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Abstract

Background: Protein-protein interaction (PPI) data are widely used to generate network models that aim to
describe the relationships between proteins in biological systems. The fidelity and completeness of such networks
is primarily limited by the paucity of protein interaction information and by the restriction of most of these data to
just a few widely studied experimental organisms. In order to extend the utility of existing PPIs, computational
methods can be used that exploit functional conservation between orthologous proteins across taxa to predict
putative PPIs or ‘interologs’. To date most interolog prediction efforts have been restricted to specific biological
domains with fixed underlying data sources and there are no software tools available that provide a generalised
framework for ‘on-the-fly’ interolog prediction.

Results: We introduce Bio::Homology::InterologWalk, a Perl module to retrieve, prioritise and visualise
putative protein-protein interactions through an orthology-walk method. The module uses orthology and
experimental interaction data to generate putative PPIs and optionally collates meta-data into an Interaction
Prioritisation Index that can be used to help prioritise interologs for further analysis. We show the application of
our interolog prediction method to the genomic interactome of the fruit fly, Drosophila melanogaster. We analyse
the resulting interaction networks and show that the method proposes new interactome members and
interactions that are candidates for future experimental investigation.

Conclusions: Our interolog prediction tool employs the Ensembl Perl API and PSICQUIC enabled protein
interaction data sources to generate up to date interologs ‘on-the-fly’. This represents a significant advance on
previous methods for interolog prediction as it allows the use of the latest orthology and protein interaction data
for all of the genomes in Ensembl. The module outputs simple text files, making it easy to customise the results by
post-processing, allowing the putative PPI datasets to be easily integrated into existing analysis workflows. The
Bio::Homology::InterologWalk module, sample scripts and full documentation are freely available from
the Comprehensive Perl Archive Network (CPAN) under the GNU Public license.

Background
In recent years, large protein-protein interaction (PPI)
datasets have allowed the description of relationships
between proteins in complex biological systems [1].
These data are commonly derived from yeast two hybrid
(Y2H), co-immunoprecipitation or tandem affinity puri-
fication (TAP) assays and have been obtained from a
variety of unicellular and multicellular organisms [2-6].

Recent advances in high resolution mass spectrometry
have further contributed to the rapid accumulation of
PPI data [7-9]. Unfortunately, large scale experimental
discovery of PPIs remains difficult, expensive and
beyond the means of many experimentalists. Currently,
PPI data is almost exclusively limited to a few popular
model organisms and amongst these coverage of the
captured interactions is often biased to a particular
domain and incomplete. For many organisms, PPI data
lags behind or is non-existent compared with genome
sequence data.
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In an attempt to address the relative paucity of data, a
number of computational techniques have been pro-
posed to predict and prioritise PPIs [10,11]. While the
number of such methods is large, we focus here on
methods that transfer functional information using
cross-species orthology projection [12,13]. In essence,
the rationale is that for interacting proteins x and y in
organism A we expect (under certain conditions) that
their orthologues x’ and y’ in organism B will also inter-
act. Such conserved interaction pairs are called ‘intero-
logs’ [14,15]. The potential use of interolog mapping has
been explored in several organisms including Homo
sapiens [16-22], Helicobacter pylori [23], Saccharomyces
cerevisiae [24], Plasmodium falciparum [25] and Magna-
porthe grisea [26]. Additionally a number of quantifica-
tion methods have been developed to assess the
confidence of predicted interologs [27-29].
Several web interfaces to interolog databases have

been developed (e.g. HomoMINT [19] and Ulysses [20]),
but these are essentially ad hoc efforts. They consider a
small set of organisms for interolog prediction in
restricted biological domains, thus hindering more wide-
spread use. Underlying data sets are often frozen at the
moment of publication or curated for a limited period
of time (e.g. InteroPORC [28]), are dependent on other
projects that are not updated (e.g. Integr8 [30]) or are
based on algorithms that are not state-of-the-art. Con-
sidering that both orthology projection methods and
interaction data are continually updated, such static
databases are destined to obsolescence. To date the only
project that provides the option to discover interologs
with up to date data is OpenPPI predictor [31]. This
represents a step forward, but relies on the user provid-
ing both the orthology relationships and known PPI
data and only performs mappings between two species,
without ranking or prioritising the putative PPI network
obtained.
To address the lack of tools for performing multi-spe-

cies interolog prediction ‘on the fly’ we created the Perl
module Bio::Homology::InterologWalk. The
tool relies on BioPerl [32], the Ensembl Perl Core and
Compara APIs [33,34] and the EBI-Intact PSI Common
Query InterfaCe (PSICQUIC) enabled web service
[35,36] for its operation. Bio::Homology::Intero-
logWalk is freely available under the GNU General
Public Licence at the Comprehensive Perl Archive Net-
work (CPAN) [37,38].
Bio::Homology::InterologWalk accepts as

input a list of Ensembl gene accession numbers from
any of the vertebrate or metazoan genomes in Ensembl
and also for all species in the Ensembl pan-taxonomic
Compara database. The tool searches the Ensembl Core
and Compara databases and the PSICQUIC-enabled
EBI-Intact PPI database to collect and analyse gene

