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Abstract

Background: Network inference from high-throughput data has become an important means of current analysis
of biological systems. For instance, in cancer research, the functional relationships of cancer related proteins,
summarised into signalling networks are of central interest for the identification of pathways that influence tumour
development. Cancer cell lines can be used as model systems to study the cellular response to drug treatments in
a time-resolved way. Based on these kind of data, modelling approaches for the signalling relationships are
needed, that allow to generate hypotheses on potential interference points in the networks.

Results: We present the R-package ‘ddepn’ that implements our recent approach on network reconstruction from
longitudinal data generated after external perturbation of network components. We extend our approach by two
novel methods: a Markov Chain Monte Carlo method for sampling network structures with two edge types
(activation and inhibition) and an extension of a prior model that penalises deviances from a given reference
network while incorporating these two types of edges. Further, as alternative prior we include a model that learns
signalling networks with the scale-free property.

Conclusions: The package ‘ddepn’ is freely available on R-Forge and CRAN http://ddepn.r-forge.r-project.org, http://
cran.r-project.org. It allows to conveniently perform network inference from longitudinal high-throughput data
using two different sampling based network structure search algorithms.

Background
Reconstruction of biological networks from data has
become important in modern analysis of large data sets
in genomics or proteomics. The aim is to infer pairwise
regulations or influences of network nodes, such as genes
or proteins, describing the system as a graph structure.
With this graphical representation, the functional charac-
teristics of a biological system can be visualised in a com-
prehensive and informative way. For this purpose, many
approaches have been suggested in the past, including
Boolean or Probabilistic Boolean Networks, Bayesian or
Dynamic Bayesian Networks (DBN) or learning with dif-
ferential equation systems and many more [1-5]. These
methods rely on the measurement of network compo-
nents, either under several experimental conditions or at

different time points. The simultaneous measurement of
time courses combined with different experimental con-
ditions or even directed perturbation of components
becomes an increasingly important way of characterising
biological systems [6]. Corresponding modelling
approaches try to describe the responses of model sys-
tems after external perturbation [7,8]. Recently, we pro-
posed a framework that searches for optimal network
structures by modelling the signal flow in a cell from an
external stimulus to the downstream components and we
showed how parts of a literature based reference network
could be reconstructed [9]. The method is now imple-
mented in the R-package ’ddepn’ which is available in the
‘Comprehensive R Archive Network’ (CRAN).
The purpose of this document is to give a comprehen-

sive description of the package and its capabilities.
Besides the original approach for network inference,
three components are added to the package. First, as
alternative to the Genetic Algorithm (GA) presented in
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our previous work, a Metropolis Hastings Markov Chain
Monte Carlo (MCMC) sampling scheme is set up. This
approach is based on a publication of Werhli et al. [10],
but extended by the possibility to sample two types of
edges directly (activation and inhibition). Hence, the
package contains an optimisation algorithm (the GA)
that is designed for converging to an optimal network, as
well as the MCMC algorithm for true sampling of the
space of possible network structures. Second, a prior
probability model for the network structure is adapted
from Fröhlich et al. [11], that can penalise differences of
inferred edges to prior confidences of these edges. Again,
we extended the previous model to include the possibility
to model different edge types. Third, an alternative prior
model is provided that models the scale-free characteris-
tics of inferred networks, i.e. it tries to reconstruct net-
works with node degrees that follow a power law
distribution. This approach was introduced before
[12,13]. We describe how prior parameters can be
adjusted to guide the reconstruction to be more or less
close to the given reference and how reconstruction per-
formance is affected by the prior parameter settings.
Finally, advantages and disadvantages of both the GA
and MCMC methods are discussed and a real data exam-
ple is given that highlights how the prior knowledge
inclusion is improving the outcome of the inference
process.

Implementation
The following sections provide a description of the differ-
ent methods included in the package. The first section
‘Network inference types’ describes the network inference
approaches. A short overview on the original method
based on a GA is given in the first subsection ‘Genetic
Algorithm’. In section ‘inhibMCMC’ we present our novel
approach for Markov Chain Monte Carlo sampling of net-
work structures. The next section ‘Prior knowledge incor-
poration’ includes the two prior models for the inference.
Subsection ‘Laplace Prior’ introduces our extension to the
prior model of Fröhlich et al. [11], subsection ‘Scale-Free
prior’ describes the implementation of the alternative prior
model of Kamimura et al. [12].
In general, the networks to be inferred are encoded as

directed (and possibly cyclic) graphs. Let V = {vi : i Î 1 ...
N} be the set of nodes representing the network compo-
nents (proteins, genes, etc.) and F = V × V ® {0, 1, -1}
an adjacency matrix defining a network. Each edge in F
is defined as pair of nodes {jij : i, j Î 1 ... N }, where 0
means no edge, 1 activation and -1 inhibition between
two nodes. The networks are inferred using a data matrix
D = {ditr : i Î 1... N, t Î 1 ... T, r Î 1 ... R} holding the
time-resolved data of N proteins in T time points, mea-
sured in R replicates each.

