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Abstract

Background: Analysis of expression quantitative trait loci (€eQTL) aims to identify the genetic loci associated with
the expression level of genes. Penalized regression with a proper penalty is suitable for the high-dimensional
biological data. Its performance should be enhanced when we incorporate biological knowledge of gene
expression network and linkage disequilibrium (LD) structure between loci in high-noise background.

Results: We propose a network-based group variable selection (NGVS) method for QTL detection. Our method
simultaneously maps highly correlated expression traits sharing the same biological function to marker sets formed
by LD. By grouping markers, complex joint activity of multiple SNPs can be considered and the dimensionality of
eQTL problem is reduced dramatically. In order to demonstrate the power and flexibility of our method, we used it
to analyze two simulations and a mouse obesity and diabetes dataset. We considered the gene co-expression
network, grouped markers into marker sets and treated the additive and dominant effect of each locus as a group:
as a consequence, we were able to replicate results previously obtained on the mouse linkage dataset.
Furthermore, we observed several possible sex-dependent loci and interactions of multiple SNPs.

Conclusions: The proposed NGVS method is appropriate for problems with high-dimensional data and high-noise
background. On eQTL problem it outperforms the classical Lasso method, which does not consider biological
knowledge. Introduction of proper gene expression and loci correlation information makes detecting causal
markers more accurate. With reasonable model settings, NGVS can lead to novel biological findings.

Background
Genetic loci that affect the expression levels of mRNA
are called expression quantitative trait loci (eQTL). Con-
sidering mRNA transcript abundance as a quantitative
trait, the aim is to detect the associated genetic loci,
which is the key to understanding the regulation network
and disease phenotype. Thanks to the high-throughput
and advanced sequencing technology, genome-wide link-
age and association studies [1,2] have shown to be effec-
tive for finding causal gene loci for diseases in many
species from yeast to human. The interested reader may
find a detailed overview of the eQTL issues and some
existing mapping methods in reviews [3,4].

The simplest mapping ideas are regression-based
methods, but traditional methods have some disadvan-
tages. Single QTL regression and the interval mapping
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method [5] tend to show too many associated loci and
fail to take into account the complex interaction effects.
While multiple-QTL approaches, such as the two-
dimensional scan, consider such interactions, they are
computationally expensive and have low statistical
power due to multiple tests. These methods are based
on the selection of a p-value threshold, thus if the
threshold is not selected properly, high false positive
rate occurs. Compared to multiple-QTL regression, vari-
able selection methods seem to be more robust. Storey
et al. [6] showed that the forward sequential search is
more powerful than the exhaustive two-dimensional
scan. However, since markers once selected cannot be
removed from the model, the forward selection tends to
select an excessive number of markers and only achieves
local optimization. To overcome some weaknesses of the
stepwise selection, Tibshirani proposed the Lasso pena-
lized regression [7]. The Lasso method with L; penalty
produces interpretable models with some coefficients
exactly 0. Two of its extensions are appealing. The
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Group Lasso or GLasso [8] on the one hand selects vari-
ables and reduces the dimensionality in a group fashion
by applying L, penalty to each group of variables. The
elastic net method [9], on the other hand, by adding up
the L; and L, penalties together, becomes ideal for “
large p small n” problems with highly correlated data.
However these excellent Lasso-based methods [10,11]
are not designed for eQTL and more biological informa-
tion should be incorporated to improve their perfor-
mances. Therefore we aimed to develop a new penalty
which can give more accurate selection of QTLs as well
as allowing more flexibility of model setting for different
biological prior knowledge.

Previous studies have demonstrated that incorporating
biological information on genes with the same function
would increase the accuracy of detection of hot spots
[12-14]. Since the problem has small sample size, large
noise and high dimensionality, we hope to borrow infor-
mation from a gene expression network. It can be any
kind of network: a network based on annotation system
such as Gene Ontology (GO) [15] or KEGG [16], a clus-
tering or co-expression network, a protein-protein inter-
action network etc. To add the network into our
penalized regression framework, the network-con-
strained regularization method [17], an extension of the
elastic net, is enlightening. The idea is simple: the differ-
ence between the coefficients of two connected genes on
the network should be small. Pan applied this idea to his
network-based method [12], and the results clearly
demonstrate the advantage of methods utilizing gene
networks.

Besides the gene expression network, correlations
between markers or linkage disequilibrium (LD) struc-
ture are very informative. The true causal SNPs are
rarely genotyped but may be in LD with near markers.
In addition the epistatic effects among different SNPs
can be very large, with each individual SNP’ s effect very
low. In these cases we need complex models rather than
linear ones to describe the LD structure. Wu et al. pro-
posed to group SNPs into SNP sets based on LD struc-
ture in the association study, and then test the joint
effect of each SNP set [18]. We applied this idea to our
regression framework and selected the markers at the
group level just like the GLasso [8]. As a result, our
method: (1) has more power to detect significant loci,
(2) allows us to consider the complex joint activity of
SNPs within each marker set, (3) better captures
untyped causal SNPs, (4) reduces the dimensionality of
the problem dramatically, and (5) may be combined
with other existing low-dimensional selection methods
for further study. It is also worthwhile to point out that
by forming marker sets, we are able to consider the
additive and dominant effects of one locus as a group.
Naturally, the effects of the three different kinds of
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genotypes (AA, Aa, aa) of one SNP should be repre-
sented by two dummy variables, which exist or not at
the same time. In addition, once we group some mar-
kers into a set, covariate models and different epistatic
models can be constructed within the set, providing
additional information to understand the true biological
regulatory mechanism.

Methods

Network-based group variable selection

Suppose that the dataset has n samples and p mar-
kers. We have G quantitative gene traits Y, Ys,..., Yg,
where Yg = (Y19 Yoges y,,g)T, g=1.., Gand we com-
bine them to form the entire gene expression vector
Y= (Y], Y} ..., YOI The p markers can be divided
into ] blocks describing the ] marker sets, where the jth
marker set for the i individual is xj, i = (X1, » X2,
pos Jpj, it J = L2ss [y p = pr+pot - - - +py being the
total marker number. Then the marker data matrix is
Xp = Xy Xo,...y Xj), where X; = (xj,lT, xi,ZT,... xj, T
We combine them to get the entire marker data
matrix X = diag (Xp1, Xap-..» Xar). Note that all the G
traits come from the same genotype data and the
marker data matrix is the same for all traits. We then
regress all gene traits ¥ on the marker data X. After
the location and scale transformation, we can assume
that the regressors are standardized and each
response is centered, obviating the need to consider
the intercepts.

