
RESEARCH ARTICLE Open Access

Revision history aware repositories of
computational models of biological systems
Andrew K Miller1*, Tommy Yu1, Randall Britten1, Mike T Cooling1, James Lawson1, Dougal Cowan1, Alan Garny2,
Matt DB Halstead1, Peter J Hunter1, David P Nickerson1, Geo Nunns1,3, Sarala M Wimalaratne1,4,
Poul M F Nielsen1,5

Abstract

Background: Building repositories of computational models of biological systems ensures that published models
are available for both education and further research, and can provide a source of smaller, previously verified
models to integrate into a larger model.
One problem with earlier repositories has been the limitations in facilities to record the revision history of models.
Often, these facilities are limited to a linear series of versions which were deposited in the repository. This is
problematic for several reasons. Firstly, there are many instances in the history of biological systems modelling
where an ‘ancestral’ model is modified by different groups to create many different models. With a linear series of
versions, if the changes made to one model are merged into another model, the merge appears as a single item
in the history. This hides useful revision history information, and also makes further merges much more difficult, as
there is no record of which changes have or have not already been merged. In addition, a long series of individual
changes made outside of the repository are also all merged into a single revision when they are put back into the
repository, making it difficult to separate out individual changes. Furthermore, many earlier repositories only retain
the revision history of individual files, rather than of a group of files. This is an important limitation to overcome,
because some types of models, such as CellML 1.1 models, can be developed as a collection of modules, each in a
separate file.
The need for revision history is widely recognised for computer software, and a lot of work has gone into
developing version control systems and distributed version control systems (DVCSs) for tracking the revision
history. However, to date, there has been no published research on how DVCSs can be applied to repositories of
computational models of biological systems.

Results: We have extended the Physiome Model Repository software to be fully revision history aware, by building
it on top of Mercurial, an existing DVCS. We have demonstrated the utility of this approach, when used in
conjunction with the model composition facilities in CellML, to build and understand more complex models. We
have also demonstrated the ability of the repository software to present version history to casual users over the
web, and to highlight specific versions which are likely to be useful to users.

Conclusions: Providing facilities for maintaining and using revision history information is an important part of
building a useful repository of computational models, as this information is useful both for understanding the
source of and justification for parts of a model, and to facilitate automated processes such as merges. The
availability of fully revision history aware repositories, and associated tools, will therefore be of significant benefit to
the community.

* Correspondence: ak.miller@auckland.ac.nz
1Auckland Bioengineering Institute, The University of Auckland, Private Bag
92019, Auckland, NZ
Full list of author information is available at the end of the article

Miller et al. BMC Bioinformatics 2011, 12:22
http://www.biomedcentral.com/1471-2105/12/22

© 2011 Miller et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:ak.miller@auckland.ac.nz
http://creativecommons.org/licenses/by/2.0


Background
Building mathematical models of biological systems
plays an important role in understanding those systems.
Early work on building models for computational simu-
lation conflated the model with the techniques to simu-
late it, and used procedural programming languages.
The mathematical equations in the model were pub-
lished, rather than the computational code, and so
reproducing the simulation results involved a significant
amount of work.
More recently, declarative formats for marking up

mathematical models have been developed. CellML [1]
and SBML [2], for example, both use an XML based for-
mat to represent models. The focus of CellML is on
representing mathematical models, while SBML contains
constructs specific to modelling reaction networks, but
allows certain additional forms of algebraic and rate
equations. The benefit of these declarative representa-
tions is that the numerical algorithm to be used is com-
pletely separated from the mathematical specification of
the model. This means that the same model description
can be used to solve the model with many different
tools and numerical algorithms. It also means that all or
parts of the model can be more easily taken and put
into a different model.
The benefit of having models in a few widely used

