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Abstract

Background: Patterns of genome-wide methylation vary between tissue types. For example, cancer tissue shows
markedly different patterns from those of normal tissue. In this paper we propose a beta-mixture model to
describe genome-wide methylation patterns based on probe data from methylation microarrays. The model takes
dependencies between neighbour probe pairs into account and assumes three broad categories of methylation,
low, medium and high. The model is described by 37 parameters, which reduces the dimensionality of a typical
methylation microarray significantly. We used methylation microarray data from 42 colon cancer samples to assess
the model.

Results: Based on data from colon cancer samples we show that our model captures genome-wide characteristics
of methylation patterns. We estimate the parameters of the model and show that they vary between different
tissue types. Further, for each methylation probe the posterior probability of a methylation state (low, medium or
high) is calculated and the probability that the state is correctly predicted is assessed. We demonstrate that the
model can be applied to classify cancer tissue types accurately and that the model provides accessible and easily
interpretable data summaries.

Conclusions: We have developed a beta-mixture model for methylation microarray data. The model substantially
reduces the dimensionality of the data. It can be used for further analysis, such as sample classification or to detect
changes in methylation status between different samples and tissues.

Background
Interest in understanding the effects of epigenetics in
relation to different complex diseases is increasing. One
epigenetic mechanism of particular interest is DNA
methylation at cytosines in CpG dinucleotides. The
methylation patterns of genes may change and these
alterations have been shown to be related to complex
diseases, such as heart diseases [1], schizophrenia [2]
and different cancers [3,4]. In cancer, several methyla-
tion changes are detectable at the early stages of cancer
or even in pre-cancerous tissues or blood [5,6]. In addi-
tion, other methylation alterations have been shown to
be specific to cancer type and stage [7,8].
High-throughput technologies, such as microarrays

and large-scale sequencing, allow genome-wide

methylation measurements. Analysis of methylation data
requires efficient statistical methods to be able to iden-
tify potential methylation biomarkers and differential
methylation patterns across sample types. Several meth-
ods have been proposed to pinpoint significant methyla-
tion differences in patients with cancer and to classify
different tissue types. Examples include feature selection
methods [9], mixed effect and generalized least square
methods [10] and singular value decomposition-based
methods [11]. In addition, methylation patterns of dis-
tinct microarray probes have also been modeled with
beta-mixture models, which subsequently are used with
partitioning algorithms to separate different tissue types
into clusters [12]. Each probe is modelled with its own
beta-distribution that depends on the tissue type only.
In the present paper, we propose a beta-mixture model
to describe genome-wide methylation. We assume that
methylation levels of nearby probes are dependent, as
demonstrated previously by [13] and [14], and that
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methylation can be categorized into three different
broad categories or states, low, medium and high
methylation. In addition, we include knowledge about
the genomic background (proximity to CpG-islands) of
the probes following suggestions in [15]. In total, our
model has 37 parameters (see Section Data Analysis)
per sample compared with approximately 27k probes in
Illumina methylation arrays. The parameters comprise
genomic background, methylation state and level, and
dependency between probes. In short, the model facili-
tates

(i) reduction of the dimensionality of a methylation
profile
(ii) for each probe, computation of the posterior
probability of a methylation state,
(iii) computation of a posterior probability that the
latter state was correctly predicted.

We apply the model to a set of methylation microar-
ray measurements from colon cancer samples and show
that the model parameters reflect global patterns in the
data. Based on the estimated parameters, we are able to
classify the samples with high accuracy and to exhibit
global differences between the cancer samples. Further-
more, the model assigns a methylation state to each
probe value. Using the states, accessible data summaries
are provided.

Results and Discussion
The Methylation Array and the Number of CpGs in Probes
in Different Genomic Regions
The Illumina human methylation 27k array consists of
27,578 probes that measure the methylation status of
CpGs in the human genome at single nucleotide resolu-
tion. The array measures genome-wide methylation and
the probes target over 14,000 genes. The great majority
of the genes included in the array have two methylation
probes (80.9%), while 17.6% of the genes have one
methylation probe and only 1.5% have more than two
probes. The degree of a methylation of each probe is
measured by the beta-value which is a continuous vari-
able varying between zero and one, where one means
full methylation. The probes of the Illumina human
methylation 27k array are 50 nucleotides long and con-
tain different numbers of CpGs. Probe locations can be
divided into CpG islands (I), CpG island shore regions
(within 2000 bp from CpG-islands) (S) and outside
regions (O) (these definitions are adapted from [15]).
About one quarter of the probes (6,150) are located in
the shore regions, one sixth (4,922) in outside regions
and the rest (13,819) in the CpG-islands. Depending on
the region, methylation appears to happen at different
rates such that CpG-islands are usually less methylated