Network inference types
Genetic Algorithm
In principle, a population of candidate networks is
‘evolved’ over a large number of iterations, starting with
either a population of randomly drawn networks or by
providing an initial population of networks. One can
thus extract networks based on biological prior knowl-
edge and feed them into the algorithm as a starting
point for the network search. In each iteration of the
algorithm, first up to a fraction 1 - q Î [0; 1] of all can-
didate networks is selected that has a score larger than a
given quantile of the scores of all current networks (we
use the median). This is done to keep the best scoring
networks in the population. Second, crossover is per-
formed between pairs within a fraction q of the net-
works to allow exchange of parts of the networks.
Third, mutation of a fraction of m Î [0; 1] edges in
each network is performed, changing an edge to one of
the remaining states, e.g. if an activation edge is present,
it can change to an inhibition or to no edge at the cur-
rent position. This increases the chances to evade local
optima and explore different parts of the search space,
even if the local move is reducing the score. The details
of the methods are described in our previous publication
[9]. For our purposes, we set the parameters to q = 0.3
and m = 0.8 and recommend to use a population size of
at least 500 networks to ensure broad sampling of the
network search space.
inhibMCMC: Markov Chain Monte Carlo for two edge types
As an alternative to the GA, an MCMC structure learn-
ing approach to sample the space of possible networks
is included. The sampler is based on a previous
approach by Werhli et al. [10]. Because we allow to
include two edge types for activation and inhibition in
our networks, we change the MCMC sampler in the fol-
lowing way. Adding an edge is replaced by two moves,
one for adding an activation and one for adding an inhi-
bition. Further, we include a move for switching the
edge type from activation to inhibition (and vice versa)
as well as one type to simultaneously revert and change
the type of an edge. This leaves us with six move types:
add activation, add inhibition, delete, revert, switch type
and revswitch. Inclusion of the novel move types is done
to ensure that any edge can be changed to any other
edge (w.r.t. to type and direction) in exactly one step.
Using these move operations, for any given network
structure all other structures can be constructed in a
finite series of moves. Consider table 1 for an illustra-
tion of the edge transitions.
Now the essential relationships for the MCMC sam-

pling procedure are repeated (as shown in Werhli et. al.
[10]). The proposal probability of any network Fk+1 that
differs from a network Fk by only one edge is:
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Q(�k+1|�k) =

⎧⎨
⎩

1
|N (�k)| , �k+1 ∈ N (�k)

0, �k+1 /∈ N (�k)
, (1)

where N(Fk) is the neighbourhood of a network k, i.e.
all network structures that can be reached by a single
edge operation. A move is accepted with acceptance
probability

A(�k+1|�k) = min{1,R(�k+1|�k)}, (2)

R(�k+1|�k) =
P(�k+1|D)
P(�k|D)

· Q(�k|�k+1)
Q(�k+1|�k)

, (3)

where the posterior distribution is

P(�k|D) = P(D|�k)P(�k)
P(D)

∝ P(D|�k)P(�k).
(4)

P(D) is a constant normalising factor that can be
neglected for model comparison purposes. P(Fk) repre-
sents the prior probability distribution for a network
structure Fk, which is described in the next section. The
posterior P(Fk|D) is the product of the prior P(Fk) and
the likelihood of the data given the network, defined in
Bender et. al. [9] as:

p(D|�k) = p(D|�̂∗, �̂)

=
T∏
t=1

N∏
i=1

R∏
r=1

p(ditr|θ̂iγ̂ ∗
itr
),

(5)

where D is the N × T × R data-matrix and
�∗ = {γ ∗

itr : i ∈ 1 . . .N, t ∈ 1 . . . T, r ∈ 1 . . . R} the opti-
mized system state matrix, holding the active and pas-
sive states for each protein at each time.

