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Abstract

Background: High throughput sequencing technology provides us unprecedented opportunities to study
transcriptome dynamics. Compared to microarray-based gene expression profiling, RNA-Seq has many advantages,
such as high resolution, low background, and ability to identify novel transcripts. Moreover, for genes with multiple
isoforms, expression of each isoform may be estimated from RNA-Seq data. Despite these advantages, recent work
revealed that base level read counts from RNA-Seq data may not be randomly distributed and can be affected by
local nucleotide composition. It was not clear though how the base level read count bias may affect gene level
expression estimates.

Results: In this paper, by using five published RNA-Seq data sets from different biological sources and with
different data preprocessing schemes, we showed that commonly used estimates of gene expression levels from
RNA-Seq data, such as reads per kilobase of gene length per million reads (RPKM), are biased in terms of gene
length, GC content and dinucleotide frequencies. We directly examined the biases at the gene-level, and proposed
a simple generalized-additive-model based approach to correct different sources of biases simultaneously.
Compared to previously proposed base level correction methods, our method reduces bias in gene-level
expression estimates more effectively.

Conclusions: Our method identifies and corrects different sources of biases in gene-level expression measures
from RNA-Seq data, and provides more accurate estimates of gene expression levels from RNA-Seq. This method
should prove useful in meta-analysis of gene expression levels using different platforms or experimental protocols.

Background
Massive parallel sequencing of RNA has provided
researchers a powerful tool for transcriptome analysis. The
protocols of gene expression analysis using the sequencing
approach fall into two major categories. The traditional
approach is 3’ tag digital gene expression (DGE), in which
oligo-dT was used for synthesis of cDNA libraries, result-
ing in enrichment in the 3’ end of polyadenylated mRNAs.
These polyadenylated fragments were further digested by
certain restriction endonucleases to produce short cDNA
tags. The short tags were then sequenced by massive par-
allel sequencing technologies to give “digital counts” of the
mRNA molecules originated from each gene. A variety of
DGE approaches differ in their choices of restriction eno-
nuclease, cDNA cloning step, and usage of barcodes [1,2].

These approaches were adapted from the original serial
analysis of gene expression (SAGE) [3] and expressed
sequence tag (EST) [4] approaches, and revolutionized by
the ultra-high throughput brought upon by next-genera-
tion sequencing platforms. The more recent method is
RNA-Seq, in which the entire transcriptome is randomly
fragmented into pieces of a few hundred nucleotides, and
reverse transcribed into cDNA libraries. These cDNA frag-
ments are then PCR amplified and sequenced in parallel
[5]. This technology requires considerably higher coverage
to reach similar power in detecting lowly abundant tran-
scripts. However, RNA-Seq provides more information
than DGE on transcript structure and dynamics by survey-
ing whole transcripts instead of 3’ tags. With rapid reduc-
tion of sequencing cost and ever growing sequencing
depth, RNA-Seq has gained more popularity over DGE
approaches in recent years.
Compared to microarray-based gene expression analy-

sis, DGE and RNA-Seq have essentially no background,
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and therefore overcome the ratio compression problem
(the observed expression fold change is smaller than the
real difference) persists in microarray technology; the
dynamic range of sequencing based approaches also
expands with higher sequencing depth [6]. Moreover,
sequencing based gene expression measurement shows
higher reproducibility between technical replicates than
microarray based approaches [7,8]. Furthermore, it is
possible to identify novel transcripts and isoforms with
sequencing-based methods.
Despite these advantages, a comprehensive understand-

ing of the characteristics and potential artefacts in the
data is needed to most appropriately analyze RNA-Seq
data. In an important study of RNA-Seq data characteris-
tics, Oshlack et al. found transcript length biases in
RNA-Seq data [9]. Specifically, the authors argued that
due to the random RNA fragmentation and sampling
nature in RNA-Seq, the aggregated read counts on a
gene may follow a Poisson distribution, where the sam-
pling rate is proportional to true expression level multi-
plied by gene length. Measures to normalize the
aggregated read counts by gene length, such as reads per
kilobase of exon model per million mapped reads
(RPKM) [10] or similarly fragments per kilobase of exon
model per million mapped reads (FPKM) [11], can poten-
tially lead to unbiased estimate of the true expression
level of a gene. However, the distribution of these nor-
malized read counts no longer possesses the overall nice
feature of equal mean and variance, and shorter genes
have larger variance than longer ones. As a result, statisti-
cal power to detect differential expression will be a func-
tion of gene length. This phenomenon is inherent to the
nature of RNA-Seq because there are essentially larger
sample sizes for longer genes. On the other hand, DGE
may not suffer from this issue because only one tag is
counted for each gene. To overcome such gene length
effect in detecting differentially expressed genes or
enrichment of particular gene sets, a recent study pro-
posed to use the square root of gene length as weights to
adjust the gene level test statistic for differential expres-
sion, or to adjust the identification probability of each
gene in the null distribution for the Fisher’s exact test in
gene set analysis [12].
In addition to length biases, other factors such as read

mapping uncertainty and sequence base composition may
also confound results from RNA-Seq experiments. Read
mapping uncertainty across different isoforms [11] and
different genes [13] have been addressed in rigorous statis-
tical framework by recent methods in the field and
improved estimation of gene expression levels from RNA-
Seq experiment. In contrast, investigation of sequence
base composition effect in RNA-Seq data is still explora-
tory [14,15]. The correlation between gene expression
level and DNA base composition is an important and

extensively studied issue. In mammalian genomes, the
DNA base composition is correlated with gene density
[16], recombination [17], methylation [18], and many
other genomic features. But there is no clear evidence sug-
gesting correlation between DNA base composition and
gene expression pattern [19]. Base composition of micro-
array probes has been found to introduce variations to
probe-target hybridization strength, and in turn affect the
gene expression level measured by microarrays [20]. In
high throughput DNA sequencing, it has been shown that
various technical artefacts are correlated with base compo-
sition. Dohm et al. [21] clearly demonstrated a strong rela-
tionship between read counts and the GC content in 1 kb
windows along the genome from Solexa DNA sequencing
experiments. Recently, two groups independently exam-
ined the nucleotide-level read counts in RNA-Seq data
and found strikingly similar non-uniform patterns in the
reads distribution along genes; and the pattern is strongly
associated with base compositions surrounding the investi-
gated base position [14,15]. Hansen et al. [14] further
showed that the pattern is specific to RNA-Seq libraries
made by random hexamer priming, and proposed a ran-
dom hexamer based re-weighting approach to adjust for
the nucleotide composition bias in read counts. Alterna-
tively, Li et al. [15] regressed the read counts at a particu-
lar base on the identities of nucleotides around the base,
using parametric and non-parametric regression tools.
Besides random hexamer priming efficiency, the base
composition may affect RNA secondary structure or prim-
ing efficiency in other enzymatic steps, and lead to uneven
sequence read coverage from the cDNA sequencing
library. We expect that the base-level composition bias
may also affect our estimation of gene expression levels.
Overlooking such biases may mislead downstream biologi-
cal interpretations.
In this article, based on multiple publicly available