than the CpGs in other genomic regions [15]. Logically,
this results in an uneven distribution of methylation in
regions with different numbers of CpGs because more
CpGs occur in CpG-islands than in outside regions; see
Figure 1. As a consequence, the number of CpGs affects
the amount of methylation. In fact, we found a negative
correlation between the number of CpGs in a probe and
the beta-value of the probe (Pearson’s correlation coeffi-
cient r = -0.28). However, this correlation is reduced
markedly when studying the probes in I, S or O regions
separately (correlation coefficients r = -0.049, r = -0.053
and r = 0.083, respectively). The probe distance from
the CpG-island in the O class showed no correlation
with the strength of methylation.

Parameter Estimates and Interpretation
We used the proposed method to analyze methylation
microarray data from normal and colon cancer tumor
samples. Colon cancer can be divided into different
types and here we study patients with microsatellite
instable (MSI) and microsatellite stable (MSS) tumors.
In addition, we have samples of benign colon adenomas
that are not considered as cancer tumors but are classi-
fied as MSS-type adenomas. Our data set contains 42
Illumina methylation 27k microarray samples, divided
into 6 normal, 6 adenoma, 6 MSI and 24 MSS-samples.
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Figure 1 Frequencies of CpGs. Frequencies of the number of
CpGs in probes according to the location in the genome.
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The basic idea behind the model is the assumption
that the methylation level of a CpG (probe) can be
divided into three different states, low (L), medium (M)
and high (H) methylation. The three states are biologi-
cally motivated in the following sense. L corresponds to
the situation, where (almost) all cells in a sample are
unmethylated and H to the situation, where (almost) all
cells are methylated, irrespectively of the composition of
the cells in the sample. M captures the situation in
which the cells are only partly methylated (e.g. hemi-
methylation), or some cell types in the sample are
methylated while others are not.
The latter could be the case if the sample consists of

different cell types (sample purity) or one cell type
shows heterogeneity, as would be expected for cancer
cells. The three states are further empirically motivated
(Figure 2).
We assume that statistical properties of these different

states are the same throughout the genome and that
methylation of a CpG site depends on its location (I, S
or O) in the genome in relation to the nearest CpG-
island. We concentrate on modelling genes with two
probes; however, our model can also be extended to
genes with more than two methylation probes (for the
genes with more than two probes the two first probes
were used). The beta-values of a gene’s probe pairs are
dependent with a correlation coefficient of r = 0.668
between the probes. A similar degree of correlation has
been reported for other data sets, while the probes mea-
suring methylation levels of different genes have shown
no dependency [16]. We built a model that can be con-
sidered a hidden Markov model (HMM) of probe pairs
within a gene. The hidden states are the methylation
levels, L, M and H. Further, the CpG probe pairs are
classified by their locations into classes (I,I), (S,S), (O,O)

and (I,S). The latter includes both (I,S) and (S,I) pairs.
Other cases were omitted as they contained only a few
or no probe pairs. We built one model for each of the
classes.
We fitted a mixture of three beta-distributions (distri-

butions corresponding to the low, medium and high
methylation states, respectively) for each sample in the
colon cancer data set, such that the beta-distribution cor-
responding to the medium methylation state is symmetri-
cal; as described in greater detail in Methods. The beta-
distribution gives the density of the beta-value given the
hidden state. That is, for each sample we estimate beta-
distribution parameters a and b, mixture proportions ω
and a transition probability matrix T for the HMM (see
Methods for further details). The mixture proportions
are the a priori probabilities that a probe is found in a
given hidden state and the transition matrix gives the
probabilities that a probe in some hidden state k1 = L, M,
or H, is followed by a probe in state k2 = L, M, or H. For
the class (I,I) we set the mixture coefficient of the high
methylation state to 0, i.e. this state could not be reached
as high methylation appears to be very rare in this class.
The same is assumed for the I probes in the class (I,S).
Figure 2 shows the empirical and the fitted mixture dis-
tributions for one MSI-sample for different classes. We
also built a model with only two states for every class and
a model where the high methylation state was included in
all classes but these did not reflect the data properties
equally well as the model presented.
The mixture model parameters in different classes var-

