figures and analysis. However,
we did observe that the average FSWeight of edges
inside clusters was significantly higher than that for
edges connecting different clusters.

Fragmentation of functional categories
The other aspect that needs to be taken into considera-
tion when assessing the functional coherence of mod-
ules is the fragmentation of functional categories. Here,
we examined how the Gene Ontology terms were dis-
tributed across the clusters.
Clustering can result in proteins with the same func-

tional annotation being split across multiple clusters.
This leads to the separation of this group of proteins
into multiple fragments. In Table 3, the Best Fragment
Rank Proportion (BFRP) indicates that the sets of pro-
teins annotated with the same GO term are least frag-
mented in the ALL network. This suggests that the
combined network performed better than the individual
networks for grouping together entities with similar GO
annotation. To evaluate the level of fragmentation of
functional categories, both the number of fragments and
their size distribution need to be considered. The
entropy of the fragmentation (refer to Methods for defi-
nitions) gives us a measure of this size distribution. As
can be seen in Table 3, the Best Entropy Rank Propor-
tion (BERP) is also maximal for the ALL network, fol-
lowed by the LIT network, indicating that overall the
entropy with respect to GO categorisation is also lowest
in these networks.
A lower entropy value implies more ordered data,

both in terms of reduced fragmentation and prevalence
of larger fragments. Table 3 shows the average entropy
values for each network and for the corresponding con-
trol networks where cluster labels have been randomly
permuted for all GO categories. To avoid the problems

of small sample sizes, only those GO categories that
were assigned to at least 10 proteins in the dataset were
included. The ALL network has the lowest average
entropy, again suggesting that it is better at grouping
together related proteins, the average entropy being 2.72
compared with 3.31 for the same networks with GO
labels associated with the nodes, being randomly per-
muted. All of the observed differences in entropy were
found to be highly significant, with none of the per-
muted networks having an average entropy value greater
than that of the real one, indicating a confidence of at
least p < 0.0001. This appears to be due to the hierarch-
ical nature of the GO categories, where every wrong
assignment with respect to a child term would also lead
to penalties incurred at the parent level. Therefore, the
density distributions for the permuted networks were
very narrow (Plot is included in the Additional File 1:
additional figures and analysis).

An example of fragmentation in the ALL relationship
network
Figure 4A shows all proteins (nodes) in the combined
(ALL) network annotated to the high level GO term
“response to hormone stimulus” and its more specialised
categories (grey clusters). The average shortest path
length (SPL) between all proteins with this annotation
was 20% shorter compared to a control, where node
labels were permuted 10000 times. The SPL reduction
in distance for the child terms listed in Figure 4 was
even greater and ranged from 22-30%. It is interesting
to note that the SPL distance between child terms
echoes the hierarchy of the Gene Ontology, which was
defined entirely independently by manual curation.
Figure 4B shows the fragmentation of this cluster by

visually separating all the MCL clusters across which
this term is distributed. It is evident that the clustering
in this case is not able to group together all the nodes
that are associated with the general process ‘response to
hormone stimulus”. In this case there were only two
clusters (of size greater than 10) that have most proteins
in the cluster annotated with the same term (e.g.

Table 3 The first two rows show the average entropy for the networks and, for comparison, the average entropy for
the networks with GO labels randomly permuted

ALL SEQ COE PPI LIT

Average entropy (actual network) 2.72 2.96 3.30 2.86 2.96

Average entropy (randomly permuted network) 3.31 3.43 3.42 3.29 3.33

Relative decrease in entropy (compared to randomly permuted network) 17.8% 13.7% 3.5% 13.1% 11.1%

BFRP 49.43% 22.78% 3.55% 24.56% 28.43%

BERP 39.58% 16.64% 2.75% 18.58% 31.18%

The third row details the decrease in entropy observed in the actual network compared to the randomly permuted network. By both methods of measuring
network fragmentation, the ALL dataset produces the best quality networks. The percentages may not add up to a 100%, as in cases where several networks
performed the same all were counted as “best” for that GO term. The fourth and fifth rows show the best fragment rank percentage and best entropy rank
percentage statistics (defined in the Methods section).
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‘response to auxin stimulus’ and ‘response to abscisic
acid stimulus’). However, even in the situations when
the grouping is suboptimal, it is still useful to be able to
determine how much the grouping differs from the one
specified by annotations and structure of the Gene
Ontology.