standard formats is that the tools needed to run simula-
tions are gradually becoming ubiquitous within the bio-
logical systems modelling community, or at least readily
available. There are well-developed APIs to simplify the
development of tools for working with CellML [3] and
SBML [4] models. In addition, model users can choose
from a wide range of programs for running analyses on
CellML [5] and SBML [6-9] models. Thus, modellers
can share their models with members of the community,
who can not only easily reproduce the results described
in a paper, but also build on the work of other
modellers.
This benefit becomes even more significant when

common parts of models can be shared between multi-
ple models. CellML 1.1 provides for model composition
by allowing hierarchies of components to be imported
from one model into another, where they can be con-
nected to other components. For example, CellML
model composition has been used to build a library of
models for standard synthetic biology parts [10].
In order for model sharing to occur, it is important

that members of the community can easily obtain mod-
els. A number of repositories have been developed for
sharing models, including the Physiome Model Reposi-
tory 2 (PMR2) software (which is used to run the
CellML Model Repository [11]) and the BioModels
Database [12]. No repository described in the literature

to date has had the ability to store detailed information
on the revision history of the representation of the
model. Figure 1 gives a hypothetical example of the
level of complexity of revision histories. In this example,
group A created a model of a particular cell type. Group
B took group A’s model and made an improvement to
it. Group C also took group A’s model and changed it
to apply to a different cell type. Group D then combined
the improvements of group B with the change of cell
type by group C. Group E then fixed a different issue in
group A’s model. A user of a revision history unaware
repository will see 5 models - from groups A, B, C, D,
and E, with little information in a machine readable
form about the relationship between them. In this case,
there is the potential to update the model from group D
with the improvements from group E. A machine read-
able revision history makes it possible to establish the
relationship between group D’s and group E’s models,
and, possibly, depending on the exact location of the
changes, automatically merge the changes from the
models to make a new model. Without this machine
readable revision history, merging would be a manual
process, and the easiest way to update group D’s model
would be to read E’s paper and add any improvements
to group D’s model.
The question of how revision history is maintained for

computer software has an extensive history. SCCS
(source code control system) [13] and RCS (revision
control system) [14] were early solutions. These systems
treat each file as a separate module, with independent
version history, and treat revision history as a tree.
Every revision of a file (after the initial version) has a
single parent revision. An RCS repository has a trunk,
to which all new revisions are generally committed, and
the possibility of branches, in which derivatives of an
older revision on the trunk (or another branch) are cre-
ated. Selected changes made to the trunk can be merged
into branches, and vice versa. However, the fact that
this merge occurred is not recorded by the RCS

Figure 1 Example of a hypothetical revision history. This figure
demonstrates the revision history of a hypothetical model, and
shows the non-hierarchical nature of the revision history graph.

Miller et al. BMC Bioinformatics 2011, 12:22
http://www.biomedcentral.com/1471-2105/12/22

Page 2 of 10



software in any machine readable form (so as to pre-
serve the tree structure of the revision history), meaning
that part of the revision history can be lost (especially
when multiple revisions are merged at the same time).
This means that if, for example, changes made on a
trunk are merged into a branch, a later attempt to
merge all changes on the branch back into the trunk
will result in conflicts, as the branch already includes
some of the changes from the trunk. When the merge is
successful, all changes on the branch will appear, in the
revision history of the trunk, as a single change.
The Concurrent Versioning System (CVS) [15]

extends RCS to work over the network, which allows
multiple developers to work on the same software pack-
age on separate computers. However, the underlying
process of storing the revision history for each file sepa-
rately, and in a tree-like fashion remains. These con-
cepts are further extended in Subversion [16].
Subversion retains the requirement for revision histories
to form a tree. However, entire hierarchies of directories
and files are versioned as a single module, with atomic
changes made across the entire hierarchy.
More recently, there has been a major shift towards

