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Abstract

Background: The estimation of individual ancestry from genetic data has become essential to applied population
genetics and genetic epidemiology. Software programs for calculating ancestry estimates have become essential
tools in the geneticist’s analytic arsenal.

Results: Here we describe four enhancements to ADMIXTURE, a high-performance tool for estimating individual
ancestries and population allele frequencies from SNP (single nucleotide polymorphism) data. First, ADMIXTURE can
be used to estimate the number of underlying populations through cross-validation. Second, individuals of known
ancestry can be exploited in supervised learning to yield more precise ancestry estimates. Third, by penalizing
small admixture coefficients for each individual, one can encourage model parsimony, often yielding more
interpretable results for small datasets or datasets with large numbers of ancestral populations. Finally, by
exploiting multiple processors, large datasets can be analyzed even more rapidly.

Conclusions: The enhancements we have described make ADMIXTURE a more accurate, efficient, and versatile
tool for ancestry estimation.

1 Background
Our program ADMIXTURE estimates individual ances-
tries by efficiently computing maximum likelihood esti-
mates in a parametric model. The model [1,2] posits
that genotype nij for individual i at SNP j represents the
number of type “1” alleles observed. Given K ancestral

populations, the success probability pij =
∑K

k=1 qikfkj in

the binomial distribution nij ~ Bin(2, pij ) depends on
the fraction qik of i’s ancestry attributable to population
k and on the frequency fkj of allele 1 in population k.
ADMIXTURE maximizes the biconcave log-likelihood

L(Q, F) =
∑
i,j

{
nij ln pij + (2− nij) ln(1− pij)

}
(1)

of the model using block relaxation. The alternating
updates of the parameter matrices Q = (qik) and F = (fkj)
both rely on sequential quadratic programming. Conver-
gence is accelerated by applying a quasi-Newton extrapo-
lation algorithm [3]. Further details of our core algorithm
are documented elsewhere [4]. The performance of

ADMIXTURE is compelling. An ADMIXTURE analysis
is typically three to four orders of magnitude faster than
a comparable STRUCTURE [1] analysis.
The advanced features of ADMIXTURE described

here allow the user to automate the choice of the num-
ber of underlying populations K and to exploit known
ancestral populations in a supervised learning mode.
Our penalized estimation mechanism can provide many
of the benefits of a Bayesian analysis at a fraction of the
computation time. These features make ADMIXTURE a
suitable replacement for STRUCTURE in most practical
applications. Given the ever-increasing size of genotype
datasets, the inherent speed of our optimization algo-
rithm, coupled with the parallel-processing mode
described here, may render ADMIXTURE the only
viable model-based ancestry analysis tool for many
users.

2 Implementation
Cross-validation
The choice of the number of ancestral populations K
can prove difficult when the underlying population
genetics of a species is poorly understood. STRUCTURE
provides a means of estimating the best value of K by
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computing the model evidence for each K from a range
of choices. The model evidence is defined as

Pr (N|K) =
∫

f (N|Q, F,K) π (Q, F|K) dQdF (2)

where f represents the data likelihood and π repre-
sents a prior density on the parameters. STRUCTURE
approximates the integral via Monte Carlo methods.
Our optimization framework is not well suited to evalu-
ating this integral. As an alternative, we employ cross-
validation. In cross-validation, we aim to identify the
best K value as judged by prediction of systematically
withheld data points. A similar tactic is also employed
by the haplotype analysis program fastPHASE [5] and is
inspired by Wold’s method for cross-validating PCA
models [6].
Our v-fold cross-validation procedure partitions the

non-missing genotypes into v roughly equally sized sub-
sets (folds). At each of v iterations, the members of one
of the folds are masked (temporarily marked as missing)

to yield a new data matrix Ñ =
{
ñij

}
. Analysis of the

masked data matrix Ñ poses no new challenges. In
computing the log-likelihood, score, and observed infor-
mation matrix of Ñ , we simply ignore the entries (i, j)
with missing values. Maximization of the log-likelihood
readily yields new estimates Q̃ and F̃ for the masked
data. We then predict each masked value nij by

μ̂ij = 2
∑

k q̃ikf̃kj . Prediction error is estimated by aver-

aging the squares of the deviance residuals for the bino-
mial model [7],

d(nij,μ̂ij) = nij log(nij,
/
μ̂ij) + (2− nij) log[(2− nij)

/
(2− μ̂ij)], (3)

across all masked entries over all folds. Minimizing
this estimated prediction error on a grid of K values
then suggests the most suitable K.