orthology and PPI data, together with ancillary informa-
tion. It then provides the option of filtering the putative
interactions to retain those with strong experimental or
phylogenetic support. In addition the user can query the
PPI database directly to collect all known interactions
for the input gene list. This allows the ready comparison
of putative PPIs from interolog projection to known
PPIs. The software outputs plain text tab-separated files
and can also output network representations of the PPI
data and their attributes in a format compatible with
the widely used biological network analysis tool Cytos-
cape [39].
We demonstrate the use of the software to investigate

the potential of interolog projection on the genome of
the fruit fly, Drosophila melanogaster [40]. The analysis
(a) generates a novel putative PPI network that strength-
ens the connectivity of the known PPI network (b) pro-
poses new interaction candidates. We further calculate
an Interaction Prioritisation indeX (IPX) for each of the
PPIs and use these to create a sub-network centred on a
core of 10 DNA replication proteins.

Implementation
Overview
A high-level schematic describing our implementation of
the interolog walk concept is shown in Figure 1. The
main purpose of Bio::Homology::InterologWalk
is to obtain a list of putative PPIs given a set of user-
selected gene identifiers in one genome of interest. In
order to be compatible with the module, the initial data-
set must be a list of Ensembl IDs belonging to species in
Ensembl Vertebrates, EnsemblGenomes Metazoa or
Ensembl Pan-taxonomic Compara databases.
To carry out an interolog walk, Bio::Homology::

InterologWalk will first query the gene identifiers
chosen by the user against the Ensembl databases using
the Ensembl Compara API [41], retrieving a list of
orthologous gene IDs. Next, the algorithm will use the
Representational State Transfer (RESTful) interface [42]
to interrogate a PSICQUIC-compliant PPI database with
the list of orthologues returned by Ensembl, to retrieve
the list of known PPIs involving them. While there are
already several interaction databases implementing the
PSICQUIC interface [43-50], Bio::Homology::
InterologWalk currently relies on EBI IntAct [36] as
its source of experimental interactions. Having obtained
a list of interactors for the orthologues of the initial
gene set, in the last step of the main data mining proce-
dure Bio::Homology::InterologWalk will project
the interactions retrieved (again, using the Ensembl
Compara API) back to the original species of interest.
The final output is a list of putative interactors for the
initial gene set and several fields of supporting data for
the forward orthology map, the PPI data collection, and
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the backward orthology map. These metadata fields can
be analysed by a sub-module of the tool, to calculate a
prioritisation index for the predicted PPIs (Figure 2A).
The procedure is organised as a pipeline of related

data-processing activities. The output of the basic pipe-
line can be further processed with the help of other
methods in the module: it is possible to scan the results
and compute counts, check for duplicate entries, isolate
new gene IDs (not part of the original dataset) and gen-
erate Cytoscape-compatible network representations of
the data. The package documentation gives a detailed
account of post-processing options.
An additional stand-alone functionality of the module

is the direct PPI pipeline: it is possible to use Bio::
Homology::InterologWalk to mine all the experi-
mental PPIs involving the initial gene list in the genome
of interest (without mapping to reference genomes
using orthology). This dataset is a ‘snapshot’ of the cur-
rent experimental PPI network for the input dataset. As

such it is useful both by itself, because it tells what is
currently know about the PPIs involving the initial
genes, and as a term of comparison for the putative PPI
- because it can be used to evaluate the amount of over-
lap between the known and putative networks, as well
as the novelty of the putative data. Additional file 1:
‘Simplified schematics of the Interolog Walk Pipeline’
illustrates both the putative and the experimental pipe-
line in detail.
One of the defining features of Bio::Homology::

InterologWalk is that the retrieval of both orthology
data and protein interaction data happens on-the-fly.
The user inputs a list of gene IDs plus a number of set-
up parameters, and the data will be downloaded through
web-service interfaces each time the program is run.

Data Sources
Orthology Predictions from Ensembl Compara
Bio::Homology::InterologWalk uses the
Ensembl Perl API http://www.ensembl.org/info/data/api.
html to access the comparative biology data provided by
the Ensembl Project through Ensembl Compara. The
orthology prediction method used by Ensembl Compara
is described by Vilella et al. [41] and identifies several
classes of homology association between genes (Addi-
tional file 2: ‘Definitions’).
PPI Data from EBI-IntAct
Bio::Homology::InterologWalk currently uses
EBI IntAct [36] as its source of experimental interac-
tions. As of June 2011, v. 1.1.7 of the IntAct database
contains more than 267,000 curated binary protein
interaction evidences [36]. Bio::Homology::Inter-
ologWalk queries Intact using the RESTful-based
PSICQUIC [Aranda et al., in preparation] implementa-
tion and retrieves data in PSI-MI MITAB25 tab-delim-
ited format [35] (Additional file 2: ‘Definitions’).