RNA-Seq data sets, we showed that the commonly used
measures of gene expression levels, such as raw read
counts or RPKM/FPKM, are biased in transcript length,
GC content, and dinucleotide frequencies. We also inves-
tigated the effects of biological sources, experimental
protocols and data processing methods on these bias pat-
terns systematically. We found that the bias patterns are
specific to experimental protocols but not specific to bio-
logical sources, suggesting that they are technical artefact
rather than biologically relevant patterns. It motivated us
to develop a generalized additive model based algorithm
to jointly correct for these biases. In contrast to [14] and
[15] where base-level read counts were investigated, we
focused on aggregated read counts for each gene and aim
to remove the bias trend across genes. Our method can
effectively correct for gene-level biases, and the corrected
estimates of absolute gene expression levels agree better
with gold-standard expression measures such as Taqman
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RT-PCR and QuantiGene. Compared to the random hex-
amer bias correction method in [14] and multiple addi-
tive regression trees (MART) in [15], our method is
computationally less demanding, yet performs more
favourably in correcting for gene-level biases. Our work
not only contributes to understanding of potential tech-
nical artefacts in RNA-Seq experiments, but also provides
more accurate gene expression measures. The correction
method will be useful in meta-analysis of data sets using
different platforms or experimental protocols, and may
also help correcting for tissue/cell-type heterogeneity in
RNA samples. Obtaining accurate absolute gene expres-
sion levels is also of inherent biological interest, and help
answering various biological questions, such as estimat-
ing enzyme reaction rates for genetic network modelling,
comparison of isoform levels, and evolutionary compari-
sons across species.

Methods
Data sets
MAQC data sets
MicroArray quality control (MAQC) data sets [22,23]
contain gene expression data from multiple quantitative
platforms and are widely used in assessing platform per-
formance and testing for different data processing meth-
ods. We used data collected through three platforms for
two samples: the Ambion Human Brain Reference RNA
and Stratagene Universal Human Reference RNA. The
three platforms are Solexa 1 G Genome Analyzer
sequencing platform [22], Taqman qRT-PCR platform,
and QuantiGene platform [23].
The two samples are labelled MAQC2 and MAQC3.

MAQC2 contains 7 technical replicates of brain reference
RNA samples and 7 technical replicates of UHR RNA
samples sequenced on 14 lanes of two flow cells. MAQC3
contains UHR RNA samples from 4 different library pre-
parations sequenced on 14 lanes of two flow cells.
All experiments used standard Illumina RNA-Seq proto-

col. The raw sequence files were downloaded from the
Sequence Read Archive http://www.ncbi.nlm.nih.gov/sra/
with accession numbers SRX016366, SRX016368-
SRX016372. Taqman quantitative RT-PCR technology
first reverse transcribes RNA transcripts into cDNA, and
then measures concentration of each cDNA template at
each cycle of PCR by detecting the fluorescent signals
released from a target-specific fluorogenic hybridization
probe that is hydrolyzed by Taq polymerase during the
extension phase. It is often used as gold standard for
microarray studies. Taqman qRT-PCR data for 1,044
probes, corresponding to 1,001 RefSeq genes, were
obtained from GEO database with accession numbers
GSM129638-GSM129645, which represent 4 technical
replicates of Taqman qRT-PCR for each of the two

samples. Reported values are normalized expression values
as 2(CTPOLR2A−CTgene) . The expression of each measured gene
was compared to the housekeeping gene POLR2A by delta
CT (cycle threshold) calculations, a CT value of 35 (detec-
tion threshold) was used for any replicate that had CT >
35. QuantiGene is a highly sensitive assay based on DNA-
RNA hybridization and does not involve any reverse tran-
scription step. The amount of RNA molecules is measured
by luminescence signals released during branched DNA
amplification. The detection threshold of QuantiGene data
is background + 3 SD of background. Background signals
were determined in the absence of RNA samples and sub-
tracted from signals obtained in the presence of RNA sam-
ples. QuantiGene data for 244 RefSeq genes were
downloaded from GEO database with accession numbers
GSM129654-GSM129659, representing 3 technical repli-
cates for each of the two samples. Reported values are
background-subtracted luminescence signal. Both Taqman
and QuantiGene data sets labelled genes above detection
threshold with a flag “P” and those below the threshold
with “A”, and we only used genes with flag “P” in down-
stream analysis. To compare with RNA-Seq data, we
matched RefSeq gene IDs with ENSEMBL gene IDs (v59)
using BioConductor, and only used genes with unambigu-
ous one to one match in downstream analysis.
RNA-Seq data from kidney and liver
This dataset was generated in [7] and used widely in the
literature on RNA-Seq data analysis approaches. Raw
sequence files from liver (SRX000571) and kidney
(SRX000605) were downloaded from the Sequence
Reads Archive. To compare with the data processing
method used in the original publication, read counts for
each Ensembl gene were downloaded from http://bioinf.
wehi.edu.au/resources/ [24].
Yeast RNA-Seq data
This dataset was described in [25] and also used in [14]
to demonstrate sequencing biases caused by random
hexamer priming. We downloaded raw sequence files of
two technical replicates of the isogenic wild-type strain
from the Sequence Read Archive with accession num-
bers SRR014335 and SRR014336.
Yeast RNA-Seq data using alternative protocols
This dataset was described in [26] through different
library preparation procedures. Standard RNA-Seq
library preparation involves RNA fragmentation followed
by cDNA synthesis with random hexamer priming. In
this study, cDNA synthesis before fragmentation and
different priming chices was tested. We downloaded raw
sequence files of two libraries prepared by random hex-
amer priming and cDNA fragmentation by DNase I
(SRR002058), and oligo-dT priming and cDNA fragmen-
tation by DNase I (SRR002062) from the Sequence
Reads Archive.
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FRT-Seq data
This dataset was generated in [27] for human placental
poly(A)+ RNA sample, using both the standard RNA-
Seq library preparation protocol and a novel approach
called FRT-Seq. This new approach does not involve
PCR amplification and the reverse transcription step is
performed right on flow cell (FRT). We downloaded the
raw sequence files for FRT-Seq (ERR007689) and stan-
dard RNA-Seq (ERR007710) from the European Nucleo-
tide Archive. To compare with data processing method
used in the original publication, read counts for each
RefSeq gene were also downloaded from ftp://ftp.sanger.
ac.uk/pub/transseq/.
All the data sources, accession numbers, characteris-