�̂ = {θ̂i0, θ̂i1} = {(μ̂i0, σ̂i0), (μ̂i1, σ̂i1)}, ∀i Î 1 ... N is the
parameter matrix obtained during the HMM procedure
from Bender et. al. [9], containing the parameter esti-
mates for the Gaussian distributions for the active
(μ̂i0 and σ̂i0) and passive states (μ̂i1 and σ̂i1). Details on

parameter estimation as well as the system state matrix
computation can be found in our previous publication
[9].
We end this section by describing the determination

of the neighbourhood N (�k) of a network. There are
three cases to be considered to determine the cardinality
of the neighbourhood of a network Fk:
I) addactivation/addinhibition |N (�k)| := |{φij : φij = 0; i, j ∈ 1 . . .N, i �= j}|

(the number of node pairs that is not connected by an
edge, where self-activations/inhibitions are not considered,
w.l.o.g.)
II) deletion/switchtype |N (�k)| := |{φij : φij �= 0; i, j ∈ 1 . . .N}|

(the number of node pairs that are connected by an
edge)
III) revert/revswitch |N (�k)| := |{φij : φij �= 0 ∧ φji = 0; i, j ∈ 1 . . .N}|

(the number of node pairs that are connected by an
edge, and where the reverse edge is not already present)
Depending on the type of the move, the correspond-

ing proposal probabilities Q can be calculated. Note that
for Metropolis-Hastings MCMC structure sampling
described here, the proposal distribution Q(Fk+1|Fk) can
be non-symmetric, i.e. Q(Fk+1|Fk) ≢ Q(Fk|Fk+1) is
allowed for any pair of networks Fk and Fk+1. To show
that Q is not symmetric, we describe a counterexample
for two simple networks with two nodes A and B
(shown here as adjacency matrix:):

�1 =
A B

A 0 0
B 0 0

�2 =
A B

A 0 1
B 0 0

F2 is reached by adding the edge A ® B, and going
back from F2 to F1 is done by deleting this edge. The
number of neighbours of the first network is calculated
as follows. According to I), 2 neighbouring networks
can be reached by adding a single activation edge, as
well as 2 networks by adding a single inhibition. Follow-
ing II) and III), there are no edges that could be deleted,
reverted or whose type could be switched. In total, there
are 4 neighbouring networks to F1. Analogous to that,
for the second network there is one reachable neighbour
by adding an activation and one by adding an inhibition,
one edge can be deleted, and one reverted, and for one
edge a type switch as well as a reverse-type-switch is
possible, totalling in a neighbourhood of 6 networks for
network F2. Thus, the proposal distribution is not sym-
metric for all possible networks.

Prior knowledge incorporation
Laplace prior
Based on the structure prior of Fröhlich et al. [11], a
prior model is proposed that also incorporates different
types of edges and a more fine-grained control of the
prior influence. Networks are encoded as mentioned

Table 1 Edge transitions and corresponding move
operations

® ⊣ ¬ ⊢ ∅

® - st rev rst del

⊣ st - rst rev del

¬ rev rst - st del

⊢ rst rev st - del

∅ addA addI addA addI -

Possible edge transitions and the corresponding move to perform the
transition. An edge is changed from the type shown in the first column to the
type shown in the first row by the move shown in the corresponding table
field. The following moves are possible: addA: Add activation, addI: Add
inhibition, del: delete, rev: revert, st: switch type, rst: revert and switch type.
The symbols for the edges are ®: activation, ⊣: inhibition, ∅: no edge.
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above. We need a matrix B = V × V ® [-1, 1] contain-
ing prior confidences for each edge, which can be
obtained in various ways. Here, one example is given
how to derive B using the KEGG database [14]. The
approach is similar to the one described by Werhli et al.
[10], but preserves the information on the type of the
edges.
First, we download the signalling and disease related

networks from KEGG (see the documentation of the
data set kegggraphs in the package for a list of all path-
ways). The number of occurrences of each node pair vi
and vj in all pathways is counted and recorded in a
matrix M = V × V ® N. Further, it is counted how
often each node pair is connected via an activation or
inhibition edge in all reference networks and the corre-
sponding numbers are recorded in two matrices Mact

and Minh, both with the same dimensions as M. Note
that for pairs of nodes that do not occur in any refer-
ence network (i.e. Mij is 0), we set the confidence score
to 0. The prior confidence matrix B is thus defined as:

B =
{ Mact

M − Minh
M , if M > 0

0 else,

assuming that the type of each edge is consistent in all
reference networks. This leaves positive confidences for
activation edges and negative confidences for inhibiting
edges. The larger the absolute value of the confidence
score, the stronger is the belief in the presence of this
edge.
No matter how B was derived, to calculate the prior

belief for a network structure F we assume all edge
probabilities to be independent:

P(�|B,λ, γ ) =
∏
i,j

P(φij|bij,λ, γ ), i, j ∈ {1 · · ·N} (6)

We calculate the difference between an edge in the
inferred network F and the prior B and include a
weight exponent g Î ℝ+to obtain the weighted differ-
ence term:


ij = |φij − bij|γ , (7)

The prior belief for an edge in the network is then
modelled as

P(φij|bij,λ, γ ) = 1
2λ

e

−
ij

λ , (8)

which penalises large differences from the network
structure F to the prior belief B.
Now we derive upper and lower bounds for the prior

influence, in the general case for two edge types. Let l,
g Î ℝ+. If the edge type information is used, all differ-
ences Δij lie in the interval [0; 2g], because jij Î {0,1, -1}

and bij Î [-1; 1]. Without edge type information, we
ignore the signs in both F and B, leading to Δij Î [0;
1g], because jij Î {0, 1} and bij Î [0; 1]. Because the
bounds for P (F) will not change in either case, only the
case for including edge type information is shown in the
following.
For the moment, let g = 1 and consider the limits of

the exponential term in equation 8:

λ → ∞ ⇒

⎧⎪⎪⎨
⎪⎪⎩

e

−
ij

λ → 1 if 
ij = 0

e

−
ij

λ → 1 if 
ij > 0

λ → 0 ⇒

⎧⎪⎪⎨
⎪⎪⎩

e

−
ij

λ → 1 if 
ij = 0

e

−
ij

λ → 0 if 
ij > 0

This means that

0 ≤ P(φij|bij,λ, γ ) ≤ 1
2λ

∀λ ∈ R+, γ = 1. (9)

Since Δij ≥ 0, ∀g Î ℝ+, the bounds are valid for g Î ℝ+,
too. Figure 1 shows on the left side the prior curve for
equation 8 when l Î {0.05, 0.1, 1} and g = 1. As it can be
seen there, with increasing l the (unnormalised) prior
probability curve flattens out, giving unbiased probabil-
ities for each value of Δij. The maximum value is
bounded by P(φij) = 1

2λ
. On the right side of Figure 1 we

set l = 0.01 and increase g Î {0.5, 1, 5, 15, 50}. This
results in a broader prior probability plateau at the upper
bound for small differences Δij, suggesting that g can be
used to control how strong small differences of inferred
edges to their prior confidence should be penalised.
Extending the plateau of high prior probability will lead
to high prior weights for edges with absolute confidence
values not equal to 1, and additionally will leave a strong
penalisation of larger differences.
The prior parameter l should be adjusted in a way

that it exceeds the changes introduced by the likelihood,
if strong bias towards prior knowledge is desired during
inference. For inhibMCMC, we suggest to inspect the
likelihood and prior ratios for various settings of l and
choose l in a way that both ratios are approximately
equal (see also Figure 2). To do this, transform equation
8 to log scale:

log(P(φij|bij,λ, γ )) = −log(2) − log(λ) − 
ij

λ

Now consider the prior and likelihood ratios on log
scale, i.e. the differences of the log priors and log likeli-
hoods. To make the prior capable of having substantial
influence on the inference, the log prior differences
should be on similar scale as the log likelihood

Bender et al. BMC Bioinformatics 2011, 12:291
http://www.biomedcentral.com/1471-2105/12/291

Page 4 of 12



differences. For instance, if the log likelihood differences
are on the scale of 103, set l = 10-3 and g = 1, such that

ij

λ
will be in the range of the thousands. The first part

of the prior (-log(2) - log(l)) cancels out in the differ-
ence and does not have an influence. This means, that
the prior influence is controlled over the second part,
which is zero for no difference to the prior and and can
become very large for differences >0. Hence, edge

mismatches between the reference and the inferred net
guide the structure search and the strength of the influ-
ence can be controlled using different settings of l.
For the GA, adjusting l is slightly different. Instead of

tracking the log likelihood and log prior differences
between subsequent networks in the Markov Chain, the
unlogged likelihood and prior differences (i.e. the abso-
lute differences in the likelihood and prior, rather than

Figure 1 Laplace prior curve. Unnormalised prior densities, depending on difference Δij. Left: g is constant, for increasing l a ‘flattening’ of the
prior curve can be observed. For small l, small differences to the reference retrieve higher weight than large differences. For large l, all
differences are weighted approximately equal. Right: l is fixed, when g increases, a plateau at the upper bound 1