distributed version control systems (DVCSs). Darcs [17],
Pastwatch [18], Monotone [19], Git [20], and Mercurial
[21] are all examples of such systems. These systems
allow every user to have a local repository to which they
can commit changes, combined with the ability to push
and pull sets of changes between repositories. In order
to achieve this, the revision history is allowed to form a
directed acyclic graph (DAG), rather than being limited
to a tree structure. This means that two or more people
can make and commit changes from the same starting
version of a file. When these people want to push their
changes to the same centralised repository, their
changes need to be reconciled. In CVS or Subversion,
this would be achieved by requiring users to update and
merge before they commit. However, in DVCSs, the
commit has already been made, so instead, a new revi-
sion representing the merge, with two parents, is created
(for example, the parents might be the changes of the
first person to push, and the changes of the second per-
son wanting to push).
The same properties which make DVCSs useful for

distributed development also make it useful for develop-
ing different versions of software under version control.
Unlike in earlier centralised VCSs, it is possible to
merge back and forwards between a branch as many
times as required without conflict, as merges are revi-
sion history aware, and so no attempt is made to merge
changes which have already been merged. While DVCSs
are most widely used for maintaining software, there is
no reason why their utility should be limited to soft-
ware. Computational models represented in a markup

language have features in common with both computer
software, and with marked up text documents (both of
which can be represented in a DVCS). However, prior
to the work described here, we are not aware of any
other previous use of a DVCS for mathematical models
of a biological system.
Saffrey and Orton [22] discussed the differences

between the version control requirements of software
and models, and proposed the use of XML patches so
that different combinations of changes to models can be
applied. They adopted this solution because it allowed a
wide range of variations of a base model to be created
in semi-automated way. The requirement in traditional
VCSs that the revision history must form a tree makes
it difficult to maintain models made by applying differ-
ent combinations of changes. DVCSs solve this problem
because they allow one revision to have multiple par-
ents, making it possible to maintain branches produced
by the application of different combinations of changes.
This paper presents our research into how DVCSs can

be used in model repositories to better track the revi-
sion history of computational models of biological
systems.

Methods
The application of DVCSs to computational models
We will focus here on CellML models. CellML 1.1 mod-
els can consist of one or more files. Each model has a
top-level CellML file, which can import files containing
different CellML models, and use components from
them as sub-models. In some cases, the top-level model
will merely finalise the model by connecting cell-type
specific parameters, or a particular experimental stimu-
lation protocol, to the remainder of the model [23], and
so there may be several alternative top-level models,
with the revision history being recorded across several
files as a single module.
However, in other cases, a model may import a model

of a functional module, such as a particular ion channel
[24], which has great generality. The ion channel model
might be re-used as part of many different larger mod-
els. It would not make sense for all possible larger mod-
els which might use the ion channel to be included in
the same directory. Instead, what is required is the abil-
ity for each complex model to include, by reference, a
particular version of the model to be imported.

Supporting a DVCS in PMR
We adapted the existing PMR software (to create
PMR2) so that all models put into the model repository
are stored in a Mercurial repository. We refer to each
local Mercurial repository as a workspace. Unrelated
models would usually be stored in different Mercurial
repositories. However, where several very closely related

Miller et al. BMC Bioinformatics 2011, 12:22
http://www.biomedcentral.com/1471-2105/12/22

Page 3 of 10



models, each of which shares common parts, are created
by the same author, they may be stored in the same
workspace.
Workspaces can contain other files alongside the

model files. For example, they can include SVG dia-
grams or raster images which aid in understanding the
model. The repository can also include tool specific
data, such as OpenCell session files http://www.opencell.
org/, which describe how to display the model to users.
These files can be arranged in an arbitrary structure of
directories. PMR2 can be used for non-CellML models.
Authorised users are able to push changes to their

Mercurial workspace. For models which are made pub-
lic, anyone can pull changes from the workspace
through Mercurial, and can also browse different revi-
sions in the workspace, or download all model files in
the workspace as of a particular revision, using a web
interface. Users can pull a workspace which was created
and made public by another user, make and commit a
series of local improvements to the model, and once
authorised, push these changes back to a new workspace
in the model repository. The new workspace will con-
tain all the changes that were put into the original
workspace. It is then possible for the author of the origi-
nal workspace to pull changes back into their own
workspace.