Let’ s consider a network that is represented by a
graph with E edges and G vertices. Each Vertex repre-
sents a trait, an edge u~v indicates that gene trait # and
v are linked on the network. Let’ s define the degree d,
of the vertex u as the total number of edges linked to u;
and suppose d,, > 0 for each u. To describe the struc-
ture of the network, we use matrix L similar to [17].
The p by p block element L(u, v) of L is defined as:

I, fu=v
L(u,v) = { —Ip/s/dudy, if u~vandu #v
0, otherwise

where I, is the identity matrix of order p. Since L is
always non-negative definite, it can be decomposed as L
= 88T, where Scp = Ep is the matrix in which, taking
every p by p matrix as one block, the block rows are
indexed by the vertices and block columns are indexed
by the edges of the graph such that each block column
corresponding to an edge u~v has an entry I,//d, in
the row corresponding to u, an entry —I,//d, in the
row corresponding to v and zero elsewhere.

For any pair of fixed non-negative tuning parameters
A7 and A,, we define our network-based group variable
selection (NGVS) criterion:
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G ]
L(da, 22, B) = IV =XBI3 + 21 Y > /1| Bigl, + 22B"LB (1)

g=1 J=1

where B = (B,",.... Bc")", Be = (Bs, gT’"' B, gT)T’ B¢ =
Bi1, ¢ Biz, gr-Bjpj, g)T and the norm is L, norm. The
first term is the sum of squared errors. The second
term is identical to the GLasso penalty only with an
additional sum over gene traits and is used for selecting
marker sets. The weights /p; ensure that the penalty
term is of the order of the parameter number of each
group. The third term can be written as

T L Bt Biew
BLp=2 , 2205 =)

j=1 k=1

where X, _, denotes the sum over all unordered pairs
(u, v) for which u and v are linked on the network. The
third term actually reveals the assumption that genes
which are highly correlated and truly regulated by the
same QTLs tend to have the same effect. The NGVS
estimator f} is the minimizer of Equation (1), i.e.

~

B = argming{L(X1, A2, B)} (2)

The following lemma shows that minimizing our
NGVS criterion is equivalent to solving a GLasso-type
optimization problem, thus can be computed by some
efficient existing algorithms.

LEMMA 1. Given dataset (Y, X) and two fixed tuning
parameters (A, ), define an artificial dataset (Y*, X*)

by

X X Y
_ ~1/2 B
(Gn+Ep)xGp — (1+42) (\/}\28'1‘) ’Y?GmEp) = <OEP>

where S is the decomposition of L. Let
B* = /1 + AyBand B* = /1 + AyBThen the NGVS criter-
ion can be written as

G ]

L(h,ha B) = L(y, B) = IV = X*B 13 +v D Y /hillB],ll2

g=1 J=1

Let ﬁ*be the solution to the above GLasso minimiza-
tion problem; then the solution to (2) is B = ﬁ*/J1 A

Following Zou and Hastie [9], the NGVS estimator
should be adjusted by a factor of 1+A, due to the possi-
ble bias of double shrinkage. From Lemma 1, the NGVS
problem can be reformulated as an equivalent GLasso
problem by augmenting the dataset from Gn to Gn+Ep.
Therefore, when doing variable selection, this model can
select all Gp variables if Gn+Ep > Gp. GLasso can only
select at most Gn variables before it saturates. By choos-
ing a network with the total number of edges bigger
than G(p-n)/p, even when n is much smaller than p, we
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can overcome the limitation. This can be easily accom-
plished by using a smaller correlation threshold or mak-
ing the network sufficiently big.

LEMMA 2. ﬁis determined by Equation (2). Assume
that gene u and v are only linked with each other on the
network and the corresponding response vectors are
equal, i.e. Y, = Y,, then ﬁu = ﬁjor any A, >0 where
[Jg = (B?g, e, ﬁ;g)Tis the estimated coefficients for gene
g

Lemma 2 is true since the penalty is a strictly convex
function with 1, > 0. This lemma shows the grouping
effect of NGVS, which means that coefficients corre-
sponding to highly correlated gene traits on the network
tend to be the same. Therefore, our method can borrow
information from traits with the same underlying
function.

Block co-ordinate gradient descent algorithm

Some algorithms are available for solving the GLasso
problem. Yuan and Lin provided an iterative algorithm
[8], but they realized that the computation burden
explodes dramatically as the number of regressors
increases. They also proved that GLars and GGarrote
are not suitable for this problem, which are both the
group forms of the Lars algorithm [19]. To handle “
large p small n” problems efficiently, Meier et al. devel-
oped their block co-ordinate gradient descent (BCGD)
algorithm [20]. The method can be applied to any gen-
eralized linear model where Y has an exponential family
distribution.

The key idea of BCGD method is to combine a quad-
ratic approximation of the log-likelihood with an addi-
tional line search. We first pick a zero vector as the
initial coefficient vector, denoting no groups have been
selected. Then by approximating the nonlinear log-likeli-
hood by a second-order Taylor expansion at f§ of the
last iteration and replacing the Hessian of the log-likeli-
hood by a proper matrix, the minimization direction is
found and B is updated by a point of that direction.
Thus, either a new group will be selected, or the coeffi-
cients of previously selected groups will be changed
slightly. The algorithm is fast in computing a whole
range of solutions given sufficiently small grid on penali-
zation parameters and then generating the selection
order. The algorithm is available in the R-package
grplasso.

Marker sets and gene expression networks

Biological information incorporated by our proposed
NGVS method mainly include gene expression network
and loci correlation, that is, the way to form marker
sets. Proper grouping of markers based on the prior
knowledge can increase the power to detect causal
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SNPs, while bad division of marker sets may probably
harm the results since the unlinked loci may dilute the
effect of causal loci. Basically, all grouping ideas can be
divided into three categories: LD-based, knowledge-
based, and convenience-based. In GWAS, grouping
SNPs in or near a gene is an ideal method; while in
linkage analysis, because of the limited number of mar-
kers, grouping highly correlated markers produces good
results. Genes that are located within a gene pathway
often share biological functions and could be considered
as a group. A more detailed analysis about how marker
sets are formed can be found in [18].

The gene expression network, if properly set, could
come from any source such as GO or KEGG pathways
[15,16], clustering or co-expression network, PPI net-
work etc. One way of constructing the network is, as we
did in the real data analysis, to first identify a group of
gene traits which share the same biological function by
means of an external database, then to construct a co-
expression network by a reasonable cutoff for the corre-
lations between trait pairs using the same or a second
dataset. The cutoff should be chosen such that the net-
work satisfies the inequality E>G(p-n)/p as discussed
above with the degree of each gene trait bigger than 0.
The network provides a good performance in real data
analysis.

Selection orders and tuning parameters

With our NGVS method, for each fixed A,, we are able
to generate a selection order of the marker sets for a
wide range of choices of A;. We call this the big scale
selection order as it describes the ranking of importance
for the groups of markers. Once the relative importance
of marker sets is established, further selection order of
markers within each marker set can be produced by var-
ious existing methods. We call this the small scale selec-
tion order. To generate the final selection order of
individual QTLs, we try to combine the two different
scales together. Hence we need to go over a three-stage
procedure: firstly getting the big scale selection order
with NGVS; then finding the small scale selection order
by any method suitable for low-dimensional selection;
finally, combining the two selection orders together
according to the three criteria discussed below.