tics of the techniques and related information are listed
in Table 1. The differences between sample preparation
protocols in these data sets are summarized in Figure 1.

Data processing procedure
Three procedures were performed in processing sequence
data to obtain estimates of expression levels. For Procedure
1, we used TopHat (v1.1.0) [28] to align the raw sequen-
cing reads to reference genome, using gene model annota-
tions to direct the mapping of reads spanning splice
junctions. In this default setting, reads that can be mapped
to multiple (less than 10) genomic locations had all align-
ments reported and their contributions in estimating gene
expression were proportionally down-weighted by Cuf-
flinks. The specific reference genome and gene model
annotation used for each data set are listed in Additional
file 1. Cufflinks (v0.9.3) [11] was then used to estimate
gene expression levels based on the same gene model
annotations. By specifying the known gene structure anno-
tations, we suppressed Cufflinks from de novo transcript
assembly, and only allowed it to assign reads to different
isoforms probabilistically, estimate isoform-level expression

using maximum likelihood method similar to rSeq [29],
and summarize isoform-level expression into gene-level
expression measures in FPKM unit. The gene expression
levels estimated from Cufflinks agreed well with those
from rSeq (results not shown). For Procedure 2, we directly
extracted read counts per gene or RPKM from original
publications if they are available and compared them with
corresponding gene model annotations. Due to the limited
availability of intermediate data and ambiguity of originally
used gene model annotations, we only implemented this
procedure for Marioni et al. liver and kidney data set and
Mamanova et al. FRT-Seq data set. For Procedure 3, we
directly counted reads whose starting positions fall in exon
regions of all transcripts from mapping results obtained in
Procedure 1, and converted them to RPKM units. The
procedures applied to each data set are listed in Additional
file 1.

Bias corrections by generalized additive models
We consider the bias of gene expression levels in terms
of gene length, gene GC content, and the frequencies of
the 16 possible dinucleotides. Let Yi be the inferred
gene expression level for gene i (from one of the three
procedures discussed above), and X be a matrix with the
i-th row Xi ≡ (Xi , 1, Xi, 2,..., Xi , 18) representing the
values of 18 potential bias factors for gene i. Specifically,
Xi, 1 is the gene length on log scale, and (Xi,2,..., Xi, 18)
are bias factors related to nucleotide composition. Our
goal is to obtain a less biased estimate of expression
level ˜Yi by removing the biases due to these factors.
Since some of the bias factors are correlated (e.g. GC
content is correlated with GC dinucleotide frequencies),
we first performed a principal component analysis on
the 2nd to 18th columns of X, denoted as X(-1), and
obtain the first K principal components Pi, 1, Pi, 2,..., Pi,
K that can explain more than 95% variation in X(-1).

Table 1 Summary of RNA-Seq Data sets used in this study.

Data Set Source Accession
Number

Technology Characteristics Notes References

MAQC data set Sequence
Read Archive

SRX016366,
SRX016368-
SRX016372

Standard Illumina RNA-Seq protocol:
RNA fragmentation, random hexamer
priming

expression data also available from
Taqman RT-PCR and QuantiGene
platforms

[22]

RNA-Seq data from
kidney and liver

Sequence
Read Archive

SRX000571
SRX000605

Standard Illumina RNA-Seq protocol:
RNA fragmentation, random hexamer
priming

read counts per gene available from
http://bioinf.wehi.edu.au/resources/

[7]

Yeast RNA-Seq data Sequence
Read Archive

SRR014335
SRR014336

Standard Illumina RNA-Seq protocol:
RNA fragmentation, random hexamer
priming

NA [25]

Yeast RNA-Seq data
using alternative
protocols

Sequence
Read Archive

SRR002058
SRR002062

random hexamer or oligo-dT priming;
cDNA fragmentation by DNase I

NA [26]

FRT-Seq data European
Nucleotide
Archive

ERR007689
ERR007710

standard protocol or FRT-Seq (no PCR,
RT step on flow cell)

read counts per gene available from
ftp://ftp.sanger.ac.uk/pub/transseq/

[27]
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Then we used these principal components to fit the fol-
lowing generalized additive model (GAM): log(Yi) = ai +
Xi, 1 + s(Pi1) + s(Pi2) +...+ s(PiK) + εi. Finally we obtain
the bias corrected expression as the sum of the grand
mean of Y and the residual from fitted model, i.e.
˜Yi = Y + ε̂i .

Definition of “Gene” units to summarize expression levels
In mammalian genomes, one gene may contain multiple
transcript isoforms, and sequencing reads can fall on a
genomic region corresponding to different isoforms or
even genes. What is more, there is no consensus on
“gene” unit to summarize gene expression. For example,
Oshlack et al. defined gene length as the median of all
transcript length related to that gene, which is a simple
high level summary but may not be accurate when dif-
ferent isoforms have very different expression levels [9].
Hansen et al. defined region of constant expression

(ROCE) by dividing genomic regions based on which
gene and transcript isoform(s) the regions are associated
with [14]. This definition avoids the ambiguity in assign-
ing sequence reads to different transcript isoforms, but
loses the biological interpretation for each unit. Li et al.
avoided ambiguity in overlapping genes/isoforms by
focusing on single isoform non-overlapping genes [15].
This definition inevitably loses information from the
data. In this study, we examined different units (tran-
scripts, genes, and SINO genes) to summarize expres-
sion level and detect biases, and therefore alleviate the
potential artifact associated with each definition. We
used the median cDNA length, cDNA GC content and
dinucleotide frequencies as gene-level summaries.