Supervised learning of admixture coefficients
ADMIXTURE’s strategy of simultaneously estimating
individual ancestry fractions Q and population allele fre-
quencies F is ideal when nothing is known about the
contributing ancestral populations. In many scenarios,
however, these populations are known and several refer-
ence individuals from each population are available.
Here it is of interest to estimate the potentially admixed
ancestries of the remaining individuals. We term this
supervised analysis, as the reference individuals furnish
training samples in a supervised learning context. To
perform supervised analysis in ADMIXTURE, an .ind
file mapping individuals to populations must be pro-
vided, and the flag –supervised must be attached to
the command line.

Ancestry estimates can be estimated more accurately
in supervised analysis because there is less uncertainty
in allele frequencies. Interpretation of results is simpli-
fied, and run times are shorter owing to the reduced
number of parameters to estimate. Both the number of
iterations until convergence and the computational
complexity per iteration decrease. However, we caution
that supervised analysis is only suitable when the refer-
ence individuals can be assigned to ancestral popula-
tions with certainty and ancestral populations are fairly
homogeneous. For exploratory analyses, unsupervised
analysis is more appropriate and therefore remains the
default in ADMIXTURE.

Penalized estimation and model parsimony
As noted in our later comparison of supervised and
unsupervised learning, datasets culled from closely
related populations typed at a modest numbers of SNPs
can pose substantial challenges in ancestry estimation.
For instance, overfitting tends to yield ancestry estimates
with inflated amounts of admixture. The Bayesian solu-
tion to this problem is to impose an informative prior
to steer parameter estimates away from danger when
data is sparse. Thus, STRUCTURE imposes Dirichlet
prior distributions on ancestry parameters and estimates
a hyperparameter a that controls the strength of the
prior distributions.
A suitable alternative in our optimization framework is

to perform penalized estimation. Rather than maximizing
the log-likelihood, we maximize an objective function
G (Q, F) consisting of the log-likelihood minus a penalty
λP (Q) . The penalty is designed to discourage the unde-

sirable biases in the estimated ancestry matrix Q̂ just

mentioned. The tuning constant l controls the strength
of the penalty. While it is tempting to consider the
negated logarithm of the Dirichlet prior density appear-
ing in STRUCTURE as a penalty, the Dirichlet(a, ..., a)
density is unbounded above in the parameter regime a <
1–arguably the most useful setting for the a parameter–
and is therefore unusable in our optimization framework.
A better alternative is the approximate ℓ0 penalty [8]

P(Q) =
∑
i,k

log(1 + qik
/
γ )

log(1 + 1
/
γ )

,

which encourages not only shrinkage but also aggres-
sive parsimony. In particular, the approximate ℓ0 penalty
drives small admixture coefficients to zero. Parsimony is
desirable because it leads to more easily interpretable and
probably more realistic parameter estimates. Estimation
is performed by maximizing G over its arguments.
Increasing l or the second tuning constant g elevates the
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extent of shrinkage and parsimony in the resulting esti-

mates Q̂λ and F̂λ .

Determination of the penalty tuning constants l and g
is nontrivial. In our hands cross-validation has proved
effective on simple simulated datasets. The tuning con-
stants l and g are user-defined options, so users can
explore different settings consistent with cross-validation
or their own heuristics.