In the first stage, we face a “ large p small n” variable
selection problem. Though we can select the optimal
parameters by Cross-validation or some kind of C, or
GCV criterion, it is time-consuming for two-dimen-
sional tuning parameters. Based on our experiments,
when considering big scale ranking, the results are quite
stable against different 1,’s. So we use 4, = 10 in our
analysis and for this given A,, we let A, vary over a wide
range of grid to give the big scale selection order. The
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step size of A; should be small enough to guarantee that
at most one new marker set is selected at a time. In the
second stage, we have reduced the problem to be a “
large p small n” variable selection problem. So all meth-
ods designed for low-dimensional ranking should be sui-
table, though we prefer to use the GLasso, which can
select additive and dominant effects as one group. The
small scale selection orders within each marker set are
obtained without considering the loci structure and the
co-expression network. This is because small scale dif-
ferences of each gene trait are allowed. Furthermore, for
a low-dimensional problem, simple selection methods
are accurate enough to detect QTLs and considering the
network may lead to bias (see the first simulation).
Once the selection orders in two scales are ready, we
apply three criteria to combine them in the final stage.
Firstly, the most significant loci in each marker set are
ranked according to the big scale selection order with
NGVS; secondly, loci within each marker set are ranked
according to the small scale selection order with
GLasso; thirdly, when several loci satisfy the first two
criteria, the locus with the smallest p-value for single
QTL regression should be selected ahead of the others.
Here, single QTL regression means assessing the signifi-
cance of each individual SNP using the likelihood ratio
test. The final selection order of all the markers will be
determined uniquely by these three criteria. The final
order is a combination of macro-order based on prior
biological information, micro-order within each small
group and single QTL p-values ranking. If we want to
detect the causal QTLs of a certain trait, we can identify
as significant the first desired number of loci in the final
selection order.

However, if we care more about general findings for a
class of gene traits, we should pick out, according to the
big scale order, marker sets which are identified as sig-
nificant in most traits, then form the final selection
orders and make conclusions only using markers in
these identified marker sets. The whole process is
shown in Figure 1.

Assumptions for covariate, additive, dominant and
epistatic effects

Four assumptions of our method are listed here: (1) the
distribution of the error term is normal; (2) markers
that are in high LD regions together reflect more infor-
mation than one single marker; (3) highly correlated
traits tend to be determined by the same loci; (4) covari-
ate, additive, dominant and epistatic effects should be
assumed based on some prior knowledge. Covariates
such as age and sex sometimes are quite influential for
gene expressions, hence cannot be ignored. If one cov-
ariate is significant, typically, we add it into the
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Covariate, Additive, Dominant, Epistatic Effects
Co-expression, GO, KEGG, PPI Network
Based on LD, knowledge or convenience

. G J
L(3. 2. B =|¥ - XB[} +;1§Zl‘/5ﬂp,‘|L +AfTLp
B=agmin, (LG58}

Big Scale Selection Order

Gene Trait

Ankrd24 2,10,3,11, 4.

Srpl 10,2,12,11, 13...

Ergicl 2,10,13,11, 8.
Gene Small Scale Selection Order
Trait ch2 Ch1o Ch13

Ergicl 16,17,30.. 107,112 105.. 131,135 140.. ..

P-values of single QTL regression
Chr2 Chr10 Chri3
16 17 30 .[107 112 105 .|131 135 140 .[..
Ergic1 0.004 0.027 0.089 ..|0.052 0.045 0.056 ..|0.028 0.075 0.0% ..| ..

Gene
Trait

Combining Two Selection Orders Using P-values

Gene Trait Final Selection Order
Ergicl 16,17, 107, 131, 112, 105, 135...

Identify Marker 16, 17, 107 as causal loci for Ergicl

Figure 1 The selection orders and the three-stage procedure.
In stage 1, we get the big scale selection order by NGVS. NGVS
incorporates the prior knowledge of LD structure and gene
expression network with the flexibility of model setting. In stage 2,
we find the small scale selection orders within each marker set by
Glasso. In stage 3 we combine the two selection orders together
using P-values of single QTL regression and the three criteria
discussed. Results in the picture were obtained from the adjacent
interaction two-effect model (model assumption), full co-expression
network of gene Ankrd24, Sfrp1 and Frgicl (gene expression
network) and marker sets formation by chromosomes (marker sets).

regression model as one additional group, together with
the interactions of the covariate with markers. As for
the additive and dominant effect, we assume that one
SNP has only additive effect or both effects. Models
containing two effects can provide more accurate QTL
detection than the additive models as is shown by our
results.

Epistatic effect refers to the interaction of multiple
genetic variants. However, how this joint activity really
happens is hard to detect. We propose two possible
ways to describe epistasis - kernel model and near inter-
action model. If we focus on only the ¢ gene trait and
its corresponding j marker set, then by representer
theorem [21], the relationship function /; , of markers
within the marker set can be written as:

n
hj,g(xj,i) = h]‘,g(le,i, Xj2,ir e vvs xjp,,i) = Z cir,gK(xl.,,.,, xj,i)
i=1
where K(,-) is some kernel function defining the epi-
static relationship. Thus we extend the original regres-
sion model for the g™ trait Y, = XoPg+g, to be:
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Yi,g = Z h]‘,g(xll,i, Xj2,ir s x]-p,,i) + &g
j=1
J n
=)D K@i x) + eig
j=1 =1
For example, the linear ker-

nelK (xj,i7, xj,i) = ZZ; 1 Xy, %y, ; defines a linear model just
as Y, = XoBg+g,, but with an increased degree of free-
dom when p;<n. Note that kernel function is applied to
each marker set. Thus with the same division of marker
sets, we can treat kernels as /x# correlated new variables
and get the big scale selection order as before. Essen-
tially, kernel function projects nonlinear relationship
into a higher dimensional space and the regression is
then modelled linearly in the new space. The kernel can
also be intuitively interpreted as the measure of similar-
ity between two individuals. After this representation,
we need only to introduce different kernels to specify
the epistatic model and here we present five kernels we
will use in our analysis.

(1) Linear Kernel: K(x;, %;,:) = > by Xjp, 1 Xl

(2) Polynomial Kernel:
K (0053, 4) = (1+ X34 %i%i)?
(3) Gaussian Kernel:
Z”i: (xi, — x.k'.)2
K (i %3, ) = exp{— 10 Ty
(4) Identical-by-state (IBS) Kernel:
pj
K(xr, %1,1) = kZ (2L =31 + Ty —5101=1))/20)
=1
(5) Weighted IBS (WIBS) Kernel:
P wie (2l x, =xi) + Ty —xil=
Ko x0w) = 3 (2Lt + i —siat=1))
k=1 2p;

where wj, = 1/,/qj and g is the minor allele fre-
quency (MAF) for the k™ marker in the ™ group. The
first kernel is linear while the second adds the interac-
tions of SNPs to the 4™ order. The next two kernels
basically give various ways to measure the distance
between two individuals. And the WIBS kernel is a cor-
rection of IBS for the rare alleles because they are
usually more informative than common alleles. [18]
offers more detailed explanation about these kernels and
how to select a proper kernel.