Software package
The GAM correction method and facilitating functions
were implemented in an R package (RNASeqBias) and

Isolate poly A RNA Isolate poly A RNA Isolate poly A RNA

Standard Illumina protocol Alternative protocol in [24] FRT Seq protocol

Fragment RNA

Isolate poly A RNA

Generate cDNA by RT using
random hexamer or oligo

d i i

Isolate poly A RNA

Fragment RNA and
dephosphorylate

Isolate poly A RNA

Generate cDNA by RT using
random hexamer priming Fragment cDNA by DNase I

dT priming

3’ Adapter ligation

dephosphorylate

Adapter ligation Adapter ligation purify from gel and
phosphorylate

Size selection from gel Size selection from gel 5’ Adapter ligation

Enrichment by PCR Enrichment by PCR
Load onto flow cell for RT
using random hexamer

priming

Load onto flow cell for
cluster generation

Load onto flow cell for
cluster generation cluster generation

Figure 1 Differences in experiment protocols for RNA-Seq. Major steps in standard Illumina RNA-Seq sample preparation protocol in Marioni
et al. [7], Bullard et al. [20], Lee et al. [23] (left), alternative RNA-Seq protocols in Nagalakshmi et al. [24] (middle) and FRT-Seq protocol in
Mamanova et al. [25] (right) are compared.
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this package can be obtained as Additional file 2, and
also from http://bioinformatics.med.yale.edu/group/.
This GAM-based correction method is computationally
efficient. It takes ~4-5 seconds on a 2.67 GHz Xeon
CPU to correct ~30,000 gene expression levels for
human genome with ENS 59 annotation.

Results
RNA-Seq biases in length, GC content, dinucleotide
frequencies
To detect potential biases in the gene expression levels,
we grouped genes into bins according to each of the
potential bias factors, e.g. gene length, GC content, and
dinucleotide frequencies, and plotted the median expres-
sion levels versus median bias factors for the five data
sets in Figure 2 and Additional file 3. MAQC data set
showed strong linear relationship between expression
levels and gene length, GC content and dinucleotide fre-
quencies that are related to GC content (i.e. AA, AT,
TA, TT, GG, GC, CG, CC). Moreover, the patterns
from two different biological samples (brain and UHR)
were very similar. In the Marioni data set, the expres-
sion levels showed negative linear correlation with gene

length and CA dinucleotide frequency, and mostly quad-
ratic patterns for the other nucleotide composition vari-
ables. Again, the patterns from two different biological
samples (liver and kidney) were very similar. The
Mamanova data set showed similar patterns as the Mar-
ioni data set, with mostly quadratic patterns and nega-
tive linear correlation between expression and gene
length. The patterns for FRT-Seq and STD-Seq are dif-
ferent mainly in CA and AC dinucleotide frequencies.
The two yeast studies showed similar linear patterns
although different library preparation protocols were
used. In both studies, expression level had negative cor-
relation with gene length, AT, TA, positive correlation
with GC content, TG, GT, GG, GC, CC dinucleotide
frequencies. In summary, there are clear non-random
patterns between estimated expression levels and gene
length and nucleotide composition, and the patterns
were not specific to the biological samples being
sequenced, which indicated that the patterns were
caused by technical issues rather than biological
features.
Many data processing tools have been developed for

RNA-Seq data analysis in the literature. To evaluate
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Figure 2 Bias plots for MAQC data (Procedure 1, gene-level). Genes were grouped into bins according to log gene length, GC content, and
dinucleotide frequencies, and the median expression levels in log(FPKM) units versus median bias factors were plotted for MAQC2 brain and
UHR samples before and after GAM correction. Each bin contains 500 genes. Data were processed by Procedure 1. This data set showed strong
linear relationship between expression levels and gene length, GC content and dinucleotide frequencies that are related to GC content (i.e. AA,
AT, TA, TT, GG, GC, CG, CC). Moreover, the patterns from two different biological samples (brain and UHR) were very similar. After GAM
correction, the bias patterns diminished.
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whether the bias pattern we observed in RNA-Seq data
is due to certain data processing methods involved in
the processing of these data, we implemented multiple
processing procedures for each data set, and summar-
ized expression levels using different “gene” unit defini-
tions (see Methods section). Procedure 3 differs from
Procedure 1 in that reads will be double counted instead
of being assigned to different isoforms probabilistically
for overlapping transcripts or genes. Even for single iso-
form non-overlapping (SINO) genes, Procedure 1 may
be different from Procedure 3 due to two features of
Cufflinks. First, when gene model annotation (.gtf) file is
provided, Cufflinks only counts fragments that fall on
gene model features for the “total number of fragments
mapped”. Second, Cufflinks uses each fragment’s map
quality to down-weight reads that were mapped to mul-
tiple genomic locations. By comparing bias patterns
from these different procedures, we examined whether
different mapping policies, gene model annotations and
expression estimation methods have any effect on the
observed bias patterns. We found that all three data
processing methods and both gene level and transcript
level expression estimates yielded similar patterns (Addi-
tional files 4 and 5). However, the patterns were less
obvious when we focused only on expression estimates
of SINO genes, probably for the reason that the propor-
tion of SINO genes is low in protein coding genes
(Additional file 6). Out of 49,733 annotated Ensembl 59
chromosomal genes, there are 20,555 SINO genes; out
of 21,727 protein coding genes, there are only 3,870
SINO genes. Since most RNA-Seq experiments enriched
for poly(A)+ mRNAs transcribed from protein coding
genes, investigation using only SINO genes may lose
considerable amount of information, and patterns
learned from SINO genes may not be applicable to gen-
eral protein coding genes.