Discussion
In order to assess the functional coherence of modules
detected by clustering relationship networks combining
four commonly used data sources we have looked at the
representative functions of these modules with respect
to GO categories and at the fragmentation of GO cate-
gories with respect to the modules. To investigate the
trade-off between coverage and specificity of the repre-
sentative function of modules, we have defined the AIC-

MICA metric. Additionally, two metrics describing the
fragmentation of GO categories, namely BFRP and
BERP, were introduced to evaluate how well the modu-
lar structure recovered by the MCL algorithm corre-
sponds to the BP categories. These metrics look at two
key aspects that relate modules in relationship networks
to functional annotations. They allow us to compare the
usefulness of individual data sources and the effects of
combining multiple sources on the coherence of the
modules.
We have found that, as expected, the SEQ network

was the best for recovering very specific functional asso-
ciation between proteins. This was evident from the
high AIC-MICA values across all coverage levels. How-
ever, an important point to note is that it may not
always be desirable to extract such close groupings, and

A

B

other - response to hormone stimulus

response to abscisic acid stimulus
response to auxin stimulus
response to brassinosteroid stimulus
response to cytokinin stimulus
response to ethylene stimulus
response to gibberellin stimulus

unrelated to response to hormone stimulus

Figure 4 A subnetwork from the combined (ALL) network of proteins annotated with the GO term “response to hormone stimulus”.
The diagram shows (A) the proteins annotated to this GO term and direct links between them and (B) the breakdown of this group of proteins
into clusters. The colouring is consistent between the two panels. Proteins that are not annotated to this process are hidden on panel (A) and
are coloured grey in panel (B). In (B) all clusters shown contain at least one member with “response to hormone stimulus” annotation and the
only edges shown are the ones that link two members of the same cluster.
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the higher level categorisation may be helpful to provide
a broad overview or to help dissect very large datasets.
Compared to other networks, SEQ consisted of a large
number of strongly connected components (results not
shown) which resulted in the relatively high overall
entropy with respect to the whole Gene Ontology. We
also observed that the clusters recovered were only
related to a small number of GO terms. Another pro-
blem with SEQ as a sole data source is that there was
insufficient evidence to link most of the proteins in our
reference set. By comparison with the SEQ network, it
was possible to use the ALL network to assign 721
more proteins to a cluster of size greater than one due
to links that were contributed by other sources. Based
on these findings, we conclude that overall there is a
clear benefit from the integration of additional data
sources, although there is a small cost incurred because
of a reduction in functional coherence. As the ALL
network performs relatively well in terms of AIC-
MICA (40-90), this dilution of annotation specificity
does not appear to render it uninformative. In fact, the
minimum information content value that was applic-
able at a 40% coverage level was 0.55 and was reached
only for 5 clusters found in the ALL network. This
value corresponds to the ‘cellular physiological process’
GO term, which is one of the direct descendants of the
‘biological process’ root term, and is therefore very
general.
To support this work, several different visualisation

strategies were developed that help to summarise com-
plex integrated networks and identify high-level patterns
in them. Using these visualisation methods, we have
identified that there was a hierarchically organised
neighbourhood in the integrated network that was com-
posed of the proteins annotated to the “response to hor-
mone stimulus” GO term. This finding indicates there
may be more complex and meaningful patterns than
just the modules that could be identified using cluster-
ing approaches.
Comparison of graph-theoretic properties of the four

networks also appears to indicate that the addition of
extra edges lead to the creation of a more compact net-
work, with smaller diameter than the COE or PPI net-
works. Despite this, the transitivity has remained
relatively low - indicating that the number of complete
cliques is small. These differences may be interpreted as
an indication that, in the ALL network, potential mod-
ules are more difficult to recover and the results may be
further improved using more robust clustering
approaches, like spectral clustering methods [49].
Further investigation of the impact of increasing com-
plexity of the network versus increasing levels of noise
that arise from integration of additional data sources is
necessary to confirm these trends.

The co-expression (COE) network performed the
worst with respect to BFRP, BERP and AIC-MICA. At
first glance, this result appears to contradict several ear-
lier studies [12,13] where many meaningful clusters
were identified in the co-expression network but this
discrepancy is likely to be an artefact of the smaller sub-
set of the proteome that was used in this case. In earlier
reports using large co-expression networks, the patterns
detected tended to be associated with clusters contain-
ing more than a 1000 proteins [12,13], which are much
larger than any of the modules identified in this study.
This may be an indication that co-expression is a
weaker source of evidence of functional similarity and
more data are necessary in order to be able to make
useful inferences.
In this study we have restricted the set of proteins in