ied between samples, but some general trends in the
sample groups (normal, adenoma, MSI, MSS) could be
seen; see Figure 3 for examples. In the figure, the hierar-
chial clustering of the samples based on the methylation
array data (all probes) is also shown. The adenomas and
the MSS cancers are mixed in two big clusters and the
differences between these clusters can be seen in the
parameters as well, cf. Figure 3 and 4.
Regarding the mixture proportions, the group of MSI

cancers is most easily discriminated from the other sam-
ples (some examples are shown in Figure 3). Indeed, for
the (I,I) probe pair class, the MSI mixture proportions
for the low methylation state are clearly lower and the
mixture proportions of the medium methylation state
are higher than in the other classes. Similarly, but less
clearly, differences for the shore (S) region probe pairs
could be detected, e.g. medium and high methylation
state mixture proportions are higher for MSI cancers
compared with the other samples (results not shown).
Furthermore, many mixture proportions vary in the
same range when studying normals, adenomas and MSS
cancers. However, normals have slightly higher propor-
tions for low methylation in (I,I) class than the other
samples.
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Figure 2 Beta distributions mixtures. Mixtures of beta
distributions for different probe-type classes for one MSI-sample.
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The probes in the outside regions show the biggest
variations between the groups. Normals have small coef-
ficients for low methylation whereas the high and med-
ium methylation states are almost equally probable. On
the contrary, for all tumor samples medium methylation
is clearly the most evident and the proportions of the
low and high methylation vary greatly. In addition, for
some adenoma and MSS cancer samples, low methyla-
tion was more probable than high methylation while in
MSI cancer samples the low methylation state always
had the smallest coefficient. Mixture proportions in the
outside regions also distinguished the two clusters of
adenomas and MSS cancers well. Overall, MSS cancers
and adenomas share similar proportions in all the
classes. Class (I,S) mixture proportions do not show as
large differences between groups as other classes.
We can see similar differences between groups in the

estimated parameters of the beta-distribution as in the
mixture proportions. We performed a principal com-
ponent analysis (PCA) on the vector of beta-distribu-
tion parameters (there are 13 for each sample) to
illustrate how the parameters vary across samples and
tissues. In Figure 4 all samples are plotted based on
the three first principal components. Again, normals
and MSI cancers are clustered into distinct groups
while adenomas and MSS cancers overlap. However,

the two clusters of the hierarchial clustering (Figure 3)
encompassing adenomas and MSS cancers could be
distinguished by the principal components. To further
illustrate the use of the model we classified the sam-
ples using the mixture proportions and a leave-one-out
procedure (Equation 1 in Section Data Sets). We used
as classes the four biggest clusters that can be seen in
Figure 3 (clusters 1-4). These were obtained by hierar-
chial clustering. The fifth cluster was omitted as it
contained only two samples i.e., altogether 40 samples
of the clusters 1-4 were used for the classification ana-
lysis. Overall, 32 out of the remaining 40 samples
(80%) were classified correctly, see Table 1. For com-
parison, we followed the same procedure using beta-
values from 100, 500, 1000, 2000, and 5000 probes and
found similar classification results though with lower
performance (see Additional file 1 Tables S6-S10).
Using k-means only results generally in better perfor-
mance: 82.5% using mixture proportions and 90%
when using 5000 probes; for fewer probes the perfor-
mance was less than when using the mixture propor-
tions (see Additional file 1 Tables S1-S6 and Table
S11). Note that k-means find the best division of the
samples into four clusters, whereas the leave-one-out
method assumes clusters are defined and classifies the
samples one at a time.
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Data Summaries
In this section we further illustrate the use of the model.
For each probe pair, we computed the posterior mixture
proportions and the most likely state. The most frequent
state in a group was defined as the group’s overall state.
In Table 2, a summary of the results is shown. There
are clear differences between groups which we expect
from the previous analysis. Normal samples have almost
twice as many HH probe pairs as the other groups.
Likewise, MSI cancers have fewer probe pairs with low
methylation states, while the medium methylation state

is far more common than in the other groups. The dis-
tributions of methylation states for adenomas and MSS
cancers resemble each other.
We use the posterior mixture proportions to calcu-

late the false annotation rate, FAR (see Section Data
Analysis). FAR measures how often a probe pair is
assigned to the wrong state: To each probe pair, we