Relationship between gene-level biases and base-level
biases
In the previous section, we examined bias patterns
between estimated expression level and nucleotide com-
position across genes. To examine bias patterns between
base level read counts and nucleotide composition, we
compared the percentage of dinucleotides at the starting
position of all mapped reads from different data sets
(Table 2). Mamanova et al. sequenced the same biologi-
cal sample using two different protocols, and clearly
showed protocol-specific biases. STD-Seq protocol was
also used in data sets from Marioni et al., Bullard et al,
and Lee et al., and these data sets all showed significant
over-representation of dinucleotides starting with C and
G, but the extent of over-representation depended on
different studies. Nagalakshmi et al. used two different
types of primers (oligo-dT or random hexamer) in

cDNA synthesis but they showed similar patterns, which
were different from those using STD-Seq protocols,
indicating that choices of primers were not the main
cause of the bias patterns in this study. Instead, the
library preparation step that is common in the Naga-
lakshmi study but different from STD-Seq caused the
biases, i.e. fragmentation of cDNA instead of RNA.
The base-level and gene-level bias patterns from the

same study (except for the Mamanova data) tended to
have similar patterns although different biological sam-
ples or library preparation protocols were used, which
indicates experiment-specific biases. In the MAQC data
set, both base-level and gene-level patterns indicate
strong GC content related bias. However, they do not
always agree well, and probably capture different charac-
teristics of the data. For example, there are strong base-
level biases for reads starting from CT and GT, but this
is not reflected in the gene-level bias patterns.

Generalized Additive Model to correct for gene-level
biases
To correct for the observed gene-level biases, we calcu-
lated principal components of dinucleotide compositions
and gene length, and fitted a generalized additive model of
log(FPKM) on the eigenvectors (see Methods section). As
shown in the bias plots (Figure 2 and Additional files 3, 4,
5 and 6), GAM can effectively reduce the correlation
between gene expression and gene length or nucleotide
compositions. We also found that GAM correction is
robust to sequencing depth and corrected gene expression
level estimation. We used seven lanes of MAQC2 UHR
data to perform GAM correction by adding one lane at a
time. The log fold change of estimated gene expression
levels before and after GAM correction was calculated for
genes with high, medium and low expression. Fractions of
genes with log fold change within ± 5% of the final value
were plotted (Figure 3). Overall the correction is robust to
sequencing depth, with ~80% genes showing the fold
change within ± 5% of the final estimates using only one
lane. Moreover, genes with lower expression were slightly
more sensitive to sequencing depth.

Comparing RNA Sequencing data with other quantitative
platforms
We compared the expression estimates from RNA-Seq
data with Taqman RT-PCR and QuantiGene platforms,
which measure gene expression levels using different
technologies. The purpose is two-fold. First, by compar-
ing the patterns of expression levels across genes from
different platforms, we could distinguish technical bias
from biological patterns. Technical bias should be speci-
fic to certain platforms, whereas biological patterns
should be consistent across platforms. Second, by com-
paring the estimated expression levels for each gene

Zheng et al. BMC Bioinformatics 2011, 12:290
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from different platforms, we could evaluate whether the
GAM correction is able to reduce technical biases. If the
corrected expression estimates from RNA-Seq data are
less biased, we would expect it to correlate better with
other quantitative platforms.
We compared the patterns of gene expression levels in

terms of gene length, GC content and dinucleotide fre-
quencies for 571 and 606 genes measured by both Taq-
man RT-PCR and RNA-Seq platforms and expressed
above the detection thresholds in brain and UHR sam-
ples (Figure 4). Similarly, we compared 165 and 184
genes that were measured by both QuantiGene assay
and RNA-Seq platforms and expressed above the detec-
tion thresholds in brain and UHR samples. A linear

model was built to regress expression levels (in log
(FPKM) unit) on each variable (gene length, GC, or
dinucleotide frequencies), including an indicator for
platforms (Seq vs. RT-PCR) and an indicator for sam-
ples (brain vs. UHR). Then we tested whether the indi-
cator terms affected the linear relationship between
expression and each factor by t-tests and reported the
p-values (Additional file 7). We found that the linear
pattern between expression and gene length together
with all dinucleotide frequencies were significantly dif-
ferent between RNA-Seq and RT-PCR platforms, and
pattern with GC content, AA, AT, TA, TT, GG, GC,
CG, CC dinucleotide frequencies were significantly dif-
ferent between RNA-Seq and QuantiGene platforms.

Table 2 Percentage of dinucleotide at the starting position of all mapped reads

Mamanova et al. Marioni et al. Bullard et al. Lee et
al

Nagalakshmi et al.