Options for Prioritisation of Putative Interactions
Filtering
Depending on the size of the input dataset and on the
amount of information available through homology
mapping, Bio::Homology::InterologWalk can
produce large numbers of putative interactions. In such
cases it might be beneficial to filter and prioritise these
to generate a smaller set of putative interactions for
further study. The Bio::Homology::Interolog-
Walk module is composed of a number of functions
that can be executed in sequence to create pipelines for
retrieving interologs. Each of these functions offers
options to filter the types of orthologues and interac-
tions that are retrieved.

1. Spoke interactions: the user can choose whether
to return any ‘spoke’ interactions when using

Figure 1 The Bio::Homology::InterologWalk concept. Schematics
illustrating the principle behind interolog mapping. Proteins x and y
are known to interact in a reference genome. If they have
orthologues x’ and y’ in the genome of interest, under certain
conditions the existence of a putative x’ - y’ interaction can be
assumed. Bio::Homology::InterologWalk implements this
in a three-steps algorithm. 1. get orthologues of genes of interest in
reference genome(s). queries the initial gene list against one or more
Ensembl databases and retrieves their orthologues. Options can be
set to specify stringency of retrieved hits. Ancillary data fields are
computed. 2. get interactions in reference genome(s). queries the
orthology list built in (1.) against PSICQUIC-enabled PPI databases
using REST. This step will enrich the dataset built in (1.) with the
interactors of those orthologues, if any, plus ancillary data –
including parameters describing the nature and origin of the
annotated interaction. 3. get orthologues from reference genome(s)
back in genome of interest. In this step the interactor list built in (2.)
is queried against one or more Ensembl databases (again using the
Ensembl Perl API) to find orthologues back in the original genome
of interest. As in (1.), a number of supplementary information fields
are computed.
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Figure 2 Supplementary Data Fields & Prioritisation Features. Schematics summarizing the features used to prioritise the resulting putative
PPIs. For each PPI, a number of metadata fields are collected during the three main steps of the algorithm. Two metrics can optionally be
computed: an Interolog Prioritisation Index (IPX) and a PPI Conservation Score (PCS) (Additional File 2 - Definitions). A. Overall view showing the
contributing data fields. B-E. Sample prioritisation features. B: Phylogenetic distances (according to TreeBeST). For each of the two orthologous
pairs, a node-to-node distance (nnDi) and two distances from the First Shared Ancestor (FSAj

i) are computed. C: experimental interaction observed
in multiple taxa - a component of the IPX is proportional to the number of reference genomes contributing to a putative PPI evidence. D:
experimental interaction reconfirmed through multiple detection methods - a component of the IPX is proportional to the number of detection
methods used to obtain experimental PPI evidence in the reference genome. E: PPI Conservation Score. The conservation score depends on (1)
the density of the most-connected g -clique that includes x, y and their mutual interactors and (2) the number of edges of the g clique.
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interaction retrieval functions. Spoke interactions are
binary interactions that are inferred from a complex
of proteins that have been isolated together and as
such the evidence for the interaction is indirect. Sev-
eral of the most widely used protein-protein interac-
tion data repositories including the two largest
IntAct and BioGrid explicitly draw the user’s atten-
tion to the presence of spoke (or co-existence) inter-
actions and provide the option of excluding them at
an early stage.
2. One-to-one orthology: for each of the orthology
mapping functions the user can choose whether to
restrict the mapping to explicit 1:1 relationships.
This is likely to significantly reduce the number of
orthologues retrieved as the evolutionary distance
between mapped species increases. Restricting map-
pings to direct orthologues increases the likelihood
that the mapped proteins retain some common
functionality. Conversely considering 1-to-many or
many-to-many relationships that have arisen through
duplication events risks connecting proteins and
interactions whose functions have diverged [51,52].
3. Experimental interactions: the user can specify
whether to restrict the interactions retrieved to
those that have been identified by experimental
methods rather than by inference or prediction
(Additional File 2: ‘Definitions’).
4. Physical interactions: the user can choose to
retrieve only those interactions that test for direct
physical association between proteins (Additional
File 2: ‘Definitions’).

Prioritisation
We have created an Interaction Prioritisation indeX
(IPX) and a PPI Conservation Score (PCS) that can
optionally be used to aid in the prioritisation of putative
interactions.
The IPX summarises the contribution of several pieces

of heterogeneous information that are collected during
orthology projection and interaction retrieval. It is not
intended to be a quantitative measure of interaction
reliability, but rather an integration of biological infor-
mation such as orthology type, phylogenetic distance
(FSA), percentage identity (OPI), interaction type and
detection method (including multi-method). This is
similar to the work of Huang et al. [22] and Yu et al.
[27]. Yu et al. used sequence similarity between the
orthologous proteins to build a join similarity score,
while Huang et al. proposed a scoring framework based
on GO functional annotation, domain information, tis-
sue specificity and sub-cellular localisation to rank inter-
olog-based human putative PPIs obtained from six
eukaryotes. Some of the indicators evaluated to create
the IPX are:

•Orthology Type. The kind of orthology relationship
existing between an ID in the genome of interest and its
orthologue in the reference genome. This feature indi-
cates if there is a one-to-one mapping of orthologues, or
if in-paralogy events in one or both sides mean we are
considering a one-to-many, many-to-one or many-to-
many orthologous mapping. As explained in the filtering
section, we particularly value putative PPIs where both
orthology relationships are of the one-to-one kind. It
has been shown [51] that gene duplication is correlated
with sub-functionalisation and neo-functionalisation.
When the two orthologous pairs in the interolog walk
are of the one-to-one kind we set a boolean variable, Θ,
to a non-negative value in the score. We set Θ = 0
otherwise.
•Expanded Complex. Indicates whether the binary

interaction has been extracted from a complex using the
spoke expansion model. A boolean non-negative term,
∑, is added to the score to reward each true binary
interaction. ∑ = 0 for spoke-expanded binary
interactions.
•OPI. Overall Percentage Identity. A numerical index

representing the percentage identity of the conserved
columns between the two orthology members’
sequences. Given N total samples, we define a Joint OPI
as the geometric mean of the two OPIs (forward and
backward orthology projection)

J(i)OPI =
√
OPI(i)1 × OPI(i)2 ∀i ∈ 1, . . . , N.

•Node to Node Distance. A numerical indicator of
the node-to-node distance in the consensus phyloge-
netic/species tree built by Ensembl Compara using Gen-
etrees [41] (Figure 2B). We consider

J(i)nnD = 1 − max(nnD(i)
1 , nnD(i)

2 )
nnDmax

∀i ∈ 1, . . . ,N,

where nnD1 is the node-to-node distance between the
two orthologues in the forward projection, nnD2 is the
node-to-node distance between the two orthologues in
the backward orthology projection and we set

nnDmax = max
(
nnD(1)

1 , . . . , nnD(N)
1 , nnD(1)

2 , . . . , nnD(N)
2

)
.

•Interaction Type & Interaction Detection Method.
Features based on PSI-MI controlled vocabulary terms
indicating, respectively, the type of interaction and the
detection method used, within the HUPO PSI-MI hier-
archy (Additional File 2: ‘Definitions’, Table S1).
•PPI obtained with Multiple Methods & annotated

in Multiple Organisms. Experimental PPIs reconfirmed
through the usage of further detection methods and/or
observed in multiple reference genomes are acknowl-
edged by this feature (Figures 2C and 2D).
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Overall, the putative PPI Interolog Prioritisation
indeX is

IPX(i) = ωi

[
S(i)PPI + �(i)

]
+ ωo

[
S(i)ORT + �(i)

]
∀i. (1)

In this expression,

S(i)PPI =
i(i)

Idir
+

d(i)

Ddir
+
m(i)

dm

Mdir
+
m(i)

taxa

Mtaxa
∀i. (2)

S(i)PPI agglomerates the terms relative to the PPI in the
reference organism: i is a feature scoring the interaction
type and d is a feature scoring the interaction detection
method. mdm acknowledges those experimental PPIs
present in the database more than once, with different
detection methods (Figure 2D). mtaxa is set to the num-
ber of reference genomes that possess an experimental
interaction projecting back to the same putative PPI
(Figure 2C). The four features are normalised to make
sure their values are comparable. Normalisation con-
stants are explained in Additional File 2: ‘Definitions’.
The terms relative to the two orthology projections are
combined in SORT:

S(i)ORT = J(i)OPI + J(i)nnD ∀i. (3)

We set ωi,= ωo = 1. Optimisation of these two weights
based on training data will allow to reward either the
interaction component or the orthology component of
the score to optimise performance on a case-by-case
basis. Lastly, ∑ and Θ are boolean terms and we set ∑ =
0 whenever the putative PPI has been inferred from a
binary PPI derived from a spoke-expanded complex (∑ =
n, where n >0 is an integer, otherwise), while Θ = n
whenever the putative PPI has been inferred based exclu-
sively on one-to-one orthology paths (Θ = 0 otherwise).
∑ and Θ are boolean flags not normalised in the IPX

expression. This is done to obtain a gross selection of
putative PPI samples based on co-orthology/no co-
orthology and spoke/no spoke information, prior to
looking at other secondary metadata features. The value
n was chosen to be the smallest integer bigger than the
maximum spread of the distribution of the normalised
IPX features. The IPX is composed of 6 features, f = [i,
d, mdm, mtaxa, JOPI, JnnD], where 0 ≤ fi ≤ 1, ∀i Î 1, ..., 6
and so n = 7.
Allowing Θ and ∑ to be one order of magnitude big-

ger than other IPX features means the IPX distribution
will take a roughly three-modal shape, depending on the
combinatorial values of ∑ and Θ, as follows:

1. ∑ = 0, Θ = 0 (Low Tier) - the experimental inter-
action is spoke-expanded and at least one of the two
orthology projections is not one-to-one.

2. (∑ = n, Θ = 0) Θ (∑ = 0; Θ = n) (Mid Tier) -
either the experimental interaction is spoke-
expanded or at least one of the two orthology pro-
jections is not one-to-one.
3. ∑ = n, Θ = n (High Tier) - the experimental inter-
action is not expanded from a spoke-complex and
the orthology projections are both one-to-one.