Embedded workspaces: dealing with common sub-models
Using Mercurial, it is possible to nest one workspace
inside another (referred to as embedded workspaces).
This allows a user to include a common sub-model,
such as an ion channel model produced by someone
else, in a model, while maintaining control of exactly
which revision of the submodel is being used. This
enables the model to be described using relative URIs.
There are several reasons why this is better than using

an absolute URI in the importing model to reference
the model repository:

• It greatly simplifies the process of updating the
sub-model, as this can be done through an ordinary
Mercurial pull and update of the submodule, rather
than requiring that the importing model be edited
and the URIs be changed.
• It means that it is simple to obtain the complete
model and revision history, for use offline.
• It greatly simplifies the workflow when the same
user is creating both the sub-model and the import-
ing model. Instead of needing to completely specify
the submodel, push it to the workspace on the repo-
sitory, obtain the URI, and then set up the importing
model, the modeller can instead work on both mod-
els in parallel, and push the top-level and sub-mod-
els to the repository later when they are ready.

Exposures
Not every change committed or pushed to a workspace
is necessarily an overall improvement to the usefulness
of a model, compared to the previous revision of the
model. For example, a change might correct one pro-
blem in a model, but due to fudge factors or parameters
which have not yet been refit, actually make the results
of the model less accurate. In addition, a change might
improve a model from a numerical sense, but the pre-
vious revision might have been through a careful peer-
review process, while the latest revision is the
unchecked work of a single person.
For these reasons at least, it is not true that the latest

revision in a workspace is always the one that should be
advertised to casual users of the model repository. The
concept of exposure was therefore added. This is a
reference to a particular revision in a workspace, with
some associated documentation. The exposure acts as
the link to databases such as MEDLINE (http://www.
ncbi.nlm.nih.gov/pubmed/; using the PubMed ID),
which identifies a published paper, and the particular
revision of a workspace. It also holds information on the
results of any validation carried out by the repository
curators.

Tracking revision history in practice
PMR2 was deployed to the CellML Model Repository to
replace PMR in June 2009. In order to achieve this, all
models in the existing CellML Model Repository (which
simply had different versions with ordinal revision num-
bers) were migrated into the DVCS using a script which
added each version as a sequential revision. The date at
which each revision was added was preserved as the
date of addition.
We predicted that moving to the DVCS based reposi-

tory would increase the amount of revision history
information (as measured by the number of revisions)
for several reasons.
Firstly, model authors and curators can make a series

of changes, some of which may be a conceptual
improvement on the model, but which actually make
the model less usable until other issues are resolved.
Under the previous non-DVCS repository, revisions
would only be put up by curators when they were ready
for the public to use, losing information on the inter-
mediate steps taken (which may involve several model
authors and curators) to get to that state.
The previous repository also allowed curators to retro-

spectively replace revisions in cases of minor changes,
again losing part of the revision history. In addition, the
previous repository did not version figures and other
supplemental data alongside models. Under a DVCS
based repository, curators and model authors can
directly push and pull changes to and from each other.

Miller et al. BMC Bioinformatics 2011, 12:22
http://www.biomedcentral.com/1471-2105/12/22

Page 4 of 10

http://www.opencell.org/
http://www.opencell.org/
http://www.ncbi.nlm.nih.gov/pubmed/;
http://www.ncbi.nlm.nih.gov/pubmed/;