Dinuc Read
type

STD-
Seq

FRT-
Seq

Marioni
kidney

Marioni
liver

MAQC2
brain

MAQC2
UHR

MAQC3
UHR

yeast
RH

yeast
oligodT

yeast
RH

AA unique 4.5 9.3 6.1 8.4 2.1 2.2 2.7 5.2 10.8 10.3

AA multi 4.5 10.3 6.7 7.9 2.5 2.6 3.0 4.0 10.1 7.9

AC unique 1.5 5.2 1.4 1.4 0.9 1.0 0.8 1.4 6.4 5.4

AC multi 2.1 5.8 1.3 1.3 1.0 1.0 0.9 1.3 6.0 5.2

AG unique 2.5 7.1 3.0 3.2 2.2 2.2 2.2 2.3 7.8 5.9

AG multi 3.3 6.6 2.8 3.0 2.1 2.2 2.1 2.0 6.9 4.8

AT unique 3.4 7.2 5.7 6.8 1.9 2.0 2.4 4.7 7.4 5.7

AT multi 3.9 5.4 6.0 7.0 2.3 2.4 2.7 4.3 7.8 5.0

CA unique 8.9 5.4 7.7 7.0 10.7 10.6 10.5 8.7 10.6 11.1

CA multi 7.3 5.2 6.2 5.6 10.0 11.0 10.9 7.8 10.9 10.2

CC unique 9.6 4.0 7.8 5.8 10.8 10.2 10.4 5.6 6.0 6.3

CC multi 9.0 4.2 7.2 5.4 9.6 8.8 9.4 7.3 5.5 7.7

CG unique 5.5 2.3 4.4 3.4 10.0 10.1 10.4 7.2 2.0 2.9

CG multi 5.8 2.9 5.2 4.6 9.9 8.7 9.1 8.6 2.2 4.3

CT unique 12.2 5.8 13.3 11.6 13.1 13.0 13.3 12.2 7.9 7.4

CT multi 13.0 6.0 13.0 11.2 13.4 13.5 13.7 13.1 7.8 9.1

GA unique 4.0 6.7 4.9 5.3 5.2 5.4 4.5 7.0 4.9 5.4

GA multi 4.5 6.1 4.7 5.2 5.3 5.8 4.7 6.2 5.0 5.3

GC unique 12.5 5.7 7.7 6.9 11.7 12.0 10.0 8.6 2.2 3.0

GC multi 11.2 6.2 8.1 7.6 11.1 11.6 9.8 10.3 1.8 3.2

GG unique 13.0 5.0 9.2 8.8 12.0 11.9 11.8 8.7 3.8 4.2

GG multi 11.7 6.0 9.8 9.6 11.7 11.4 11.1 8.6 4.1 5.2

GT unique 9.8 5.7 10.1 9.5 8.4 8.6 8.4 12.3 4.2 5.2

GT multi 9.2 5.0 10.4 10.0 9.2 9.1 9.1 11.8 4.6 6.9

TA unique 1.6 5.2 3.7 4.4 1.1 1.1 1.3 2.2 10.8 10.8

TA multi 1.7 3.8 4.3 5.0 1.4 1.1 1.4 2.1 11.2 10.3

TC unique 2.1 6.8 3.0 3.2 2.1 2.2 2.3 2.9 3.9 4.8

TC multi 2.8 6.0 2.7 3.0 2.1 2.2 2.3 3.0 3.8 4.2

TG unique 6.1 6.9 5.6 5.6 4.7 4.9 5.4 5.1 7.9 8.4

TG multi 5.7 8.2 5.5 5.6 4.8 5.3 5.8 4.7 8.7 7.8

TT unique 2.7 11.4 6.3 8.4 2.5 2.5 3.6 5.9 3.5 3.3

TT multi 4.1 12.1 6.2 7.9 2.9 2.9 4.0 4.8 3.4 2.7

Percentage was calculated by SAMStat [33]. Uniquely mapped reads and multi-mapped reads were separated in the calculation but showed similar pattern. Bold
numbers indicates significantly over-represented dinucleotide with p-values less than or equal to 10-100 from a Binomial test described in [34].
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On the other hand, all but one comparison between
brain and UHR samples were not significantly different.
The linear relationship between expression levels and
gene length was significantly different between RNA-Seq
and RT-PCR platforms, but only marginally significant
between brain and UHR samples. There are fewer signif-
icant terms in RNA-Seq vs. QuantiGene platform com-
parison than those in the RNA-Seq vs. RT-PCR
platform comparison. One possible reason is that there
are fewer genes in the former comparison. Nonetheless
the significant terms were all related to GC content,
consistent with the most significant biases in Figure 2.
To examine the relationship between expression mea-

surements from different platforms, we performed a ser-
ies of pair-wise comparisons through Pearson’s
correlations. Multiple technical replicates were averaged
for each platform, and the units for expression levels
were ΔCT for RT-PCR, log(luminescence signal) for
QuantiGene, and log(FPKM) for RNA-Seq. We first
considered 182 and 200 genes that were measured by
both Taqman RT-PCR and QuantiGene assays and
expressed above the detection thresholds in brain and
UHR samples respectively. The correlation was 0.810 for
brain sample, and 0.815 for UHR sample. Then we

compared genes present on both Taqman RT-PCR and
RNA-Seq platforms. The correlation coefficients (r)
were 0.690 (brain) and 0.748 (UHR) before GAM cor-
rection, and increased to 0.754 (brain) and 0.763 (UHR)
after GAM correction. Furthermore, when we stratified
genes into three quartiles by the absolute value of log
fold change between corrected and uncorrected expres-
sion levels, the relative improvement in correlation
increased as correction magnitude increased (Table 3).
Similar results were obtained when we compared genes
that were present on both RNA-Seq and QuantiGene
platforms (Table 3). The improvement trend is consis-
tent but less obvious in UHR sample, probably because
UHR sample is a mixture of ten human tissue cell lines
with heterogeneous splicing patterns. These results sug-
gested that GAM correction for RNA-Seq data may
improve the consistency in gene expression estimates
across quantitative platforms.

Relative contribution of each component in the GAM
model
To understand the correlation structure between indivi-
dual bias factors and the principal components going
into the GAM model, we plotted the principal compo-
nents found in 8 data sets covering all the sample
organisms, tissues, library prep procedures, and data
processing procedures (Additional file 8). Procedures 1
and 3 do not differ in the principal component analysis
step, so we only showed examples from procedures 1
and 2. Features presented in these plots include the var-
iance explained by each principal component, the mini-
mal number of principal components that explain at
least 95% of the variance, and the biplots [30] showing
the variance, covariance and correlations among predic-
tors, and the components of the first two principal com-
ponents. The GC content shows strong positive
correlation with dinucleotide frequencies of GC, CG,
GG, and CC, and negative correlation with dinucleotide
frequencies of TA, AT, TT, and AA. These predictors
are the major drivers of the first principal component in
MAQC, Marioni and FRT-Seq data sets, whereas yeast
data sets (Lee and Nagalakshmi) exhibit somewhat dif-
ferent correlation patterns. There are no strong correla-
tions between gene length and GC in any of these data
sets, as the absolute values of r are all less than 0.1
(data not shown). These observations suggest that the
GC content is not the solely important factor in explain-
ing the variation in our design matrix.
To investigate how many of these components are

actually important in our model, we calculated the non-
parametric F-statistic and corresponding p-value for
each predictor (gene length and PCs) from the fitted
generalized additive models for the same 8 examples as
above (inset tables in Additional file 8). Gene length and
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Figure 3 GAM is robust to sequencing depth and gene
expression levels. Seven lanes of MAQC2 UHR data to perform
GAM correction by adding one lane at a time. The log fold changes
of estimated gene expression levels before and after GAM
correction were calculated for genes with high, medium and low
expression. Fractions of genes with log fold change within ± 5% of
the final value were plotted. Overall the correction was robust to
sequencing depth, with ~80% genes showing the fold change
within ± 5% of the final estimates using only one lane. Moreover,
genes with lower expression were only slightly more sensitive to
sequencing depth.

Zheng et al. BMC Bioinformatics 2011, 12:290
http://www.biomedcentral.com/1471-2105/12/290
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Figure 4 Platform and sample specific biases. Bias patterns of gene expression levels in terms of log gene length, GC content and
dinucleotide frequencies for 571 and 606 genes measured by both Taqman RT-PCR (expression levels in ΔCT unit) and RNA-Seq platforms
(expression levels in log FPKM unit) and expressed above the detection thresholds in brain and UHR samples. The expression levels were
rescaled to mean of 0 and standard deviation of 1 on Y-axes. In most bias plots, the fitted lowess curves for sequencing platform (blue and red)
were separated from those from RT-PCR platform (green and black), which indicates platform specific biases. Only a few plots (e.g. for AG and
GA dinucleotide frequencies) showed separation between brain samples and UHR samples, which indicates sample specific biases.