Table 2 Numbers of probe pairs

LL LM LH ML MM MH HL HM HH

normal 4934 313 11 1075 1805 247 30 236 860

(%) 51.9 3.3 0.1 11.3 19.0 2.6 0.3 2.5 9.0

adenoma 5121 428 51 964 2066 247 91 203 475

(%) 53.1 4.4 0.5 10.0 21.4 2.6 0.9 2.1 4.9

MSI 3970 382 21 989 3053 273 79 235 541

(%) 41.6 4.0 0.2 10.4 32.0 2.9 0.8 2.5 5.7

MSS 4945 430 32 1004 2290 218 71 188 531

(%) 50.9 4.4 0.3 10.4 23.6 2.2 0.7 1.9 5.5

Average number of probe pairs in different methylation states according to
group.
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Table 1 Sample Classification

True cluster Total Predicted as

1 2 3 4

1 6 5 1 0 0

2 16 1 14 1 0

3 12 0 4 8 0

4 6 0 0 1 5

Classification based on leave-one-out cross validation.
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assign the hidden state (k1, k2), with k1, k2 = L, M, or
H, with the highest posterior proportion. The probabil-
ity that this assignment is incorrect is given by FAR
(see Section Data Analysis). For the colon data set,
FAR = 0.128, implying that about 1 in 8 probe pairs
should have a wrong annotation. For example, in Fig-
ure 2, the bottom left plot, wrong annotations are
likely to occur when the probability of the low and the
medium states are similar (e.g. beta-value around 0.1),
while confident annotations are made when e.g. the
beta-value is around 0.5.
Next, we selected the probe pairs where the overall

group state differed between groups. We further
reduced the number of probe pairs by only choosing
those for which the posterior mixture proportions
showed a significant difference between groups using
Fischer’s linear discriminant analysis. Table 3 shows
the results. For each probe pair, one or both probes
might differ between two groups; in the table we
count how many probes show a given change, e.g.
L®M. Most differences were found between normals
and MSI cancers with almost 2000 differences while
only 35 changed probes are detected between ade-
noma and MSS samples. This again shows that based
on methylation data, adenomas and MSS cancers are
difficult to distinguish. In addition to the number of
changes, also the type of changes differed between
comparisons.
For example, when comparing normals with MSI can-

cers, over 80% of changes were from low to medium
methylation. In comparison, between normals and ade-
nomas and normals and MSS cancers, the proportions
were 42% and 37%, respectively.
The characteristics of the changed probes also differed

between comparisons; see Table 4. For all comparisons
except between normals and MSS cancers the majority
of methylation changes happened at CpG-islands.
Further, there are differences between adenomas and
MSS cancers which may be used to distinguish between
the two tissue types.

Conclusions
In this paper, we have proposed a model for microarray
methylation data. The model uses four different probe
pair classes and three different methylation states. It is
motivated by the empirical distribution of beta-values
and knowledge of the genomic content of CpG dinu-
cleotides. It reduces the dimensionality of a microarray
data set to 37, the number of parameters in the model.
The model allows us to assign one of three broad
classes (low, medium or high) to each methylation
probe value and assess the correctness of the
assignment.
Further, we illustrate the use of the model by analys-

ing a colon cancer data set. Normal and MSI samples
could easily be distinguished from the other samples,
but adenomas and MSS cancers were mixed together.
However, the hierarchial clustering based on all beta-
values (27k probes) also mixed these two groups. This
suggests that the methylation patterns in adenomas and
MSS cancers are very similar, which is in agreement
with previous studies [17,18]. In addition, we identified
differences in the genomic localisation of methylation
changes. This observation may be used to discriminate
between adenomas and MSS cancers from genome-wide
methylation data.
In the future it would be interesting to integrate

information from different data sources, such as
methylation, gene expression and copy numbers, into
one model. It may also be beneficial to take the full
step and model at the level of the DNA sequence
directly, anticipating the rapidly growing interest in
next-generation sequencing.

Methods
Data Sets and Preprocessing
We used a data set that consists of 42 Illumina methyla-
tion 27k microarray samples, that can be divided into 6
normal, 6 adenoma, 6 MSI and 24 MSS-samples. Raw
data was preprocessed and normalized with the back-
ground method using Illumina’s BeadStudio software.

Table 3 Methylation state changes

Norm vs Aden Norm vs MSI Norm vs MSS Aden vs MSI Aden vs MSS MSS vs MSI

L ® M 256 1627 613 673 25 42

M ® L 173 87 344 7 8 974

M ® H 9 24 24 16 2 152

H ® M 168 238 694 4 0 131

L ® H 0 0 0 0 0 0

H ® L 1 0 0 0 0 0

Total 606 1977 1675 700 35 1299

Number of changes in methylation states in group comparisons. Norm = normal, Aden = adenoma.
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After this the methylation value for each probe (the
beta-value) was computed with the formula

β =
max(M, 0)

max(M, 0) + max(U, 0) + 100
,

where M is the value of the methylated bead type
probe and U is the value of the unmethylated bead type
probe. Beta-values vary between zero and one. In the
analysis, we omit probes with b = 0, these are generally
of bad quality.