Despite the many choices of kernels, it can be advan-
tageous to switch to traditional two-locus interactions
because, if showen to be significant, the biological inter-
pretation is easier. We can extend each marker set to
contain all the interactions between SNP pairs in the set
and treat each of them as one new variable. However,
when the number of SNPs in one marker set is large,
we tend to only add near interactions. In high LD
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regions, we may consider interactions of two loci a little
farther apart, while in low LD regions or with SNPs not
densely genotyped, interactions of adjacent markers are
enough. We will consider the adjacent-locus interaction
model together with different kernel models in our
analysis.

Results and Discussion
To evaluate the performance of our proposed NGVS
method, we simulated two models: the first to illustrate
the advantages and disadvantages of the method in a
low-dimensional setting; the second to mimic the high
dimensional real problem.

“Large n small p” simulation

First, we generated seven latent variables Z;,..., Z, denot-
ing genotypes according to a centered multivariate nor-
mal distribution whose covariances were Cov(Z;, Z ,) =
0.8 and Cov(Z, Z; ) = 0.4 for i<j and (i, j)#(1,2). Then
Z; was trichotomized as -1, 1, 0 if it is smaller than ®*
(1/4), larger than ®'(3/4) or in between respectively,
representing genotype aa, AA, Aa. And we considered
the linear model:

Yig = 1.811,1¢l1z, =1y — 1.211,0,¢](7, =0y + T2,1,¢]12,,-1)

+0.512,2,61(7, =0} + 13,1,81(75:=1) + 13,281 (75 =0} + Eig

where Z; , Z, ; Z3 ; were one realization of Z;, Z,,
Zs for individual i Y; ,’s denoting the gene expressions
determined by additive and dominant effects of loci 1, 2,
3, which were modelled as two dummy variables - one
for genotype AA and one for Aa; the expression net-
work of two linked genes was also considered, i.e. g = 1,
21 5 ~U091.1), i = 1,2,3, j = 1,2 was a scaling factor
used to perturb the effect size of the marker on trait g;
finally &= (g, 1, €,2) ~ N(0, X) where Xj; = 0.50,0; for i =
j, Zii= 0 and X was determined by our choice of the
signal-to-noise ratio (SNR), which is defined as the
expected value of the mean square over the variance of
expressions. Two different SNRs of 1 and 5 and two dif-
ferent ways to form the marker sets were tried. For each
case, 50 simulated datasets were generated indepen-
dently to calculate sensitivity and specificity.

The first way to construct marker sets is that Z; and
Z, or four corresponding dummy variables are grouped
into one marker set; and the two dummy variables for
each of the other 5 loci build up the other 5 marker
sets. This division for marker sets assumes that we have
some prior knowledge about the higher correlation
between Z; and Z,.We call this marker set formation
with SNR = 1 and SNR = 5 model 1 and 2 respectively.
The second way to construct sets is to group Z;, Z, and
Z4 or six corresponding dummy variables into the first
marker set; Z3 and Zs are grouped into the second one
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and Zg, Z; in the third one. This division represents a
bad set formation because every significant locus is
tangled with some insignificant one. We call this divi-
sion with SNR = 1 and SNR = 5 model 3 and 4
respectively.

We compared three methods: (1) our proposed NGVS
which combines gene expression network and loci struc-
ture; (2) GLasso which scans that information and
merely selects additive and dominant effects simulta-
neously trait by trait; (3) the traditional Lasso method
which only considers additive model. In NGVS, the
selection order was constructed as illustrated above.
And in the other two methods, selection orders were
obtained by applying a wide range of different tuning
parameters. Sensitivity and specificity of identifying the
first three loci in the final selection order as significant
loci are reported in Table 1. And the ROC curves corre-
sponding to the 4 models are shown in Figure 2.

From Table 1 and Figure 2, it is clear that our method
is more powerful than Lasso in all of the four models.
This is because Lasso only considers the additive effect
of each locus when the underlying mechanism truly
contains two effects. Methods selecting two effects in a
group manner such as the Glasso and the NGVS per-
form better. In model 2 and 4, where SNR = 5 meaning
that we have sufficient information for detecting QTLs
accurately, Glasso provides fairly good results. If the sig-
nal is strong enough, adding improper loci grouping and
gene network may increase uncertainty, thus impair sen-
sitivity. In model 2 where we have proper marker set
division, no significant difference in AUC between

Table 1 Sensitivity and Specificity of the “ large n small
p” simulation

Sensitivity Specificity

Model Gene NGVS GLasso Lasso NGVS Glasso Lasso
1 1 0.81 0.76 0.71 0.86 0.82 0.79
0.17) 0.21) (024)  (0.13) (0.16) (0.18)

2 0.78 0.77 0.69 0.84 083 0.77

(0.16) (0.21) 023) (012 0.16) 0.17)

2 1 097 097 0.85 0.98 0.98 0.89
(0.10) (0.09) (0.18)  (0.08) (0.07) 0.14)

2 0.96 097 0.83 0.97 0.98 0.88

0.11) (0.10) (0.18)  (0.08) (0.08) 0.14)

3 1 0.75 0.71 0.59 0.81 0.78 0.70
0.21) (0.20) 022) (0.16) (0.15) 0.16)

2 0.76 0.74 0.58 0.82 0.81 0.69

(0.18) 0.22) (0.19)  (0.13) (0.16) (0.14)

4 1 0.82 0.94 0.67 0.87 0.96 0.76
(0.20) (0.13) (0.17)  (0.15) (0.10) (0.13)

2 0.84 091 0.66 0.88 094 0.75

(0.18) (0.16) 0.16)  (0.14) 0.12) 0.12)

NGVS: the network-based group variable selection method; GLasso: the group
lasso without gene network and loci structure; Lasso: only considering
additive effect of each locus. Sensitivity and specificity are calculated based
on 50 simulations, with standard errors reported in parentheses.
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Figure 2 Comparison of ROC curves of NGVS, GLasso and Lasso. Black solid line: NGVS; Blue dashed line: Glasso; Green dotted line: Lasso.
All three methods were tried in four models. Model 1 and 2, with SNR = 1 and 5 respectively, used proper division of marker sets. Model 3 and
4, with SNR = 1 and 5 respectively, used bad division of marker sets.
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NGVS and GLasso is discovered; while in model 4 with
bad maker sets formation, AUC of NGVS is reduced.
However, in model 1 and 3, where background noise is
important such that we do not have enough knowledge
to select significant loci individually, by combining mar-
kers into marker sets, our NGVS method is more
powerful than Glasso. Even when the marker sets for-
mation does not reflect the true LD structure (model 3),
adding network information and loci structure still
increases sensitivity. In sum, if high-noise background is
present, the information each QTL provides is not
enough. We are able to obtain more powerful and con-
vincing results by combining QTLs into marker sets and
combining highly correlated gene traits into a network,
then putting the information into our proposed NGVS
framework.