They can also share a model which is not yet ready for
publication through a workspace in the repository, and
create an exposure for the model when they are ready.
Alternatively, they can share a model by pushing to or
pulling from their respective local repositories directory,
and all revisions made will be added to the repository
when the changes are pushed to the repository.
To test the above prediction, we analysed the model

repository as of the 28th of April, 2010 (310 days after
the deployment of PMR2). There were, at that point,
516 workspaces in the repository. There were 2,273 dif-
ferent revisions in the repository, of which 1,426 were
migrated from the previous repository.
Figure 2 shows a time series of the number of revi-

sions made across the entire repository per month.
One major expected explanatory variable, the number
of hours curators were contracted to work per week, is
also shown on the graph. Data on curator hours

worked per week were obtained by asking the curators.
The values plotted are averages for the month. The
spike in June 2009 is partly due to automated changes
made (over the course of less than an hour) to all
models as part of the repository migration process. We
excluded the June 2009 data point from further analy-
sis, as these automated changes were deferred until the
deployment of the repository, and so could bias the
analysis.
We fitted a generalised linear model [25] that the log

number of revisions (from February 2007 - April 2010)
is explained by the log number of hours that curators
are contracted to work, and the factor of whether the
repository used DVCS-based workspaces. We log-trans-
formed the data, as we believe that it makes more sense
for the factors affecting the rate of revisions to be multi-
plicative rather than additive. In other words, we fitted
the model r’ = a + bd + gc’, where r’ is the log-

Figure 2 Revisions over time. This figure shows the total number of revisions committed to models in the repository each month. Only
revisions which were pushed to the repository by the 28th of April, 2010 are shown. The graph also shows an estimate of the total number of
hours of model curation work contracted per week, and includes an arrow to indicate the point in time when the repository was switched over
to use DVCS-based workspaces.

Miller et al. BMC Bioinformatics 2011, 12:22
http://www.biomedcentral.com/1471-2105/12/22

Page 5 of 10



transformed vector of revisions in each month, d is 0 if
DVCS-based workspaces had not been deployed, and 1
if they had, and c’ is the log-transformed number of
contracted curator hours. There is very strong evidence
that b is non-zero (p < 0.001), and evidence that g is
non-zero (p = 0.00509). The unbiased parameter esti-

mates are ˆ . = −1 01 , ˆ . = 1 97 , and ˆ . = 0 769 . In

other words, after the log-transforms are simplified out,

ˆ . .r c d= ′0 363 0 769 , where r̂ is the estimator of the num-

ber of revisions per month, c is the number of con-
tracted curator hours, and d’ is 1 if the DVCS repository
has not been deployed, and 7.16 otherwise. The 95%
confidence interval for exp(b) is (4.51, 11.4). The data,
and the fit of the model to it, is visualised in Figure 3.

This analysis shows that there is good evidence that

the ratio of number of revisions per week after
before switch-

ing to a DVCS was somewhere between 4.51 and 11.4.

Model authors and curation
In many existing repositories, access to create revisions of
a model is restricted to authorised curators. This is done
so that curators can ensure that models that are to be
made public meet the standards of the repository. How-
ever, this also has the side effect that model authors can-
not create revisions except by submitting their changes
to the curators, and usually means that a record of the
revision is only created when a model is accepted by the
curator (which may require a number of changes).

Figure 3 A visualisation of the statistical model. This figure shows all monthly data points on log-transformed axes for the number of
contracted curator hours (c’) and the number of revisions made (r’), colour-coded to distinguish between points from before and after the
switch to DVCS-based workspaces. Overlaid on this figure is the estimator ̂ , shown as a horizontal intercept, the estimator ̂ , shown as the
red line ˆ ˆ + ′c , and ̂ , shown as the green line ˆ ˆ ˆ  + + ′c . In addition, dashed lines corresponding to the boundaries of the 95%
confidence interval for each parameter is shown (note that each confidence interval is shown separately, and so, for example, the dashed green
lines do not include uncertainty about g).

Miller et al. BMC Bioinformatics 2011, 12:22
http://www.biomedcentral.com/1471-2105/12/22

Page 6 of 10



DVCSs work by recording changes locally, and only
later pushing them to another repository. This means
that model authors can make revisions and store them
on their own computer without the need to be granted
access by the repository curators. It is the act of pushing
these changes into the central repository that requires
access to be granted. In PMR2, model authors are given
access to their own workspace, and it is only the final
step of creating an exposure of a particular revision on

the repository website which is restricted to authorised
curators. This approach allows the quality of exposed
models to be maintained, while not preventing model
authors from creating as many revisions as required to
accurately describe the revision history of their model.