Exploiting Multiple Processors
Very large datasets (millions of SNPs, thousands of indi-
viduals) can reduce even ADMIXTURE’s efficient algo-
rithms to a crawl. Since our original publication, we
have tuned our core algorithm and improved its speed
by a factor of two. We have also implemented a parallel
execution mode that lets ADMIXTURE exploit multiple
processors. This new option employs the OpenMP [9]
framework designed for simple parallelization using
compiler #pragma directives. To perform analyses
with, for example, four threads, the user need only add
the flag -j4 to the command line. Hence

$ admixture Data/hapmap3.bed 3 -j4

analyzes the data file hapmap3.bed using 4 threads,
assuming K = 3 ancestral populations. Analyses of our
hapmap3 dataset with K = 3 were accelerated by 392%
on a four processor machine.

Results and Discussion
The effectiveness of cross-validation
Figure 1 demonstrates the effectiveness of cross-valida-
tion on several datasets culled from HapMap 3 [10]. For

these datasets, cross-validation was able to accurately
identify the number of ancestral populations. While we
have not performed extensive simulation studies, our
experience has shown that the success of cross-validation
depends in part on the degree of differentiation between
the populations under study as quantified by Wright’s
fixation index FST . Very closely related populations
cannot be accurately separated. We speculate that this
phenomenon may have a theoretical connection to the
“phase-change” phenomenon observed by Patterson et al.
[11]. For a dataset of fixed dimensions, they note that the
FST value separating two populations must exceed a
certain threshold before the population samples can be
reliably distinguished in principal component analysis.

Supervised analysis can yield more precise estimates
To explore the benefits of supervised analysis, we gener-
ated a number of artificial datasets and evaluated the
empirical precision of parameter estimates compared to
the true Q and F. The ancestral allele frequencies F
were first generated using the Balding-Nichols model
[12] for 10,000 markers in each of two populations dif-
ferentiated by an FST value of .01 (comparable to the
genetic distances observed between closely related popu-
lations within a continent) and with ancestral allele fre-
quencies drawn uniformly from [0, 1]. Then, for each of
100 datasets, 400 individuals were simulated using
ancestries fixed as follows: one hundred individuals with
ancestry entirely from population 1, one hundred indivi-
duals from population 2, and the remaining two hun-
dred with admixed ancestries spaced uniformly on a
grid between population 1 and population 2. Supervised
and unsupervised ADMIXTURE analyses performed on

K

C
ro

ss
−v

al
id

at
io

n 
er

ro
r

0.46

0.48

0.50

0.52

0.54

CEU

●

●

●

●

●

1 2 3 4 5

CEU+ASW+YRI
●

●

●

●

●

1 2 3 4 5

CEU+ASW+YRI+MEX
●

●
●

●

●

1 2 3 4 5

Figure 1 Cross-validation (CV) of three datasets derived from the HapMap 3 resource using v = 5 folds. After subsampling 13,928
markers to minimize linkage disequilibrium, we separately cross-validated datasets containing unrelated individuals from the (a) CEU, (b) CEU,
ASW, and YRI, and (c) CEU, ASW, YRI, and MEX HapMap 3 subsamples. Plots display CV error versus K. CV for the CEU dataset suggests K = 1 is
the best fit, agreeing with intuition; K = 2 is the best fit for the CEU+ASW+YRI dataset, which contains European, African, and admixed African-
American samples; K = 3 is the best fit for CEU+ASW+YRI+MEX, which additionally contains Mexican-Americans.
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these datasets revealed several interesting patterns. First,
supervised analysis more accurately recovered the
underlying allele frequencies. On average the root-
mean-squared error in estimating the vector f1 of refer-
ence allele frequencies for population 1 was .046 for
unsupervised analysis but .040 for supervised. In general,
it appears that errors in estimating F cause overestima-
tion of the FST between the ancestral populations.
Indeed, here the average FST estimate of .024 for unsu-
pervised analysis fell to .019 for supervised analysis (true
FST of .010).
The flip-side of the systematic overestimation of the