Table 3 Comparison of correlations (r) between MAQC2 RNA-Seq data and other platforms

Platform1 Platform2 Sample Log fold changes Original r r after GAM Correction %Relative improvement

RNA-Seq Taqman Brain (0, 0.326] 0.749 0.747 -0.3

(0.326, 0.731] 0.664 0.699 5.3

(0.731, 2.1] 0.655 0.807 23.2

Overall 0.69 0.754 9.3

RNA-Seq Taqman UHR (0, 0.368] 0.778 0.774 -0.5

(0.368, 0.753] 0.776 0.79 1.8

(0.753, 1.78] 0.704 0.724 2.8

Overall 0.748 0.763 2

RNA-Seq QuantiGene Brain (0, 0.3] 0.833 0.823 -1.2

(0.3, 0.743] 0.659 0.721 9.4

(0.743, 1.69] 0.647 0.738 14.1

Overall 0.725 0.766 5.7

RNA-Seq QuantiGene UHR (0, 0.375] 0.832 0.839 0.8

(0.375, 0.793] 0.811 0.759 -6.4

(0.793, 1.78] 0.632 0.692 9.5

Overall 0.771 0.777 0.8

Gene expression levels from Taqman RT-PCR or QuantiGene platforms are compared with RNA-Seq data, before and after bias correction by GAM.
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the first principal component are almost always highly
significant, and additional principal components are also
significant in some examples. In addition, for data sets
with similar correlation structures among predictors,
such as MAQC brain and MAQC UHR data sets, the
marginal significance of each PC is different, indicating
that gene length and GC content (mostly driving the
first PC) alone may fail to capture the bias patterns in
the estimated gene expression levels in some cases.
We also investigated the effect of including different

number of principal components in the GAM model on
the cross-platform correlations in MAQC2 data sets
with RNA-Seq, RT-PCR and QuantiGene platforms. In
these cases, correction using gene length and the first
principal component in general shows the best perfor-
mance. Including more principal components has little
effect on cross-platform correlations (Additional file 9).
However, we note that this may not be a general phe-
nomenon for other data sets. As shown in Table 2
MAQC data sets have a distinct pattern that reads start-
ing with C or G are highly enriched whereas no other
dinucleotide distribution bias was detected. This is not
the case in other data sets such as Lee, Nagalakshmi
and Mammanova FRT-Seq data sets. Unfortunately due
to the lack of information from “gold-standard” plat-
forms, we cannot directly assess the improvement in
accuracy in these data sets.
To explore the correction effect of using GAMs, we

calculated the correlation between corrected gene
expression levels using only length and GC, and cor-
rected gene expression levels using length plus 1, 2, 3 or
minimal number of principal components explaining
95% of variance (Additional file 10). For all 8 data sets
tested, the correlations are very high (r > 0.84), indicat-
ing that at least for these data sets, the correction is
insensitive to the number of principal components
included in GAM, and that their performances are simi-
lar to the correction using only gene length and GC
content in GAM. On the other hand, the GC bias pat-
terns observed in the original data and corrected by
GAM are actually very different across 8 data sets
(Additional file 11). For example, the Marioni data sets
and Mamanova data sets showed quadratic bias patterns
in GC content, MAQC data sets showed almost linear
bias patterns in GC content, Lee data sets and Naga-
lakshmi data sets showed non-linear bias patterns in GC
content; and these different forms of bias patterns can
all be corrected by the GAM model, indicating that
GAM is flexible enough to detect and correct for differ-
ent bias patterns specific to each experiment. This prop-
erty is particularly useful when we try to apply a general
correction method to sequencing data from different
experimenters or protocols that may carry different
technical biases.

Comparison with other methods
We compared the GAM correction method with two
other methods correcting for base-level nucleotide com-
position biases. We first implemented the random hex-
amer bias correction method proposed by Hansen et al.
using the R package Genominator [14]. Sine this method
corrected read counts at each base position along the
gene according to nucleotide composition at the first
several nucleotides along the mapped reads, we com-
pared it with gene expression estimated from Procedure
3. The corrected base level counts were summed over
each gene, and divided by the sum of weights to repre-
sent gene expression levels comparable to RPKM units.
From the bias plots we can see that the random hex-
amer bias corrected gene expression levels did not
change the original levels much, and still showed the
same bias patterns (Additional files 12, 13).
We also implemented the regression methods proposed

by Li et al. using the R package mseq [15]. Since this
method was designed for SINO genes, and required
extensive computation time, we only tested it on the
yeast data set from Lee et al. The most highly expressed
100 SINO genes were used as training set and all other
genes were used as testing set. Forty nucleotides were
trimmed from both ends of genes, and nucleotide com-
positions in 40 upstream and downstream bases around
the starting position of each mapped read were included
in the Poisson linear model. The coefficients were larger
at positions closer to the read starting position as
expected, but the cross validated R2 was only 0.086.
Based on the coefficient plot, we chose 15 upstream
nucleotides and 30 downstream nucleotides to fit a
MART model. The cross-validated R2 for MART model
was 0.107. We then obtained gene-level expression esti-
mates by dividing the sum of read counts over the gene
with the sum of MART fitted sequencing preferences at
each position of the gene (trimmed regions were not con-
sidered). Similar to the random hexamer bias correction
method, the mseq-corrected gene expression levels were
very close to uncorrected expression levels, and yielded
the same bias patterns across genes (Additional file 13).
We further compared the reweighted expression levels

with measurements from the Taqman RT-PCR and
QuantiGene platforms. We first confirmed that the gene
expression levels calculated using Procedure 3 agreed
better with RT-PCR after GAM correction by increasing
the Pearson’s correlation from 0.793 to 0.817 for brain
sample, which is consistent with the observation made
from Procedure 1. We then compared the gene expres-
sion levels calculated using Procedure 3 before and after
the random hexamer bias correction, and calculated
their correlation with RT-PCR measured gene expres-
sion. The random hexamer bias correction method
didn’t improve the cross-platform correlations. However,
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when we applied GAM correction on random hexamer
bias corrected expression levels, the correlation with
RT-PCR data improved from 0.794 to 0.815 (Additional
file 14). These results suggested that the bias patterns
across genes were not adequately addressed by the base-
level bias correction methods, and GAM correction is
necessary to further remove these biases.