Presenting models with revision history to casual users
An important part of a model repository is the ability to
present the information it contains to casual users.

Figure 4 PMR2 user interface - exposure view. This figure shows the web-based user interface for viewing exposures. The model shown is a
CellML representation of the Hodgkin & Huxley 1952 model. The view provides both information on the version the exposure relates to, and a
link back to the workspace for revision history.

Miller et al. BMC Bioinformatics 2011, 12:22
http://www.biomedcentral.com/1471-2105/12/22

Page 7 of 10



Model repositories based on PMR2 are accessible using
a standard web browser, presenting exposures and
workspaces to casual users.
As is shown in Figure 4, the web rendering of an

exposure of a model (in this case [26]) includes a ren-
dering of structured machine-readable metadata about
the model (for example, the display of how well the
model works in different tools, to the right), unstruc-
tured (human-readable) metadata from the model, and a

section on the source of this model (the workspace, and
the revision shown in the exposure). This section also
provides a hyperlink to the workspace information.
There are several views of the information in the

workspace available, but the first view a user sees after
viewing the workspace from the exposure is shown in
Figure 5. This view displays the sequence of changes
which were made, and the author of the changes, in
the order they occurred. For revisions where one

Figure 5 PMR2 user interface - workspace summary view. This figure shows the web-based user interface for viewing workspaces. The
model shown is a CellML representation of the Hodgkin & Huxley 1952 model. The view shows the history of the model leading up to the
current version, in reverse chronological order.

Miller et al. BMC Bioinformatics 2011, 12:22
http://www.biomedcentral.com/1471-2105/12/22

Page 8 of 10



exists, it also provides a hyperlink to the corresponding
exposure.

Conclusions
Maintaining accurate records of the revision history of
computational models plays an important role in under-
standing the origin and justification for certain parts of
a model, and it also allows for more accurate automated
merging to facilitate scientific collaboration when build-
ing models.
Existing DVCSs can successfully be incorporated as

part of a model repository, and this approach allows
much better change records to be kept when compared
to storing a linear series of model files. It accommodates
models developed in parallel by different people, with
features from each being merged, and ensures that all
changes are recorded in the revision history. By separat-
ing the concept of a revision from the concept of an
exposure of a model, and by applying access and quality
control restrictions when creating an exposure, rather
than when recording a revision, model authors and
repository curators become free to provide an entry in
the revision history for every change made.
In practice, deploying a DVCS to replace a linear series

of CellML model files has led to a significant increase in
the number of revisions being captured in a repository.

Availability and requirements
We have included the raw data (in the form of a text
file with the times and dates of all commits), giving revi-
sions by date as a plain text list of timestamps, as addi-
tional file 1. In addition, we have provided two scripts
for generating updated data as supplementary files: addi-
tional file 2, a Python script which can be used to down-
load the latest version of the entire CellML model
repository, with all revision history, and additional file 3,
a shell script which will generate the list of revision
dates (i.e. additional file 1) from a downloaded copy of
the model repository.
The R script used to generate the statistics and figures

in this paper from additional file 1, the list of revision
dates, is also included as additional file 4.
In addition, we note that we have made use of a range

of Free/Open Source software for this analysis. The R
software is available at http://www.r-project.org/. The
PMR and PMR2 software packages are also Free/Open
Source, and instructions for obtaining and configuring
the software is available at http://www.cellml.org/tools/
pmr/installation.