“Large p small n” simulation

In the second simulation, we considered a simulated
dataset including 60 samples, each with the data of 200
markers, or 400 dummy variables, and 5 gene traits, to
mimic a real linkage analysis. We first generated geno-
types denoted by Zy,..., Z,po according to a centered
multivariate normal distribution. The covariances are set
to decrease as the distance between markers increases
and 0 when the markers are more than 10 markers
apart. Like before, Z,’s were trichotomized as -1, 0, 1.
We considered the following model:

Y,'/g = —0.61‘3/1/31{Z3/‘.:1) — 0.41‘3,2,3[“3’,.:0} — 0~2r4,1,gI{Z4,,:1}
+ 02146117, 20) — 0.2113,1,41(2,5,=1) — 0.3113,2,81(2,5,-0

+0.3127,1,8112,7,=1) = 0212728112y, 0) + €ig

where Z3 , Z, , Z;3 » Z37 ; belong to three different
marker sets 1,2,3; r; ; , €, 4 are defined as before and
SNR = 5. Twenty simulated datasets were generated
independently to calculate True Positives (TPs) and
False Positives (FPs). Our main aim here is to find out
the causal markers Z; Z, Z;3 and Z,.

We applied our three-stage selection procedure. We
first selected significant marker sets using our NGVS
method based on the additive-and-dominant-effect
model; then GLasso was used to find the causal markers
within each marker set; finally we decided the final
selection order for all the loci. The full network of the
5 gene traits considered here obviously satisfies our
requirement E>G(p-n)/p. For the marker set formation,
r markers 7j-r+1,..., rj were grouped to form the /™ mar-
ker set, j = 1,..,(200/r) and r = 1, 2, 5, 10. Note that r =
1 means we do not actually have a marker set and
select the QTLs individually. In brief, we can either
choose to use the gene expression network or not and
choose among 4 different marker set formations - a
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total of 8 possibilities. When the network was utilized,
we applied our proposed NGVS method under the 4
different marker set formations. If the network was not
taken into account, we considered each individual gene
trait respectively, but still maintained the 4 different
marker set structures. We call this single trait selection,
which means loci structure was taken into account but
the QTLs were selected for each trait individually. In
single trait selection, if r = I, it is just GLasso used to
select two dummy variables of one locus as a group for
each trait. Besides the 8 possibilities, we also compared
the selection orders of the single QTL regression and
the Lasso. Single QTL regression assumed linear simple
regression and tested whether the slope was significantly
different from zero by likelihood ratio test. The selec-
tion order came from the ranking of p-values. Note that
our method is a combination of the big scale NGVS,
the small scale GLasso and the p-values coming from
single QTL regression as the adhesive tool of the two
scales.

The total TPs and FPs of the 5 gene traits of the 20
simulated datasets if we identified the first k loci in the
final selection orders as significant are shown in Figure
3. Our NGVS method with marker set formation r = 2
performed the best. The effect of the scale of marker
sets is shown through the first 4 columns of Figure 3.
The histogram of first 4 columns is slightly U-shaped,
which suggests that considering LD structure properly
can increase power, but including too many non-causal
markers will dilute the effect of causal ones. The proper
way to form marker set as we discussed before should
be decided based on prior knowledge and LD correla-
tion. Single trait selection with proper marker set scale
gives almost the same result with NGVS. However,
under marker set formation r = 10 and r = 5, the 5
gene network protected NGVS from suffering the power
decrease generated by containing too many unlinked
loci into marker sets. Borrowing information among
correlated gene traits reduces the risk of using improper
division of marker sets. Comparing NGVS with GLasso,
we conclude that adding a proper loci grouping and
gene expression network indeed can improve the perfor-
mance. Single QTL regression and the GLasso are prob-
ably useful for coarse ranking, but not good enough. In
addition, the comparison between NGVS with Lasso
illustrated the importance of considering the additive
and dominant effects together. Methods lacking the
description of the latent two-effect mechanism can only
select markers of strong effect. In summary, when the
sample size is smaller than the marker size, our method
considering two-effect model, marker sets and correlated
traits together can discover more casual QTLs of mod-
erate effect and give more true positives.
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Figure 3 TPs and FPs of NGVS, single trait selection, GLasso,
single QTL regression and Lasso. Red blocks: NGVS with marker set
formation r = 10, 5, 2, 1 from left to right; Blue blocks: single trait
selection with r =10, 5, 2, 1 from left to right; single trait selection with r
=1 is just GLasso; Green block: single QTL regression; Yellow block:
Lasso. The total true and false positives of the 5 gene traits of the 20
simulated datasets, if we identify the first k = 2, 3, 4, 5 QTLs as significant,
were calculated based on the final selection order of each method.

Real linkage data analysis

We analyzed a published mouse linkage dataset depos-
ited at the gene expression omnibus (GEO) by Lan et al.
[14]. This dataset provides liver mRNA expression levels
of more than 45000 traits from 60 F, mice generated by
crossing strain C57BL/6] (B6) with BTBR. Lan et al.
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found that B6-ob/ob mice, when made obese, are resis-
tant to diabetes while BEBR-ob/ob mice are not. Then
the 60 animals were genotyped at 192 MIT microsatel-
lite markers, an average of approximately 10 ¢cM apart
across the entire genome. The liver mRNA was quanti-
fied by Affymetrix M430A and B arrays. The dataset
was processed using the robust multi-array average
(RMA) normalization method [22]. Previous analyses of
this dataset have demonstrated the increase of power by
combining mapping and correlation information [12,14].
Lan et al. first used standard interval mapping [5] to
map each probe at 5-cM resolution and selected 6016 “
seeds”, that is, gene traits with LOD score of interval
mapping higher than 3.4; then 38 seeds were identified,
which share the same GO term “ G protein-coupled
receptor” (GPCR). By combining 174 correlated traits
with the 38 seeds, which are also in the GPCR protein
signalling pathway, there was clear evidence of a co-reg-
ulatory region on Chr 2 at 30 ¢cM. They also found that
markers in Chr 10 may have some effects.