the network to those for which protein-protein interac-
tion information is available, as this is a currently limit-
ing information source for Arabidopsis. Using a larger
set of proteins would have meant that the contribution
of the PPI data would have been highly unbalanced in
relation to other available information. Although we
recognise that there are other species, in particular Sac-
charomyces cerevisiae, for which there is much more
data available, it is also of importance to validate these
types of approaches in more complex multicellular
model organisms. We have also illustrated that mean-
ingful modules can be successfully identified by cluster-
ing the integrated relationship networks even in
situations when limited data are available and only part
of the complete proteome is considered.
In this work we have addressed a number of impor-

tant issues pertinent to the identification of functional
modules in integrated relationship networks, but it is
important to recognise that a number of alternative
approaches exist for analysis of such networks. In parti-
cular, it is possible to weight the edges in the network
based on the confidence in individual evidence types
[47,48,50-53]. However, both the strategies of selecting
optimum weights and the ways they can be meaningfully
combined across heterogeneous evidence types still
remains a subject of ongoing research. Another possibi-
lity is to use an alternative clustering approach for the
recovery of modules. Historically, the MCL algorithm
has often been applied in the context of biological net-
works because it offers scalable performance even with
large datasets and several studies have shown that it can
outperform other methods in some cases [54-56]. How-
ever, a number of other novel algorithms have now
been developed, among them MCODE [57], MC-
UPGMA [58] CPA [59] FORCE [60] and SPICi [61]. A
number of these approaches have also been compared
in the context of PPI networks in the work by Brohée
and van Helden [62]. Further investigation into these
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alternative approaches has potential for future research,
but was outside the scope of the present study.

Conclusions
Module detection in integrated biological and relation-
ship networks is one of the most important tools for
interpretation of complex biological datasets. As the
amount of biological information continues to grow, it
also becomes increasingly important to improve our
understanding of inter-relationships within these data
and, ultimately, their relationship to biological function.
In this paper we have explored and quantified the inte-
gration of the several data types that are most com-
monly used for construction of such networks. For our
datasets, we have found that combining several types of
evidence was beneficial with respect to the functional
annotation of modules detected using MCL clustering
algorithm, that on average more closely corresponded to
the functional groupings in the Biological Process aspect
of GO. Although the overall level of informativeness of
cluster annotation was not as good as in the sequence
similarity network, it was possible to link many more
proteins using additional information sources. These
findings indicate that there is benefit to the integration
of additional information sources, as it allows more pro-
teins to be assigned to functional modules with only a
relatively small reduction in the module annotation pre-
cision. The overall outcomes of this study provide a
number of insights into the relationship between inte-
grated networks and protein function and may be of use
for further refinement of related approaches that can
better capture biologically relevant information from
integrated datasets.

Methods
We constructed a protein-protein interaction network
based on experimentally established protein-protein
interaction data from the IntAct database [43] and com-
bined it with additional data, namely gene co-expression,
sequence similarity and information from co-occurrence
of protein names in the scientific literature. Previously
we have described the approach used for constructing a
combined network of PPI and gene co-expression data
using Ondex [39]. In this study we investigate the inher-
ent modular structure of these networks and relate it to
the underlying biological processes using the Gene
Ontology (GO) [23] and quantify these properties using
information content and semantic distance-based
measures.

Construction of the integrated relationship network
In the network, nodes represented proteins and edges
were added if there was at least one of the possible four
evidence types linking these two proteins: co-occurrence

of protein names in PubMed abstracts, co-expression of
genes that encode those proteins (where the magnitude
of the Pearson correlation coefficient is greater than
0.6), sequence similarity (with E-value < 0.0001) or
experimentally determined protein-protein interaction.
We have imported protein-protein interaction (PPI)

data from IntAct database (PSI-MI XML format) into
the Ondex system and removed all entities that were
not annotated with Arabidopsis thaliana NCBI taxon-
omy identifier and all entities that were not proteins.
Then the interactions between multiple copies of the
same protein were also discarded. All proteins that were
not part of any interactions were also removed from the
set.
A CO-Expression network (COE) was constructed

from Arabidopsis co-expression data from the ATTED-
II [63,64] database. An edge was created in the co-
expression network if the absolute value of Pearson’s
correlation coefficient of respective gene expression pro-
files was greater than 0.6.
For the literature-based co-occurrence analysis of pro-

tein names, we downloaded 30,639 abstracts from
PubMed which contained the word “Arabidopsis“. This
set of publications together with the integrated set of
Arabidopsis PPIs were loaded into Ondex. Each protein
node contained a complete set of protein names and
synonyms provided by TAIR and UNIPROT. The
Ondex text mining plug-in was used to create relations
between proteins and publications and transform the
output to a co-occurrence network [38]. An edge in the
protein name co-occurrence network (LIT) indicates
that there was at least one abstract that included a men-
tion of both proteins.
Sequence similarity was determined by using TimeLo-

gic® Tera-BLAST™ (Active Motif Inc., Carlsbad, CA)
for all-against-all sequence-comparison of proteins in
the interaction dataset, with an E-value cut-off at 10-3

and minimum percent sequence identity cut-off at 25%.
One edge was created in a sequence-similarity network
(SEQ) per pair of proteins with similar sequences.