Visual inspection of the modes in the IPX distribution
can be used as strategy to filter out different sets of
putative PPIs, depending on the dataset considered and
on the distribution of samples within the modes of the
histogram. The choice of n provides good visual separa-
tion of the modes in the IPX distribution to facilitate
inspection. We refer to the module code for further
details.
The PPI Conservation Score (PCS) focuses on the

potential for evolutionary conservation in the projected
PPI by examining the density of the sub-network from
which each experimental PPI is extracted. It has been
shown that the connectivity of well-conserved proteins
in PPI networks is negatively correlated with their rate
of evolution [53,54] and, as a consequence, more con-
nected proteins evolve at lower rate because they are
subject to higher pressure to co-evolve with interacting
proteins. The PPI conservation score quantifies the
degree of connectivity of the sub-network to which each
experimental (known) PPI used for the interolog walk
participates (Figure 2E). A binary interaction part of a
very well-connected sub-network in the reference gen-
ome is more likely to have retained its functional char-
acterisation after the projection to the organism of
interest. In our implementation, we follow the method
suggested by Huang and colleagues [22], and define the
PPI Conservation Score as

PCS = γ · E, (4)

where g = 2 · E/[N · (N - 1)] and N and E are, respec-
tively, the number of nodes and edges in the sub-net-
work. Since the g-connectedness measure is biased
towards maximally connected small sub-networks, is
relaxed by weighting it with the number of edges E.
Schematics illustrating the IPX and PCS are shown in

Figure 2A-D and 2E respectively, and a detailed descrip-
tion of both can be found in Additional File 2:
‘Definitions’.
There are many ways that an interolog could be

prioritised. We aim for Bio::Homology::Intero-
logWalk to be compatible with a diverse range of data
and useful for many different kinds of users. Any priori-
tisation metric will be context-dependent and for this
reason we offer a number of options to configure the
process to suit the users requirements and the coverage
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and quality of the data available to them. As such the
generalised and customisable prioritisation scheme we
provide here should provide the necessary exibility to
allow application across a broad range of biological
domains.

Results and Discussion
Validation
Retrieving known interactions through orthology walking
We tested the functionality of the Bio::Homology::
InterologWalk package by recovering known interac-
tions using the orthologue walking principle (Figure 3).
To identify known interologs for the validation analyses,
we obtained the complete genomes for five well-anno-
tated species (human, mouse, yeast, fly and worm) from
Ensembl V. 61. Then, we extracted all the known experi-
mental protein-protein associations for each of the five
genomes Gi (i = 1, ..., 5) from EBI-Intact. We define IGi

to be the set of the NGi experimental protein-protein
interaction pairs in Gi:

IGi =
{
(x, y)(n)

}NGi

n=1
. (5)

Next, we selected five pairwise genome combina-
tions GiGj: mouse-human, human-yeast, human-fly,
fly-yeast and yeast-worm. For each GiGj, we define the
Known Positive Evidence dataset KP as the following
subset of IGi:

IGi ⊃ KPGiGj = {(x, y) ∈ IGi : (ortho(x), ortho(y)) ∈ IGj } (6)

where ortho(·) is the orthology operator. KPGiGj is the
set of all binary PPIs in Gi that match through orthology
in Gj (Figure 3A).
The gene IDs in the five PPI sets in

KP =
[
{KPGiGj}(k)

]5
k=1

were used as input for the mod-

ule. To validate the ability of Bio::Homology::
InterologWalk to recover known interologs (Figure
3B-D), we compared the degree of overlap between pre-
dicted nodes (gene IDs) and edges (PPIs) and known
positive nodes and edges, for each of the five sets
(Figure 4). For each Venn diagram, the grey set

Figure 3 Validation Procedure. Schematics showing the rationale
for the creation of the known positive sets KPGiGj for validation.
(A) Complete PPI datasets for two genomes Gi and Gj are retrieved.
Only PPIs conserved across the two species through orthology are
retained. PPI pairs in Gi satisfying this property constitute the known
positive set KPGiGj. (B) PPI information between the IDs in
KPGiGj is assumed unknown. (C) The gene IDs in KPGiGj are the
input for Bio::Homology::InterologWalk. (D) The putative
PPI set obtained is compared with the experimental interaction
known positive set.

Figure 4 Known Positive Set and Algorithm Prediction Overlap.
Venn diagrams showing, for five representative species-pair
combinations, the overlap between known positive sets KP (grey
circle) and Bio::Homology::InterologWalk predicted set
(white circle). In all observed cases, the algorithm completely
rescues the known positive samples and, in addition, proposes new
potential interactions and interaction candidates. The new
predictions account for a minimum of 53% to a maximum of 90%
of the total IDs produced and a minimum of 73% to a maximum of
96% of the total PPIs. The results suggest that even in the case of
well studied organisms - provided that the hypothesis of functional
conservation between orthologues is correct - most physical protein
associations are still unknown.
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represents the known positive set KP, while the white
set corresponds to the algorithm’s predictions.
Bio::Homology::InterologWalk successfully