List of abbreviations
CellML: An XML-based markup language for mathematical models; CVS:
Concurrent Versioning System (a specific VCS); DVCS: Distributed Version
Control System; PMR2: Physiome Model Repository 2 (software for creating

model repositories based on DVCS); RCS: Revision Control System (a specific
VCS); SBML: Systems Biology Markup Language (an XML-based markup
language for systems biology models); URI: Uniform Resource Indicator;
VCS: Version Control System; XML: Extensible Markup Language

Acknowledgements
The authors would like to thank the European VPH NoE project (#223920),
the Maurice Wilkins Centre for Molecular Biodiscovery, and the Wellcome
Trust, for funding the research and development behind PMR2. AG is
funded by the British Heart Foundation (PG/08/019/24600), as well as
through the preDiCT and euHeart projects (#224381 and #224495,
respectively); these last two projects are supported by the European
Commission, DG Information Society, through the Seventh Framework
Programme of Information and Communication Technologies. Part of AKM’s
work on the analysis for this paper was completed in the course of his PhD
research, funded by a NZ Tertiary Education Commission (TEC) Top
Achievers Doctoral Scholarship and a University of Auckland Extension to a
Bright Futures Top Achiever Doctoral Scholarship. The authors would like to
thank Catherine Lloyd for providing some of the data on the number of
curator hours worked.

Author details
1Auckland Bioengineering Institute, The University of Auckland, Private Bag
92019, Auckland, NZ. 2Department of Physiology, Anatomy and Genetics,
University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK.
3Johns Hopkins University, Baltimore, Maryland, USA. 4EMBL Outstation,
European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton,
Cambridge CB10 1SD, UK. 5Department of Engineering Science, Faculty of
Engineering, The University of Auckland, Private Bag 92019, Auckland, NZ.

Authors’ contributions
AKM first suggested the use of a DVCS for recording the revision history of
CellML models, wrote the initial manuscript draft, and carried out the
statistical analysis of the number of revisions. TY wrote the PMR2 software.
All authors provided feedback on the concepts underlying the use of a
DVCS to build a model repository, and on this manuscript. All authors read
and approved the final manuscript.

Received: 7 September 2010 Accepted: 14 January 2011
Published: 14 January 2011

References
1. Cuellar A, Lloyd C, Nielsen P, Bullivant D, Nickerson D, Hunter P: An

overview of CellML 1.1, a biological model description language.
Simulation 2003, 79(12):740.

2. Hucka M, Finney A, Sauro H, Bolouri H, Doyle J, Kitano H, et al: The systems
biology markup language (SBML): a medium for representation and
exchange of biochemical network models. Bioinformatics 2003, 19(4):524.

3. Miller A, Marsh J, Reeve A, Garny A, Britten R, Halstead M, Cooper J,
Nickerson D, Nielsen P: An overview of the CellML API and its
implementation. BMC bioinformatics 2010, 11:178.

4. Bornstein B, Keating S, Jouraku A, Hucka M: LibSBML: an API Library for
SBML. Bioinformatics 2008, 24(6):880.

5. Garny A, Nickerson D, Cooper J, Santos R, Miller A, McKeever S, Nielsen P,
Hunter P: CellML and associated tools and techniques. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences 2008, 366(1878):3017.

6. Rodriguez N, Donizelli M, Le Novère N: SBMLeditor: effective creation of
models in the Systems Biology Markup Language(SBML). BMC
bioinformatics 2007, 8:79.

7. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L,
Mendes P, Kummer U: COPASI–a COmplex PAthway SImulator.
Bioinformatics 2006, 22(24):3067.

8. Bergmann F, Sauro H: SBW-a modular framework for systems biology.
Proceedings of the 38th conference on Winter simulation, Winter Simulation
Conference 2006, 1645.

9. Raymond G, Butterworth E, Bassingthwaighte J: JSIM: Free software
package for teaching physiological modeling and research. Experimental
Biology 2003, 280:102-107.

10. Cooling M, Rouilly V, Misirli G, Lawson J, Yu T, Hallinan J, Wipat A: Standard
virtual biological parts. Bioinformatics 2010, 26(7):925-931.