In our analysis, we considered two ways to form mar-
ker sets: loci within one chromosome as a marker set
and loci within the boundaries where significant correla-
tion decrease happens as a marker set. The smaller mar-
ker set formation was shown by the black squares in
Figure 4. Though the adjacent loci were almost 10 cM
apart, we found that SNPs located within a chromosome
were still in high LD (Figure 4). For the gene expression
network, it can be constructed either from the 38 seed
traits or from another dataset. Under the correlation
cutoff of 0.8, only 16 of the 38 traits were linked with
others and used for the construction of the network
(Figure 4). To mimic the practical situation with a prior
network, we used the same network as Pan [12]. Using
gene names, Pan identified 17 GPCR genes appearing
on both our dataset and another mouse dataset with
liver gene expression of 135 F2 female mice. The co-
expression network was derived from the second dataset
using a cutoff of 0.4 for the correlations of the 17 genes
(Figure 4). For each of the 4 combinations of marker set
formation and network, we applied our NGVS method
and single trait selection. The big scale selection orders
of the two methods and the final selection orders of the
NGVS are shown in Table 2.

The results were consistent with Lan et al. [14].
According to the final selection order of NGVS, Marker
15, 16, 17 (D2Mit297, D2Mit241, D2Mit9) on Chr 2, or
loci at around 30 cM, were significantly linked with
GPCR genes. This region was identified as the most sig-
nificant by 9 of the 16 traits in the first co-expression
network under chromosome marker set scale and by all
except one under smaller marker set scale. There were
also weak signals that loci on Chr 10 at 40 cM have
effect on the expression levels of some genes. The
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CO-XPression network of 16 genes. co-expression network of 17 genes

Figure 4 The gene expression networks and loci LD structure.
The two co-expression networks used in the real data analysis and
heat map of loci LD structure. SNPs within each chromosome are in
strong LD. The marker set formation based on correlations was
marked by small squares.

second co-expression network did not generate very
consistent results among traits, because the 17 genes
used were not highly correlated. However, we can still
identify the 30 cM region on Chr 2 by 13 of the 17
genes in the top 4 selected loci with the smaller marker
set division. The marker sets constructed by correlations
can be treated as a more detailed division of the marker
sets formed by chromosomes. It is clear that marker set
formation by correlations generate more consistent and
convincing results than naively setting markers within
each chromosome as a group. However, in this real data
case, due to the high correlations, even marker set for-
mation by chromosomes may improve the results. Addi-
tive model and single trait selection gave specious
results (not shown). The successful reproduction of
existing results proved the effectiveness of NGVS.

Kernels, interactions and covariates

In the above analysis, we only considered linear models.
Covariate and epistatic effects based on different assump-
tions are discussed below. To simplify the analysis, we
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only considered a co-expression network of trait Ankrd24,
Sfrpl, Ergicl each connected with the other two. The fol-
lowing six models were formulated: (1) the additive linear
model; (2) the two-effect linear model; (3) the additive lin-
ear model including adjacent interactions between mar-
kers; (4) the two-effect linear model including adjacent
interactions between markers; (5) the two-effect sex-
dependent model treating sex as one additional group; (6)
the additive model with 5 different kernels - linear, poly-
nomial (g = 2), Gaussian (d = 1), IBS and WIBS.

All the big scale selection orders are shown in Table 3.
Ideally, we hoped the model to pick out Chr 2, 10 as the
previous findings. By comparisons of Model 3, 4, 5, 6 with
the basic linear model 1, 2, we made some conclusions.
Under the adjacent interaction models 3 and 4, the results
of additive model and two-effect model both showed
improvement compared to model 1 and 2 respectively. This
meant epistatic effects do have a large impact on the
expression levels of mRNA. Under sex-dependent model 5,
sex as one group was first identified as significant. Also, we
noticed the enhancement of significance of Chr 11. The
fact probably implied an underlying influence of sex on the
gene expressions through loci on Chr 11. Unfortunately,
the trait number was too small to draw the conclusion.
Under the kernel model 6, we found that the linear kernel
which simply increases the degree of freedom without
changing the linear relationship of loci performed poorly;
the polynomial kernel which considers all the two-way
interactions together was slightly better; Gaussian, IBS, and
WIBS all performed extremely well since they measure the
similarities between individuals; Gaussian seemed the best
way to capture the similarity as we may expect; and WIBS
performed better than IBS, which proved that rare alleles
indeed provide more information. From the discussion
above, we notice our framework is very flexible.

In order to get general findings, we picked out marker
sets Chr 2 and Chr 10, as they were identified as signifi-
cant by all the 3 traits under most of the model assump-
tions. Then we made final selection orders for the 3
traits only using loci on Chr 2 and Chr 10. We identi-
fied marker 16, 17 (D2Mit241, D2Mit9) on Chr 2 and
marker 107 (D10Mit20) on Chr 10. The region marked
by D2Mit241 and D2Mit9 was obviously hot spot for
those GPCR genes. Under two-effect adjacent interac-
tion model 4 with loci on Chr 2 and 10, we went further
to discover the significant epistatic effects by treating
each interaction term as one variable and applying
GLasso to genes in the first co-expression network. We
found that 9 of the 16 gene traits exhibited the epistatic
effect between marker 15 and 16 (D2Mit297 and
D2Mit241) on Chr 2; 15 of the 16 gene traits showed
the effect between marker 106 and 107 (D10Mit148 and
D10Mit20) on Chr 10. It is interesting that the most sig-
nificant epistatic effects occurred together with their
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Table 2 The big scale and final selection orders of the real linkage data analysis
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Network 1 Marker sets 1 Marker sets 2

Trt/Gene Big Scale NGVS  Big Scale SinTrt  Final Selection NGVS  Big Scale NGVS  Big Scale SinTrt  Final Selection NGVS
1/Cldn4 2,16, 11 4,2,7 15,16, 18, 161, 114 3,27,20 23,5, 3 15,16, 17,157, 114
2/Lor 3,2, 1 10,1, 4 33,16, 17,18, 113 3,6,18 18, 14,13 16, 17, 33,107, 14
3/Doc2b 2,6,7 11,51 16, 18,17, 70, 80 3,13, 11 13,3, 23 16, 17, 81, 68, 9
4/F2rl2 2,86 56,11 15,17, 30, 93, 71 3,14,18 14, 3, 26 15,17, 85,107, 105
5/St8sia5 10,18, 2 4,6,5 107, 106, 180, 16, 70 3,18, 31 18, 14, 32 16, 107, 106, 180, 100
6/Nptx1 2,6,7 10, 4, 5 16, 17, 68, 80, 70 3,611 3,13,18 16, 17, 32, 68, 70
7/Kcna2 2,6,18 51,4 16, 68, 17,178, 70 3,31,6 13,14, 3 16, 17,178, 180, 33
8/Rnf17 18,2, 1 516, 1 183, 16, 9, 180, 184 3,32, 1 3,10, 1 16, 17,14, 183, 2
9/Ankrd24 2,3, 11 4,1,2 16, 17, 33, 36, 120 3,613 13,3, 14 16, 17, 33,81, 119
10/Gstm7 2,4, 1 54,12 16, 45, 113,128, 17 3,8, 27 18,8, 3 16,45, 17,157,113
11/Tcfcp213 2,12,6 10,5, 7 16, 17,122, 68, 70 3,18, 21 18,13, 23 16, 17, 15,107, 122
12/5tmn3 3,67 7,11,10 36, 68, 81, 80, 32 3,613 13,18, 3 16, 17, 32, 81, 36
13/Rasgrf1 13,9, 2 4,513 131,94, 17,15, 96 3,17,22 517, 8 15,101, 131, 17, 102
14/Sfrp1 10, 3,2 10,4, 5 107,110, 31,16, 17 3,18, 27 18, 3,8 16, 107,17, 157, 45
15/Ergicl 2,3, 11 11,4, 10 16, 17, 30, 33, 113 3,6,22 3,18, 13 16, 17, 33,131, 135
16/Cd33 9 4,13 4,6,5 96, 44, 131,15, 41 8 3,17 14, 8, 16 44,15, 41, 43, 101
Network 2 Marker sets 1 Marker sets 2