retrieves 100% of the positive PPIs in all cases consid-
ered. In addition, putative PPI predictions are retrieved,
which are candidates that can be prioritised for experi-
mental evaluation. Interestingly, the known positive sets
appear smaller than might be expected between closely
related organisms like human and mouse. This might be
due to a combination of factors such as (1) the para-
meters for orthology classification used by Ensembl are
very stringent, (2) there are biases in experimental
research across organisms (the bulk of experimental pre-
dictions in each of the two species might come from
experiments in different cellular domain and sub-sys-
tems) (3) experimental PPI data will likely contain false
positive interactions, which will not map through
orthology.
It is also interesting to note that in the case of the

yeast-worm pair (Figure 4I and 4J) the number of novel
IDs and novel PPIs retrieved is one order of magnitude
smaller than in the other four cases. This is consistent
with the relatively limited amount of experimental PPI
data available for C. elegans.
Assessing the IPX using Receiver Operating Curves (ROC)
Using the known positive datasets in KP from the pre-
vious section we next calculated ROC curves to assess
the performance of the IPX for each of the five species
pairs. For all five datasets, the area under the curve
AUC >0.5 (Figure 5), demonstrating that there is a posi-
tive relationship between known positives and the IPX.
It is important to note, however, that this correlation
varies depending on the dataset. The reason for this is
likely to be differences in the completeness of the
known positive sets. For all five datasets, the ‘real’ posi-
tive sets are unknown and the disparity between genome
size and the number of known positives means that they
are likely to represent a small proportion of the ‘real’
positive set. As a consequence, the AUC values are
likely to underestimate the retrieval capability of the
algorithm. This also suggests that the IPX may not be
optimised. We anticipate that as coverage and categori-
sation of protein-protein interaction data becomes avail-
able it will be possible to optimise the IPX, improve
these AUC values and the utility of the metric.
The reason why a number of known positives have a

low index lies in the nature of the IPX. It is designed to
reward functionally conserved interologs obtained from
binary experimental PPIs. As stated above, the IPX
penalises putative PPIs that are from orthology projec-
tions where co-orthologues exist or from binary interac-
tions that have been artificially extracted from protein
complexes. Some known positives will fall into one
or both of these two categories. Additional File 3:

‘Interolog Prioritisation Index Histograms’ shows IPX
distributions for the five known positive datasets in KP.
Additionally, we show the distribution of the known
positives within the IPX histograms in Additional File 4:
‘Distribution of positive samples within the IPX histo-
grams’. This chart shows, for each dataset, how many
positive samples are in the low (dark), average (medium)
and high (bright) tiers of the IPX distribution. For all
but the mouse-human genome pair, most known posi-
tives fall in the second tier, and the mouse-human data-
set is the only one to have most of its positives in the
high tier. We examined the relationship between the
IPX and the loss of known positives for the five sample
datasets (Figure 6 and Additional File 5: ‘TPR, FPR and
IPX Threshold’). The mouse-human dataset preserves
80% of the positives with an IPXthr = 15. At the same
threshold value, all of the other datasets fare signifi-
cantly worse (Fisher Exact Test, Additional File 2: ‘Defi-
nitions’, Tables S2 and S3). These results reflect the
closer phylogenetic distance between mouse and human,
in which less gene duplication will have occurred since
divergence from their common ancestor in comparison
to the other species pairs.
It is important to stress that the IPX is not a necessary
and sufficient condition to assess the reliability of a
putative PPI: a highly ranking interolog may not turn
out to be an interesting candidate, but as the index is
calculated using both experimental and phylogenetic
measures, it would be logical to assess such interologs
as candidates before those with lower values. As is the
case with any biological scoring metric, a feature with a
low score may turn out to be a good candidate and
should not be excluded solely on the basis of the score
alone.

Example — Exploring the protein interactome of
Drosophila melanogaster
To demonstrate the use of Bio::Homology::
InterologWalk, we retrieved a list of all Drosophila
melanogaster genes (DS_DMEL) from Ensembl-Compara
Release 61. For the interolog walk the reference gen-
omes were not restricted to any specific species, but
included all 53 available taxa even though we expected a
proportion of the species in the sets to provide ‘dead
end’ orthologues where no significant experimental PPI
data existed.
For the interolog walk we filtered by retrieving only

one-to-one orthologues in the orthology mapping
phases and discarded (a) all interactions that were
inferred from complexes (spoke) and (b) all interactions
that were not experimental physical associations. As a
reference we also performed a direct mine of known
interactions for the starting gene list with the same
interactions filters.
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Figure 5 ROC and IPX score distributions. Mirrored ROC curves for the five genome pairs in the known positive sets in KP. Inset: IPX score
distributions (reproduced in Additional File 3: ‘Interolog Prioritisation Index Histograms’). For each characteristic, the point at coordinate (1,1)
corresponds to IPXthr = min(IPX), TPR = 100% and FPR = 100%. The point at coordinate (0,0) corresponds to IPXthr = max(IPX), TPR = 0% and FPR
= 0%. Initially, IPXthr = min(IPX). Then, the score histogram is divided into 1000 segments and IPXthr is incremented until IPXthr = max(IPX) is
reached. For all datasets, the decrease of TPR is slower than the decrease of FPR as IPXthr ® max(IPX). This means that, as the score threshold
becomes more stringent, for all datasets the number of known positive samples lost stays smaller than the number of new predictions lost. The
correlation between TPR and the FPR varies depending on the dataset: in the case of the Yeast-Worm pair, 98% of known positives are retrieved
when the novel prediction retrieval rate is down to about 76%. Conversely, in the Human-Yeast case, the TPR is down to about 92% for 98%
FPR.
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Table 1 shows statistics for the resulting datasets. We
adopt the following terminology:

1. NET_DS_DMEL_known (7779 nodes, 26622
edges) - the network consisting of all the experimen-
tally-obtained physical associations involving genes
in DS_DMEL, according to EBI-Intact;
2. NET_DS_DMEL_putative (2188 nodes, 4428
edges) - the network consisting of putative interac-
tions involving genes in DS_DMEL according to
Bio::Homology::InterologWalk (filtered as
described above);
3. NET_DS_DMEL_union (8270 nodes, 31050
edges) - the network obtained computing the union
of (1) and (2) where:

• each node is a node of NET_DS_DMEL_known,
NET_DS_DMEL_putative, or both;
• each edge is either an edge of NET_DS_D-
MEL_known or an edge of NET_DS_DMEL_pu-
tative (Note: duplicate edges were not
collapsed into one).

In order to explore the results of the interolog walk
we analysed the networks using the network tool Cytos-
cape [39]. Due to the size and complexity of the genome
scale interaction networks we decided for the purposes
of this illustration to focus on the 65 nodes in
NET_DS_DMEL_known that were annotated with the
term ‘DNA replication’ in the Gene Ontology [55]. In
order to allow clear visualisation of the data, we further
restricted this to a subset of 10 randomly selected genes.
We then retrieved all of their nearest neighbours in
NET_DS_DMEL_known which produced five discon-
nected networks (Figure 7A, 46 nodes and 53 edges in
total) the biggest of which features 4 DNA replication
genes (Figure 7A-1).
To illustrate the utility of the interolog walk we per-

formed the same procedure as above using NET_DS_D-
MEL_union. In this case we retrieved a set of 68 ‘DNA
replication’ genes, a superset of the 65 found before,
meaning that 3 additional DNA replication genes are
drawn in through the putative pipeline. As before, we
selected the sub-network of NET_DS_DMEL_union
composed of the 10 core DNA replication genes and
their nearest neighbours. The resulting sub-network,
NET_DNArep, composed of 68 nodes and 165 edges
(Figure 7B and for clarity in higher resolution see Addi-
tional File 6: ‘NET_DNArep’) has greatly increased con-
nectivity (compare Figure 7A to 7B). Indeed the main
connected component in NET_DNArep now comprises
55 genes and 153 interactions, and wires together 7 of
the 10 core DNA replication genes. A broad analysis of

Figure 6 TPR/IPX Threshold Curve. Relationship between IPX
threshold and known positive sample loss for the five sample
datasets. The mouse-human dataset preserves 80% of the positives
with a IPXthr = 15. At the same threshold value, all the other
studied datasets fare significantly worse (Fisher Exact Test,
Additional File 2: ‘Definitions’, Tables S2 and S3).

Table 1 DS_DMEL - Data for putative and known
networks obtained with Bio::Homology::
InterologWalk

DS_DMEL Pipeline

Putative Known

Datasets

Gene IDs 14869 14869

Reference Genomes 52 NA

Orthologues (Forward) 150968 NA

PPIs in Reference Genomes 37931 NA

Total Interactions 11316 51827

Unique PP Pairs 4428 26622

Surviving IDs (% Gene IDs) 2188 (14.7) 7779 (52.3)

Networks

Nodes 2188 7779

Edges 4428 26622

The table shows a comparison of the PPI datasets and networks obtained for
the Drosophila melanogaster interactome dataset (DS_DMEL). Results obtained
using the two available

Bio::Homology::InterologWalk pipelines - putative and experimental
- are shown. In the putative pipeline, the data shown are relative to
interactions obtained through interolog mapping. In the experimental
pipeline, the initial dataset has been queried against EBI Intact to gather all
known, experimental molecular associations available. The field ‘Total
Interactions’ indicates the total number of final entries of the form I = (genex,
geney) obtained. Since I can be observed several times through different
orthology paths, the field Unique PP Pairs shows the number of unique
(genex, geney) pairs observed.
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NET_DNArep reveals that the introduction of putative
PPI data has allowed us to:

1. collect evidence about new genes, not known to
be related to DNA replication before;
2. increase the connectivity of the GO-annotated
DNA replication proteins.

Proteins that were known to be involved in DNA
replication now interact with proteins for which no evi-
dence for DNA replication involvement existed,

meaning new potential candidates are drawn in to build
a more complete picture of the domain.