Gene Ontology annotation
To explore the functional groupings of proteins in the
network, we have combined all available Arabidopsis
GO annotations from three sources: IntAct [43], GOA-
EBI [44] and UNIPROT [45]. We have calculated the
Information Content (IC) [65] of the annotations using
the combined set of all GO annotations of the Arabi-
dopsis proteome subset as identified in the UNIPROT
database. All annotations to proteins not included in the
proteome set were discarded prior to calculation of the
IC. The combined network of different evidence types
and GO annotation is included in the additional mate-
rial (Additional File 2: Integrated network).
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Clustering the relationship networks
We explored the natural groupings of the proteins
(nodes) using the MCL clustering algorithm [42]. This
algorithm simulates flow in the network and can be
used to identify strongly connected groups of nodes in
the network. We have used an implementation of MCL
(v10-148) algorithm from http://www.micans.org/mcl/,
which was wrapped as a plug-in and made accessible
from the Ondex data integration platform. The inflation
coefficient (I) determines the granularity of the clusters
produced by the algorithm. A value of I = 2.8 was used
for all of the clustering analysis described in this paper.

Assessing the functional coherence of modules
Our aim was to assess the functional coherence of mod-
ules by exploring two aspects (i) whether the clusters
contain proteins that are generally similar in terms of
their functions, as assigned by Gene Ontology terms, i.e.
the most representative GO terms in a cluster (ii) the
way in which proteins with the same functional roles
are distributed across different clusters, i.e. the fragmen-
tation of the GO terms.
To study the first aspect of the functional coherence,

we have developed a measure that quantifies the annota-
tion similarity at various levels of coverage. Since the
GO is described by a DAG, one way of estimating the
overall level of commonality of GO terms in a cluster is
to find a set of representative common ancestors. Each
of these ancestors will depend on how many of the total
number of proteins in the cluster have some GO anno-
tations we chose to include. For clusters in the ALL,
PPI, LIT, COE, SEQ networks, we have found a set of
representative common ancestors corresponding to 40-

90% of the terms, and have calculated the associated IC
of this ancestor term. The approach is illustrated sche-
matically in Figure 5. The statistic calculated is an Aver-
age Information Content of the Most Informative
Common Ancestor set (AIC-MICA).
In order to study the second aspect of the functional

coherence, we have introduced two metrics to evaluate
the fragmentation of the GO annotation terms in the
different clusters. Given a term t, from the biological
process aspect of GO, a set At of all proteins annotated
to the term t, we define Nt the number of fragments of
t as the cardinality of the set of clusters Ct that contain
at least one element of At. We also define pk, the pro-
portion of the total number of proteins annotated with
term t that are found in cluster k:

pk =
|k ∩ At|

|At|

with k Î Ct.
And the entropy (Ht) as:

Ht = −
∑

k,k∈Ct

pklog(pk)

Similarly to the number of fragments Nt, the entropy
Ht gives us a measure of the fragmentation of the term t
across the clusters but it also accounts for the distribu-
tion of the size of the fragments (see Figure 6). To
ensure that the variations in entropy observed between
the different clusters were statistically significant, the
average entropy for each of the real networks was com-
pared to a randomized control by permuting cluster
labels 10000 times. The analysis described in the paper

GO:0008150
IC=0

GO:0051704
IC=4.06

GO:0009987
IC=0.55

GO:0008152
IC=0.57

GO:0065007
IC=1.88

GO:0065008
IC=4.61

GO:0044237
IC=1.01

GO:0044419
IC=9.33

GO:0051703
IC=13.91

GO:0008150
IC=0

GO:0051704
IC=4.06

GO:0009987
IC=0.55

GO:0008152
IC=0.57

GO:0065007
IC=1.88

GO:0065008
IC=4.61

GO:0008150 20/20
GO:0065007 19/20
GO:0065008 19/20
GO:0008152 18/20
GO:0009987 18/20
GO:0051704 18/20
GO:0051703 17/20
GO:0044237 17/20
GO:0044419 16/20
GO:0052100 10/20
GO:0010483  9/20
....