Miller et al. BMC Bioinformatics 2011, 12:22
http://www.biomedcentral.com/1471-2105/12/22

Page 9 of 10

http://www.r-project.org/
http://www.cellml.org/tools/pmr/installation
http://www.cellml.org/tools/pmr/installation
http://www.ncbi.nlm.nih.gov/pubmed/12611808?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12611808?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12611808?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20377909?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20377909?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18252737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18252737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17341299?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17341299?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17032683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20160009?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20160009?dopt=Abstract


11. Lloyd C, Lawson J, Hunter P, Nielsen P: The CellML model repository.
Bioinformatics 2008, 24(18):2122.

12. Le Novere N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H,
Li L, Sauro H, Schilstra M, Shapiro B, et al: BioModels Database: a free,
centralized database of curated, published, quantitative kinetic models
of biochemical and cellular systems. Nucleic Acids Research 2006, , 34
Database: D689.

13. Glasser A: The evolution of a source code control system. ACM SIGSOFT
Software Engineering Notes 1978, 3(5):122-125.

14. Tichy W: RCS - A System for Version Control. Software - Practice and
Experience 1985, 15(7):637-654.

15. Cederqvist P, Pesch R, et al: Version management with CVS. 2002.
16. Collins-Sussman B, Fitzpatrick B, Pilato C: Version control with subversion

O’Reilly Media, Inc.; 2004.
17. Roundy D: Darcs: distributed version management in haskell. Proceedings

of the 2005 ACM SIGPLAN workshop on Haskell ACM; 2005, 4.
18. Yip A, Chen B, Morris R: Pastwatch: a distributed version control system.

Proceedings of the 3rd conference on Networked Systems Design &
Implementation-Volume 3 USENIX Association; 2006, 28.

19. Monotone: reliable, distributed version control. [http://www.monotone.
ca/].

20. Torvalds L, Hamano J: GIT-fast version control system. 2005.
21. O’Sullivan B: Distributed revision control with Mercurial. Mercurial project

2007.
22. Saffrey P, Orton R: Version control of pathway models using XML

patches. BMC Systems Biology 2009, 3:34.
23. Nickerson D, Buist M: Practical application of CellML 1.1: The integration

of new mechanisms into a human ventricular myocyte model. Progress
in biophysics and molecular biology 2008, 98:38-51.

24. Ho H, Cooling M, Hunter P: Towards a Multiscale Integrative Model of
WSS-Induced Signaling Pathways in Cerebral Aneurysms. 6th World
Congress of Biomechanics (WCB 2010). August 1-6, 2010 Singapore 2010,
Springer:1159-1162.

25. Nelder J, Wedderburn R: Generalized linear models. Journal of the Royal
Statistical Society. Series A (General) 1972, 135(3):370-384.

26. Hodgkin A, Huxley A: A Quantitative Description of Membrane Current
and its Application to Conduction and Excitation in Nerve. J Physiol 1952,
117:500-544.

doi:10.1186/1471-2105-12-22
Cite this article as: Miller et al.: Revision history aware repositories of
computational models of biological systems. BMC Bioinformatics 2011
12:22.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Miller et al. BMC Bioinformatics 2011, 12:22
http://www.biomedcentral.com/1471-2105/12/22

Page 10 of 10

http://www.ncbi.nlm.nih.gov/pubmed/18658182?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381960?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381960?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381960?dopt=Abstract
http://www.monotone.ca/
http://www.monotone.ca/
http://www.ncbi.nlm.nih.gov/pubmed/19292901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19292901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18606438?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18606438?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12991237?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12991237?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	The application of DVCSs to computational models
	Supporting a DVCS in PMR
	Embedded workspaces: dealing with common sub-models
	Exposures
	Tracking revision history in practice
	Model authors and curation
	Presenting models with revision history to casual users

	Conclusions
	Availability and requirements
	Acknowledgements
	Author details
	Authors' contributions
	References