Using the IPX to refine the Sub-Network
Given the relatively high number of interactions and
participating genes in NET_DNArep, we carried out a
refinement of the interaction candidates obtained, using
the IPX. As described earlier, Bio::Homology::
InterologWalk can optionally calculate a prioritisa-
tion index for each of the putative PPIs produced. These
can be employed to define a ‘core’ network for which

Figure 7 ’DNA Replication’ sub-network in NET_DS_DMEL_known and NET_DS_DMEL_union. A: Data extracted from
NET_DS_DMEL_known as follows: 1. select 10 core genes annotated with DNA replication GO biological process. 2. select all their
nearest neighbours. B: NET_DNArep. Obtained as before, but data are extracted from from NET_DS_DMEL_union. B-D: Using the IPX to
refine the putative sub-network in B. We set IPXthr1 = 17.5 (C) and IPXthr2 = 18.8 (D). IPX score values are mapped to edge thickness in
B-D. Figure 7D shows the sub-network backbone possessing the highest confidence according to the algorithm. Black nodes are genes
annotated with the DNA Replication GO biological process. Black connections are experimental PPI data from EBI Intact while red
connections are putative predictions taken from NET_DS_DMEL_putative. Nodes are described in key. A high-resolution version of B is
presented in Additional File 6: ‘NET_DNARep’.
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there is strong biological and experimental evidence by
removing nodes that are connected by putative PPIs
with low IPX indices.
In order to look at the composition of putative PPIs in

NET_DNArep, we set IPXthr1 = 17.5, IPXthr2 = 18.8 and
mapped score values to edge thickness in NET_DNArep
(Figure 7B-D). Figure 7D shows the sub-network back-
bone possessing the highest confidence according to the
algorithm. Interestingly, the connectedness of the main
component still remains at this threshold level. Four
putative PPIs survive the strict threshold: (Orc2,
Mcm10), (MCM5, MCM3), (MCM10, MCM6) and (crn,
CG6905). All these pairs, apart from (MCM6, MCM10),
are known to interact experimentally (black edge) and
the putative interaction (red edge) reconfirms these
results. The (MCM6, MCM10) pair, on the other hand,
has not been shown to interact in Drosophila melanoga-
ster and represents a candidate for lab validation.

Conclusions
In this paper, we present Bio::Homology::Intero-
logWalk, a Perl module to retrieve, prioritise and
visualise putative Protein-Protein Interactions using
interolog mapping. Unlike previous efforts, this Perl
library (a) automatically connects to orthology/PPI data
web-services to generate up-to-date predictions ‘on the
fly’. (b) outputs its predictions in the form of simple text
files, allowing to use its methods, or the data it pro-
duces, within the context of pipeline-based work flows
of wider scope (c) optionally flags the predictions on the
basis of related biological metadata through a prioritisa-
tion index, allowing the selection of a subset of candi-
dates for in vivo validation.
We formally validate the efficacy of the tool and pre-

sent ROC curves to assess the association between the
IPX and ‘true-positive’ interactions across several inter-
species ‘true-positive’ sets. We test the potential of the
tool to retrieve putative PPIs on the Drosophila melano-
gaster genome and look more closely at one DNA repli-
cation related sub-network identifying several novel
nodes and interactions. We conclude by using IPX
thresholds to create a ‘core’ network for which there is
strong biological and experimental support.
Our interaction prioritisation index (IPX) is designed

to encapsulate biologically relevant principles that relate
directly to the assessments currently made manually by
many researchers using interaction data. We stress,
however, that the IPX measure for an interaction is not
fully explored here and that a full validation is not pos-
sible due to the current poor coverage of PPI data
across species. In our experience the IPX has proven to
be a useful summary of biological metadata for PPIs.
When performing an interolog walk we recommend
the user first uses filtering options to restrict the

interactions retrieved and then uses the IPX as a prag-
matic aid to candidate prioritisation.
Bio::Homology::InterologWalk is freely avail-

able for non-commercial purposes on the Comprehen-
sive Perl Archive Network (CPAN) and modifiable
under the GNU GPL license. The package includes full
documentation and example scripts to simplify usage.

Availability and requirements
Project name : Bio::Homology::InterologWalk
Project home page : http://search.cpan.org/~ggallone/

Bio-Homology-InterologWalk/
Programming Language : Perl
Other requirements : Bioperl, Ensembl API. The

module also relies on a number of pre-requisite Perl
libraries. See manual on website.
License : GNU GPL

Additional material

Additional file 1: Simplified schematics of the Interolog Walk
pipelines. Flow Diagram documenting the structure and data sources
on which the Bio::Homology::InterologWalk pipeline
implementation is based.

Additional file 2: Definitions. Supplementary text providing Bio::
Homology::InterologWalk implementation details, design
decisions and mathematical background.

Additional file 3: Interolog Prioritisation Index Histograms. IPX
Histograms for the five putative PPI datasets built from the Positive
datasets.

Additional file 4: Distribution of positive samples within the IPX
histograms. Distribution of known positive samples in the IPX
histograms. The chart shows, for each of the datasets in KP, the number
of known positive samples in the low (dark), average (medium) and high
(bright) tiers of the IPX distribution.

Additional file 5: TPR, FPR and IPX Threshold. Relationship between
TPR, FPR and IPX Threshold for the five putative PPI datasets obtained
from the Positive datasets through Bio::Homology::
InterologWalk.

Additional file 6: Putative sub-network based on 10 core DNA
Replication genes.
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