Trt/Gene Big Scale NGVS  Big Scale SinTrt  Final Selection NGVS  Big Scale NGVS  Big Scale SinTrt  Final Selection NGVS
1/Calcrl 9,8 12 4,18, 1 101, 85, 122, 178, 121 14, 17,31 31,2, 8 85,101, 178, 16, 13
2/Ccr5 3,21 7,1,6 34,15, 16, 35, 33 3,6, 2 13, 2,3 15,16, 34, 10, 154
3/Rgs6 10, 3, 1 4,10, 8 105, 107, 103, 37, 2 18, 23,1 18,9, 27 105,141, 107, 103, 106
4/Rps6ka4 2,4,12 6,5 9 15, 30, 16, 27, 14 3,517 517,3 15, 16, 30, 14, 28
5/Cysltr1 536 4,513 61, 57, 58, 33, 68 6, 17,23 8,13, 23 33, 34, 32, 100, 101
6/P2ry12 6, 3,18 4,8, 6 68, 31, 178, 40, 85 6, 31,3 14, 25, 8 31,178, 16, 68, 13
7/Rassf1 6, 3,10 10,11, 4 70, 68, 32, 107, 120 3,6, 11 3,18, 5 16,14, 17,32, 70
8/Rgs3 9213 11,512 101, 16, 30, 26, 95 17,3, 14 17,3, 2 101, 16, 100, 85, 135
9YApin 6,2 3 10,7, 6 68,16, 17,70, 71 3,11,18 18,13, 3 16, 68, 17,70, 107
10/Dok4 15,9,6 15,11, 4 154, 153, 152, 96, 68 26, 3,17 26,13, 5 154,153, 152, 15, 101
11/Lphn1 15,6, 8 8,6, 10 154,71, 156, 68, 88 3,26, 14 14, 26, 6 16, 154, 156, 85, 17
12/Kengl 9,15, 3 53,7 95, 157, 40, 39, 108 27,3, 7 7,27,3 157,16, 40, 13, 17
13/Gabbri 4,2,13 4,13,12 44,16, 30, 41, 45 3,17, 14 8,53 16, 100, 85, 44, 41
14/Gnail 9,17,6 9,19, 17 101, 172, 170, 70, 51 17,59 17,2933 101, 30, 26, 27, 29
15/Rgs3(2) 18,6, 12 5,10, 1 184, 68, 70, 178, 179 31,3211 14,1817 178, 184, 68, 70, 85
16/1200007 6,10, 3 10, 5, 1 68, 108, 107, 109, 70 23,3,18 18, 23,13 140, 16, 17,15, 107
DI18Rik

17/Cxcr3 6,13, 14 6, 11,4 68, 131, 135, 149, 15 3,31,22 13,3, 11 15,17,178, 131,135

The co-expression network 1 was constructed by 16 GPCR traits and a cutoff of 0.8. The co-expression network 2 was constructed by 17 GPCR traits shared by
two datasets and a cutoff of 0.4 was used. Marker set 1 and 2 denotes respectively loci within one chromosome and loci within the boundaries where significant

correlation decrease happens were grouped as one markerset. Numbers in big scale orders of NGVS and Single trait selection represent the corresponding
marker set numbers, while final selection orders of NGVS represent the marker numbers.

additive and dominant effects. Under two-effect sex-
dependent model 5 with loci on Chr 10 and 11, we tried
to detect the sexual distinction. For Chr 10, there was
no significant evidence for difference between males and
females. However for Chr 11, interaction of sex with
marker 118 (D11Mit99) was identified by 13 of the 16
gene traits. So we believe that D11Mit99 denotes a
region which has a regulation mechanism related to sex.
The results above still need further biological study.

Conclusions

We have proposed a penalized regression method called
the network-based group variable selection. The basic
idea of our method is along the ongoing efforts to incor-
porate prior biological knowledge into data analysis. In
eQTL, we hope to combine information from both the
correlated gene expression traits and the loci structure
[12,17,18]. By considering networks, we obtain more
power to detect the co-regulatory causal SNPs; and by
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Table 3 The first-stage selection orders of the 6 different models

Trait Model 1 Model 2 Model 3 Model 4 Model 5
(Additive) (Two-effect) (Interactions) (Interactions) (Sex-dependent)
Ankrd24 6,3, 71811 2,311,410 10, 2,313, 6 210,311, 4 Sex,10,11, 2, 3
Sfripl 6,11, 3,16,15 10,2, 311, 4 10,12, 2,313 10, 212,11,13 Sex,10,11, 4, 3
Ergicl 13,6,1511,12 2,3,11,13,10 10,13, 2,12,11 2,10,13,11, 8 Sex,10, 2,11, 9
Trait Model 6
(Kernels)
Linear Polynomial Gaussian IBS WIBS
Ankrd24 318,615, 7 2,31011,5 10, 2,1, 7,11 10,3,2,6,7 10, 2, 3,6, 7
Sfrpl 11,6,31513 10,11,3,2,5 10, 211,1, 7 10, 6, 3,11,12 10, 6, 312,11
Ergicl 13151211, 6 10, 2,13, 311 10, 211,11, 7 10,1314, 2,6 10,13, 2,14, 9

Model 1: the additive linear model; Model 2: the two-effect linear model; Model 3: the additive linear model including adjacent interactions between markers;
Model 4: the two-effect linear model including adjacent interactions between markers; Model 5: the two-effect sex-dependent model treating sex as one

additional group; Model 6: the additive linear model with 5 different kernels.

considering marker sets, our method gains great flexibil-
ity for modelling the complex joint activity of multiple
SNPs and reduces the dimensionality of eQTL problem
dramatically. We formulated the method based on these
ideas and made it suitable for the efficient block co-
ordinate gradient descent algorithm [20]. Furthermore,
we provided the way to create the selection orders in
the big and small scales and combine them together.

However, the method has some limitations. First of all,
the method is designed for high-dimensional biological
data such as linkage analysis or genome-wide association
study, thus it is not very effective for low-dimensional
selection problems. Our method is especially powerful
for high-dimensional and very noisy data. In addition,
combining more information means longer computation
time and larger storage space. Though our method is
powerful for detecting causal SNPs with moderate or
weak effect, we need to try different tuning parameters
A> and make A; vary with a sufficiently small step to
generate the selection order. When the network is com-
plex and the number of SNPs is large, our method is
quite expensive. The storage of high-dimensional matrix
is also a problem for eQTL.