separation between populations is that ancestry fraction
estimates suffer from bias. In particular, individuals will
be ascribed a greater degree of admixture than they
actually possess. Figure 2 illustrates this effect. Indivi-
duals with low qi1, reflecting a small degree of ancestry
from population 1, have upward-biased estimates q̂i1 ,
while estimates for those with high qi1 exhibit a down-
ward bias. The net effect is an apparent bias towards
ancestry fractions of .5. Supervised analysis appears not
to suffer from this bias.
In our opinion the apparent bias in unsupervised

ancestry estimates should not be cause for alarm. The
bias becomes much less prominent for larger datasets or
datasets where the ancestral populations are better dif-
ferentiated. Performing the same simulation with an FST
of .05, the bias in Q estimates is mitigated substantially,
as seen in Figure 2b. A similar effect is apparent when
we increase the number of markers J to 100,000 or
more.
Hence, it is evident that supervised analysis, when

applicable, can yield more precise estimates that are less
susceptible to the biases seen in unsupervised analysis.
Another benefit of supervised analysis is that it runs
considerably faster. For the 10 simulated datasets with
10,000 markers, supervised analysis took an average of
5.15 seconds, while unsupervised analysis averaged 27.5
seconds.

The effects of penalized estimation
The bias in ancestry estimates observed in Figure 2 is
principally a problem for small datasets with closely
related ancestral populations. Nevertheless, we designed
our penalized estimation procedure partly to reduce this
bias. To demonstrate the effectiveness of penalization,
we explored penalized estimation in the context of the
previous simulation of admixed individuals from two
populations differentiated by FST = .01. Fixing g = .1 and
performing cross-validation on a single one of these
simulated datasets for l values spaced between 0 and
100, we identified l = 5 as the value minimizing cross-
validation error (Figure 3a). Comparing the ancestry
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Figure 2 Errors in estimating ancestral allele frequencies lead
to bias in estimating ancestry fractions (Q), with many
individuals ascribed too much admixture. The plot shows an
estimate of the relationship E[q̂i1|qi1] between the true ancestry
fraction qi1 (fraction of ancestry attributed to population 1) and the
resulting estimate q̂i1 as determined via a nonparametric
regression (LOESS) model fitted to the results from analyses of 100
simulated datasets. Reference individuals are excluded from the
plots and regression analyses. The dotted line y = x is tracked
closely by the conditional mean of supervised estimates, suggesting
little bias. However, in panel (a) (simulations with FST = .01) the
conditional mean of the unsupervised estimates deviates
substantially, exhibiting an upward bias for low qi1 and a downward
bias for high qi1. The bias is mitigated using simulations with FST =
.05, as shown in panel (b), or by using a larger number of markers
(J = 300, 000, not shown).

Alexander and Lange BMC Bioinformatics 2011, 12:246
http://www.biomedcentral.com/1471-2105/12/246

Page 4 of 6



estimates with those from maximum likelihood unsuper-
vised and supervised analyses (Figure 3b) reveals that
penalized estimation mitigates bias substantially.

Conclusion
ADMIXTURE is a fully-featured, highly efficient, and
easy-to-use tool for ancestry estimation from SNP

datasets. The four enhancements described here pro-
mote great flexibility in both exploratory and focused
studies of genetic ancestry. Cross-validation enables
rational choice of the number of ancestral populations.
Supervised analysis mode can yield more accurate
ancestry estimates when the number and makeup of
contributing populations are certain. Parallelizing the
code reduces run times and allows more ambitious ana-
lyses involving more people and SNPs. Finally, penaliz-
ing weak evidence for admixture promotes model
parsimony and yields ancestry fractions more in line
with users’ expectations.

Availability and requirements
Project name: ADMIXTURE
Project home page: http://www.genetics.ucla.edu/soft-

ware/admixture; snapshot of software available as Addi-
tional File 1.
Operating systems: Linux, Mac OS X
Programming languages: C++
Other requirements: None
License: Binaries freely available; source code

proprietary
Any restrictions to use by non-academics: None

Additional material

Additional file 1: Software.zip, a zip archive containing Mac OS X
and Linux executables, is a snapshot of the ADMIXTURE software at
the time of submission of this manuscript. The current version is
maintained at http:///www.genetics.ucla.edu/software/admixture.
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