80% of proteins
are annotated by
these terms

GO:0008150 20/20
GO:0065007 19/20
GO:0065008 19/20
GO:0008152 18/20
GO:0009987 18/20
GO:0051704 18/20
GO:0051703 17/20
GO:0044237 17/20
GO:0044419 16/20
GO:0052100 10/20
GO:0010483  9/20
....

90% of proteins
are annotated by
these terms

Term IC
GO:0065008 4.61
GO:0051703 13.91
GO:0044237 1.01
GO:0044419 9.33

Average IC at 80% coverage: 7.21

Term IC
GO:0065008 4.61
GO:0051704 4.06
GO:0008152 0.57
GO:0009987 0.55

Average IC at 90% coverage: 2.44

Cluster 35

For every cluster in the network, take a set of
proteins that have at least one GO annotation
(filled nodes in the image above).

1

For every term in Gene Ontology, count the number
of proteins annotated to that term. Take a set of all
terms that apply to at least a certain proportion of all
annotated proteins. In this example it is either 80% or
90%.

2
Take a set from the step 2 and remove all terms that
have lower information content than any of their
descendant terms that are still included in the set.
The remaining terms comprise the set of the most
informative terms at specified coveragelevel.

3

The averge information content of these terms gives
a measure of specificity of annotation of cluster 35 at
each of the chosen coverage levels.

4

Figure 5 Example calculation of the average information content for cluster coverage level.

Lysenko et al. BMC Bioinformatics 2011, 12:203
http://www.biomedcentral.com/1471-2105/12/203

Page 11 of 14

http://www.micans.org/mcl/


can be reproduced by following the protocol provided
(Additional File 3: Instructions for reproducing the ana-
lysis). This can be done by loading and executing the
workflow (Additional File 4: Ondex analysis workflow)
using Ondex software.
In order to compare the number of fragments and the

entropy of fragmentation according to the source of
relationship data, we have ranked both of them for each
of the GO terms across all five networks. The number
of times each of the data sources were assigned the best
rank (i.e. the lowest value) was counted and a propor-
tion with respect to the total number of GO categories
was calculated. For the sake of brevity from here
onwards, we use abbreviations BFRP (best fragment
rank proportion) and BERP (best entropy rank propor-
tion) when referring to these comparative measures.
These measures provide an intuitive method to compare
the networks, as the output can be understood as a per-
centage of cases where a particular network performed
best or at least as good as one of the others.

Visualisation
The integration process was implemented as a set of
workflows in the Ondex integrator [66]. The resulting
network was visualized and further analyzed in an inter-
active manner using the Ondex front-end. Ondex con-
tains a command console that supports a variety of
common scripting languages and allows the use of
external libraries to facilitate the analysis, add additional
annotation to nodes and edges and then visualize the
results. To carry out the analysis for this paper, we have
chosen to use Jython in order to be able to utilize the
analysis capabilities offered as part of the NetworkX
v0.99 Python graph analysis library [67]. To enable
exchange of data between Ondex and NetworkX, we
have implemented a method that allows export of a pre-
defined subset of an integrated network for NetworkX
representation, the results returned were then added as
additional annotation to the graph using methods, in
Ondex Jython scripting plug-in. Interactive visual
exploration of the network used the visualization

methods available in Ondex, which include an ability to
set the visibility, size/width and colour of nodes and
edges based on the numerical values of their attributes
and/or group membership.

Additional material

Additional file 1: Additional figures and supplementary analyses.
This file contains a figure showing the entropy distributions of the
permuted networks, FSWeight analysis results, and a figure presenting
the results of AIC-MICA application to different subsets of the STRING
database.

Additional file 2: Integrated network in Ondex file format. Integrated
network, which was used to perform the analysis for this paper. Can be
viewed using Ondex frontend, available at: http://sourceforge.net/
projects/ondex/files/supp/BMC_Lysenko_2011/ONDEX.zip/download

Additional file 3: Instructions for reproducing the analysis.
Description of how to deploy the Ondex software and use it to re-
produce the AIC-MICA analysis.

Additional file 4: Ondex analysis workflow in Ondex workflow file
format. The Ondex workflow file for running the AIC-MICA analysis. Can
executed using the Ondex Integrator tool, available as part of Ondex
frontend suite: http://sourceforge.net/projects/ondex/files/supp/
BMC_Lysenko_2011/ONDEX.zip/download
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Figure 6 Schematic diagram showing how entropy provides a useful metric of fragmentation of a given GO term across clusters. If 20
proteins are associated with a given GO term and they all are in the same cluster then the entropy (H) is zero. If most (16) of the proteins are
in one cluster and the remaining proteins are in separate clusters H = 0.338. However, as the proteins get more evenly distributed across
clusters the entropy increases.
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