Discussion
In this article, we examined the gene-level expression
estimates from several published RNA-Seq data sets,
and found systematic biases related to nucleotide com-
position and gene length. We proposed a generalized-
additive-model based method to correct for these biases
and achieved better cross-platform comparison results.
The major difference between our method and pre-

vious studies exploring the biases in RNA-Seq data is
that we summarized and corrected for the biases at the
gene level instead of the base level. Previous studies (e.g.
Li et al. 2010 and Hansen et al., 2010) employed para-
metric or non-parametric regression techniques to relate
base-level read counts to local nucleotide composition.
While achieving better uniformity in read distribution
within genes, these methods only corrected for gene
level expression estimation to a limited extent, as shown
in Additional files 12 and 13. Moreover, the biases
detected on gene level and base level are likely to be
complementary to each other. For example, the FRT-
Seq data from Mamanova et al. showed gene-level biases
that were different from standard sequencing data
(Additional file 3), whereas no base level biases in
nucleotide compositions were detected in Hansen et al.
[14]. In fact, combining GAM correction for gene level
biases and random hexamer bias correction scheme for
base level biases performed better than random hexamer
bias correction alone in cross-platform comparison of
gene expression measures (Additional file 14).
During the review of our manuscript, a related correc-

tion method for RNA-Seq data was published [31]. This
method was built on top of the maximum likelihood
based algorithm for isoform/gene expression level esti-
mation in Cufflinks [11], and modified the original like-
lihood function by introducing 100 weights parameters
that measure positional biases. The estimation of the
relative transcript abundance and bias parameters can
be jointly estimated using an iterative coordinate ascent
procedure, although in practice only one iteration was
used. This method focuses on adjusting the base-level
positional biases similar as [15], and therefore comple-
ments our focus on gene-level bias correction. In
another newly published eQTL study with RNA-Seq
platform [32], the authors observed GC bias on sequen-
cing depth across different sequencing lanes, and pro-
posed a direct correction of GC content by fitting a

spline to the plot of log2 relative enrichment of exon
level read counts in each GC bin against the mean GC
content for the bin. The binning and curve fitting strat-
egy is similar to our method but it is simply applied to
one bias factor and does not involve principal compo-
nent regression. Moreover, in contrast to their usage of
the log enrichment of read counts in multiple lanes as
response variables, our method is able to correct for the
absolute gene expression levels even when there is no
technical replicates on multiple lanes.
It is well known that due to the random sampling nat-

ure of RNA-Seq data, length normalized gene level
expressions exhibit larger sample variance for shorter
genes [9]. Since our method considered each sample
separately, we have not solved the unequal variance pro-
blem, which is important for detecting differentially
expressed genes between samples. Moreover, the length
bias we detected here is different from the bias detected
by Oshlack and Wakefield [9]. We observed a general
trend of lower median RPKM/FPKM for longer genes,
whereas Oshlack and Wakefield reported lower variance
of gene level read counts for longer genes. Under the
assumption of random sampling, the gene expression
level in RPKM/FPKM unit (essentially the gene level
read counts normalized by gene length) should be
unbiased in terms of gene length, therefore our observa-
tion indicates potential deviation from random sampling
model.

Conclusions
In summary, our work identified several potential biases
in RNA-Seq data, and proposed a bias correction
method that can provide a more accurate gene level
expression estimate. We believe this method will help
meta-analysis of RNA-Seq data with other quantitative
platforms and alternative protocols.

Additional material

Additional file 1: Summary of data processing procedures for each
data set.

Additional file 2: R package RNASeqBias developed in this study.

Additional file 3: Bias plots for Marioni, Mamanova, Lee and
Nagalakshmi data sets (Procedure 1, gene-level).

Additional file 4: Bias plots for MAQC data using transcript level
expression summaries.

Additional file 5: Bias plots for Marioni data using Procedures 2
and 3.

Additional file 6: Bias plots for SINO genes in MAQC data.

Additional file 7: P-values of testing whether bias patterns are
platform-specific or sample-specific.

Additional file 8: PCA plots for 8 data sets. The left panel shows the
variance explained by each principal component. Black bars are PCs
included in the GAM model (they explain at least 95% variance in the
data), and gray bars are PCs not included. The right panel shows the
biplot for the first two PCs. The length of each red vector represents the
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standard deviation of each predictor, and the angle between any two
vectors represents the correlation between them. The relative orientation
to x and y axis shows the relationship between individual predictors and
the first two PCs. The inset table shows the non-parametric F-statistic for
each predictor in the fitted GAM model and the corresponding p-value.

Additional file 9: Improvement of cross-platform correlations with
different number of PCs in GAM. GAM models using gene length only
or length plus 1-7 PCs were fitted to correct the MAQC2 brain and UHR
RNA-Seq data set, and the correlations (r) between uncorrected/
corrected seq data and RT-PCR/QuantiGene data were calculated.

Additional file 10: Scatter plots with different GAM terms.
Correlations between corrected log(RPKM) using (length + GC content)
and corrected log(RPKM) using 1, 2, 3, or minimal number of PCs
explaining 95% of the variance. Subfigures A-H are plots for 8 data sets
in the same order as in Additional file 5.

Additional file 11: Plots of the component smooth functions that
make up the fitted GAM objects with two predictors: gene length
and GC content. The left panel shows the 1-D smooth for log gene
length, and the right panel shows the 1-D smooth for GC content. The
rug plot at the bottom of each panel shows the values of each
predictor. The dotted lines are 2-standard errors above and below the
estimated smooth (solid lines). Subfigures A-H are plots for 8 data sets in
the same order as in Additional file 5.

Additional file 12: Bias plots for MAQC data using Procedure 3 and
comparing with random hexamer bias correction method.

Additional file 13: Bias plots for SINO genes in Lee data using
Procedure 3 and comparing with random hexamer bias correction
method and mseq method.

Additional file 14: Comparison of correlations between RT-PCR and
MAQC2 RNA-Seq data. Gene expression levels from RT-PCR are
compared with original RNA-Seq data (Procedure 3), RNA-Seq data with
random hexamer bias correction, and RNA-Seq data with GAM
correction.
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