Model
Let sj be the location (I, S or O ) of the jth probe in the
genome and let xij be the beta-value computed for the
probe j of sample i. Based on the locations, the data is
divided into classes Ca = {j|sj = a}, where a Î {I, S, O}.
For each class, we assume that the data follows a beta
mixture model:

f (xij|j ∈ Ca) =
∑

k∈{L,M,H}ωaki
1

B(αaki,βaki)
xαaki−1
ij (1 − xij)βaki−1.

Here, k = L, M, H can be considered hidden
(unknown) states and ωaki, the a priori probability that
a probe from sample i and class a is in state k. The
ωaki’s are called mixture proportions for sample i and
class a, and fulfill ∑k ωaki = 1. If a probe is in hidden
state k, it emits a methylation value according to a beta-
distribution with parameter (aaki, baki) and normalizing
constant B(aaki, baki). We assume that the beta-distribu-
tion of the medium methylation state is symmetric, i.e.
aaMi = baMi. Throughout the paper k refers to the
methylation state, k = L, M, H.
To take dependencies between neighboring probe into

account we do the following (for an illustration, see Fig-
ure 5). For a probe pair (xij, xi(j+1)), i.e. the first two
probes in a gene, we model the two probes assuming
Markov dependency between them,

f (xij, xi(j+1)|j ∈ Ca1 , j + 1 ∈ Ca2 ) =
∑

k1∈{L,M,H}
ωa1a2k1i

1
Ba1k1i

x
αa1k1 i−1
ij ·

(1 − xij)βa1k1 i−1 · [
∑

k2∈{L,M,H}
Ta1a2k1k2i

1
Bαa2k2 i

·

x
αa2k2 i−1
i(j+1) (1 − xi(j+1))βa2k2 i−1] =

∑

k1,k2∈{L,M,H}
νa1a2k1,k2i

1
Ba1k1 i

x
αa1k1 i−1
ij (1 − xij)βa1k1 i−1

· 1
Bαa2k2 i

x
αa2k2 i−1
i(j+1) (1 − xi(j+1))βa2k2 i−1.

Figure 5 Graphical view of the model. The first probe of a probe
pair belonging to class (a1, a2) reaches the states L, M and H with
probabilities ωa1a2L, ωa1a2M and ωa1a2H, respectively, and each
state emits a methylation value from a corresponding beta-
distribution (denoted in the figure by Betaa1k). Sample index i is
suppressed for clarity. Then, transition to the state of the second
probe happens according to the transition probabilities ta1a2k1k2
and similarly to the first probe, a methylation value is emitted from
a beta-distribution.

Table 4 Number of changes in different regions in group comparisons

Norm vs Aden Norm vs MSI Norm vs MSS Aden vs MSI Aden vs MSS MSS vs MSI

I 272 1356 555 527 27 595

(%) 45.0 68.6 33.1 75.3 77.1 45.8

S 87 377 183 148 6 285

(%) 14.4 19.1 10.9 21.1 17.1 21.9

O 246 244 937 25 2 419

(%) 40.6 12.3 55.9 3.6 5.7 32.3

Total 606 1977 1675 700 35 1299

Norm = normal, Aden = adenoma.
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Here, (a1, a2) denotes the class of the probe pair, Balkli

is short for the normalizing constant B(αalkli,βalkli) of
the corresponding beta-distribution, and
νa1a2k1,k2i = ωa1a2k1iTa1a2k1,k2i is the a priori probability
(mixture proportion) that the probe pair has (hidden)
methylation state (k1, k2). There are nine such hidden
states.
The bottom line in Equation 1 gives the density of the

paired methylation values (xij, xi(j+1)) as a mixture distri-
bution over the nine hidden states. Given the probe pair
is in hidden state (k1, k2), the methylation values are
emitted independently according to two beta distribu-
tions. The parameters of the beta-distribution are
assumed to depend only on the corresponding probe,
not the probe pair, and again we assume symmetry for
the medium methylation state, i.e. αalMi = βalMi, l = 1, 2.
The middle line shows the same density written as a
Hidden Markov Model. The first probe is in state k1
with probability ωa1a2k1 i, while the second probe is in
state k2 with probability Ta1a2k1,k2i (given the first is in
k1). Thus, Ta1a2k1,k2i is a 3 × 3 transition matrix for each
class (a1, a2) and sample i.
If Equation 1 is marginalized to obtain the density for

a single probe, we find Equation 1 with
ωaki =

∑
k2 νaa2k,k2iπaa2, where πa1a2 is the empirical fre-

quency of class (a1, a2) among the probe pairs. Similarly
for the second probe in the pair.