We applied our method to two simulations and one
real linkage dataset to demonstrate the capability of the
NGVS. Simulation one compared three methods for a
low-dimensional model setting and we concluded that
our method is suitable for problems with high-noise
background. Simulation two mimicked the real linkage
data. It showed that considering the proper loci group-
ing, the co-expression network and the additive and
dominant effects simultaneously is essential for obtain-
ing convincing results. Under the framework of our
method, we also considered many different models
including kernels, interactions, and covariates in the real
data analysis. All the results led to the co-regulatory
regions on Chr 2, 10 for GPCR genes, which replicated

the findings of Lan et al. [14]. Furthermore, we found
that Gaussian kernel can depict the similarities of indivi-
duals very well; the interaction between marker
D2Mit297 &D2Mit241 and between DI10Mit148
&D10Mit20 are significant; and sex may have some
effect on the expressions through marker D11Mit99 on
Chr 11. Although all these conclusions need to be tested
by additional research, it is clear the NGVS has the
power and flexibility to handle high-dimensional pro-
blems with high-noise data successfully.

Acknowledgements and Funding

This work is supported in part by NSFC grants 30625012 and 60721003. The
authors thank Xueya Zhou and Profs. Minping Qian and Xihong Lin for their
helpful discussions. The authors thank the reviewers for their helpful
comments.

Author details

"Mathematics and Physics, School of Sciences, Tsinghua University, Beijing
100084, China. MOE Key Laboratory of Bioinformatics/Bioinformatics
Division, TNLIST, Beijing 10084, China. *Department of Automation, Tsinghua
University, Beijing 100084, China.

Authors’ contributions

WW initiated the project, invented the NGVS method, completed the
simulation experiments and the linkage data analysis, and drafted the
manuscript. XZ provided advice for important intellectual content and
revised the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 8 December 2010 Accepted: 30 June 2011
Published: 30 June 2011

References

1. Hirschhorn JN, Daly MJ: Genome-wide association studies for common
diseases and complex traits. Nature Rev Genet 2005, 6:95-108.

2. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, loannidis JPA,
Hirschhorn JN: Genome-wide association studies for complex traits:
consensus, uncertainty and challenges. Nature Rev Genet 2008,
9:356-369.

3. Michaelson JJ, Loguercio S, Beyer A: Detection and interpretation of
expression quantitative trait loci (€QTL). Methods 2009, 48:265-276.


http://www.ncbi.nlm.nih.gov/pubmed/15716906?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15716906?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18398418?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18398418?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19303049?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19303049?dopt=Abstract

Wang and Zhang BMC Bioinformatics 2011, 12:269 Page 13 of 13
http://www.biomedcentral.com/1471-2105/12/269

4. Kendziorski CM, Wang P: A review of statistical methods for expression
quantitative trait loci mapping. Mamm Genome 2006, 17:509-517.

5. Lander ES, Botstein D: Mapping mendelian factors underlying
quantitative traits using RFLP linkage maps. Genetics 1989, 121(1):185-199.

6. Storey JD, Akey JM, Kruglyak L: Multiple Locus Linkage Analysis of
Genomewide Expression in Yeast. PLoS Biol 2005, 3(8):267.

7. Tibshirani R: Regression shrinkage and selection via the lasso. J Royal
Statist Soc B 1996, 58:267-288.

8. Yuan M, Lin Y: Model selection and estimation in regression with
grouped variable. J Royal Statist Soc B 2006, 68(1):49-67.

9. Zou H, Hastie T: Regularization and variable selection via the elastic net.
J R Stat Soc Ser B 2005, 67:301-320.

10. Fan J, Li R: Variable selection via nonconcave penalized likelihood and its
oracle properties. J Amer Statist Assoc 2001, 96:1348-1360.

11, Wu TT, Chen YF, Hastie T, Sobel E, Lange K: Genome-wide association
analysis by lasso penalized logistic regression. Bioinformatics 2009,
25(6):714-721.

12. Pan W: Network-based multiple locus linkage analysis of expression
traits. Bioinformatics 2009, 25:1390-1396.

13. Zhang W, Liu JS: Frontiers in Computational and Systems Biologyn
Computational Biology. Springer Press; 2010:15:301-329.

14. Lan H, Chen M, Flowers JB, Yandell BS, Stapleton DS, Mata CM, Mui ET,
Flowers MT, Schueler KL, Manly KF, Williams RW, Kendziorski C, Attie AD:
Combined expression trait correlations and expression quantitative trait
locus mapping. PLoS Genet 2006, 2:51-61.

15. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A,
Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene
ontology: tool for the unification of biology. The Gene Ontology
Consortium. Nat Genet 2000, 25:25-29.

16.  Kanehisa M, Goto S: KEGG: Kyoto encyclopedia of genes and genomes.
Nucleic Acids Res 2000, 28:27-30.

17. Li G Li H: Network-constrained regularization and variable selection for
analysis of genomic data. Bioinformatics 2008, 24:1175-1182.

18. Wu MC, Kraft P, Epstein MP, Taylor DM, Chanock SJ, Hunter DJ, Lin X:
Powerful SNP-set analysis for case-control genome-wide association
studies. Amer J of Human Genetics 2010, 86(6):929-942.

19.  Efron B, Johnstone |, Hastie T, Tibshirani R: Least angle regression. Ann
Statist 2004, 32:407-499.

20.  Meier L, van der Geer S, Buhlmann P: The group lasso for logistic
regression. J Royal Statist Soc B 2008, 70(1):53-71.

21, Kimeldorf G, Wahba G: Some results on Tchebycheffian spline functions. J
Math Anal Applications 1971, 33(1):82-95.

22. lrizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U,
Speed TP: Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics 2003, 4:249-264.

doi:10.1186/1471-2105-12-269

Cite this article as: Wang and Zhang: Network-based group variable
selection for detecting expression quantitative trait loci (eQTL). BMC
Bioinformatics 2011 12:269.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central



http://www.ncbi.nlm.nih.gov/pubmed/16783633?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16783633?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2563713?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2563713?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16035920?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16035920?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19176549?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19176549?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19336446?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19336446?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18310618?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18310618?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12925520?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12925520?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Network-based group variable selection
	Block co-ordinate gradient descent algorithm
	Marker sets and gene expression networks
	Selection orders and tuning parameters
	Assumptions for covariate, additive, dominant and epistatic effects

	Results and Discussion
	“Large n small p” simulation
	“Large p small n” simulation
	Real linkage data analysis
	Kernels, interactions and covariates

	Conclusions
	Acknowledgements and Funding
	Author details
	Authors' contributions
	Competing interests
	References