Data Analysis
Model parameters are estimated using maximum likeli-
hood. Briefly, first the beta-distribution parameters are
defined for each probe class (CI, CS, CO) and for each
state (L,M,H) using R’s optim-function and EM-algo-
rithm, the parameters are obtained according to Equa-
tion 1. Secondly, for each probe pair, the obtained beta-
distribution parameters are used to estimate the mixture
parameters ωa1a2k1k2 and transition probabilities of the
matrix T . In this step, the Baum-Welch algorithm is
used. After the model estimation, parameters are
obtained that include 13 beta-distribution paratemers
(medium methylation distribution is symmetric, i.e., only
one parameter is needed) for L, M and H states, 7 mix-
ture proportion parameters for probe classes (I,I), (S,I),
(S,S) and (O,O) (one for the class (I,I) as high methyla-
tion cannot be obtained and two for the other classes)
and 17 transition probabilities for the four probe pair
classes (6 parameters for (S,S) and (O,O), 3 for (S,I) and
2 for (I,I)).
The most likely methylation states for each probe pair

are computed with the Viterbi algorithm, in addition,
we compute posterior probabilities for each possible
state combination for each probe pair. We exclude the
classes (S,O), (O,S), (I,O) and (O,I) from the analysis

because there are very few probe pairs in these classes
(121 in total). For convenience, we group (S,I) and (I,S)
together by swapping the probes of the latter. In this
way we are left with four classes, (I,I), (S,S), (O,O), and
(S,I).
For the classification of the samples using estimated

parameters, we apply a leave-one-out method [19]. If
there are G different groups, then sample i is classified
as belonging to the group that minimizes the Mahanalo-
bis distance

∑

t

(νti − μtg)
2

σ 2
tg

, (1)

where νtis, t = (a1, a2, k1, k2), are the mixture propor-
tions of the different two probe classes, μtg and σ 2

tg are
the empirical mean and variance of the νtis over all sam-
ples i in group g. If sample i belongs to group g, then it
is left out when calculating the mean and the variance
of that particular group. In addition, we performed the
same procedure using beta-values from 100, 5000, 1000,
2000, and 5000 probes. Also we used k-means with the
same number of beta-values. These were selected as
those having the largest variance among all the probes.
Note that the first approach assumes we know the
groups, while in the second approach k-means finds the
optimal division of samples into four groups.
We compute a false annotation rate (FAR) for the data

which we define similarly to the false discovery and the
false negative rates in [20]; that is, for a set J of probe
pairs (with cardinality #J) the FAR is defined by

FAR =
∑

j∈J
(1 − γ (xj, xj+1))/#J, (2)

where

γ (xj, xj+1) = max
k1,k2∈{L,M,H}

P(k1k2|xj, xj+1) (3)

is the posterior probability of the most probable state of
probe pair (j, j + 1) with methylation values (xj, xj+1) and

P(k1k2|xj, xj+1), k1, k2 ∈ {L,M,H}, (4)

are the posterior mixture proportions given (xj, xj+1),
calculated with the Viterbi algorithm. The FAR is a nat-
ural measure here as it provides the posterior probability
(i.e. given the methylation values) that a probe pair is
classified as being in hidden state (k1, k2), when in fact
it is in (k′

1, k
′
2).

We used Fischer’s linear discriminant analysis [21] to
test for differences in posterior mixture proportions
between groups. To assess the significance of the test
statistics we permuted group labels 10 000 times and
redid the analysis. We used a significance level of 1%.
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Programs used for statistical analysis were written in R
http://www.r-project.org/ and are available upon request.

Additional material

Additional file 1: Tables S1-S11. Classification results using k-means
clustering and the leave-one-out method with Mahalanobis distance. In
Tables S1-S10, 100-5000 probes with the highest variance across samples
were used in the analysis. Table S11 shows the results of k-means
classification using the mixture proportions only (as in Table 1). Clusters
are the same as in Figure 3 and 3 in Table 1.
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