2λ
can be seen. This means that

small differences to the reference are not penalised as strong as for small g, leaving the control that up to some deviance from the reference a
high prior weight is retained.
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Figure 2 Prior influence on reconstruction performance of inhibMCMC. Diagnostics for inhibMCMC of a randomly sampled network (N =
15), 50000 iterations, burn-in 5000, g = 1, varying l. The sampled network was used as prior confidence, i.e. the prior knowledge was ‘perfect’ in
this test. Left: The smaller l, the stronger the prior influence was and the closer the inferred networks were to the prior (reflected in increasing
AUCs). Right: Comparison of Likelihood and Prior ratios, depending on l. l should be chosen such that the prior and likelihood ratios vary in a
comparable range. For instance, based on the plot, set l = 0.005.
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their ratios) for each changed individual to a given
population quantile (we usually use the median) have to
be recorded. In the first iterations of the GA, the indivi-
duals in the population will be widely spread around the
network structure search space and changes in the like-
lihoods and priors will be rather large. Once the popula-
tion approximates an optimum, the changes will
become smaller and be centred around zero. A strong
prior will assure faster convergence to an optimum that
is close to the reference. However, giving a guideline on
how to set l for the GA is difficult, because already
rather ‘weak’ prior strength (in terms of the settings for
inhibMCMC) seems to have a substantial influence (see
Figure 3) and the true impact of the prior might vary in
different data sets. It seems reasonable to find some l
that gives average prior differences slightly above zero,
which means that the final score, i.e. posterior, is biased
towards the prior confidences on average. In general,
finding the right choice for the prior parameters is not
trivial. We suggest to use the above rationale to find an
initial estimate and to iteratively update and improve
the settings. This requires evaluation of the results
obtained using a specific setting for the prior involving
expert knowledge on the field studied. Depending on
that, subsequent modifications to the initial guesses

might be necessary and the reconstruction has to be
repeated.
Scale-free prior
A different way of specifying a prior model was introduced
by Kamimura et al. [12], as well as by Sheridan et. al. [13].
It is assumed that the networks have a scale-free architec-
ture and that the degree of a node follows a power-law P
(d) ∝ d-g, where d is the number of edges adjacent to a
node. For any graph structure F with fixed number of
nodes N, a prior probability can be calculated as follows.
First, assign a probability Pi to each node i Î 1... N:

Pi =
i−μ∑N
j=1 j

−μ
≈ 1 − μ

N1−μ
i−μ,

This probability decreases when i gets large, and all Pi

sum up to 1, i.e.
∑

i∈1...N
Pi = 1. μ is in the range 0 < μ <1

and defined as μ = 1
γ−1, g Î [2; ∞[.

Assuming independent node selection proportional to
Pi, and introducing a parameter K that controls the
mean number of edges, the probability of two nodes not
being connected is defined as

Pij = (1 − 2PiPj) 
 e−2NKPiPj .
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Figure 3 Prior influence on reconstruction performance of GA. Results for GA reconstruction for one sampled network (N = 15), population
size p = 500, number of iterations 1000, crossover/selection rate q = 0.3, mutation rate m = 0.8, g = 1. As in figure 2, the sampled network was
used as ‘perfect prior knowledge’. Left: AUC values without prior (column BIC) and for various settings of l. When l was decreased, the AUCs
increased. However, unlike the inhibMCMC example, AUCs did not approach a value of 1, giving evidence that the GA converges to a local
optimum. AUCs for BIC score optimisation were bad, emphasising the need for prior knowledge inclusion for larger networks. Right: Likelihood
and prior differences. Since most of the observed prior differences were zero, only the non-zero values are shown. For each setting of l, the left
box corresponds to the observed distribution of likelihood differences, the right box to the prior differences. In the BIC column, only the
likelihood difference distribution is shown, since no prior was used in this case.
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The probability of any structure Fs = (V, E) of node
set V, edge set E and a permutation s = {s1, ..., sN} of
all nodes in F is then

P(�σ ) =
∏

{vi,vj}∈E
(1 − e−2NKPiPj)

∏
{vi,vj} /∈E

(e−2NKPiPj)

A number of B permutations s are generated, result-
ing in one graph Fs for each permutation. The final
probability of F is averaged over the prior probabilities
of all permutations networks:

P(�) =
1
B

∑
σ

P(�σ )

For a detailed description of the model we refer to the
previous publications [12,13,15]. The scale-free prior
can be used in cases where no information on edge con-
fidences is available. During inference with the scale-free
prior model, sparse network structures will be preferred,
because high node degrees are penalised by the prior
model. In our implementation the scale-free model can
be selected by passing the argument priortype="scale-
free” to the function call ddepn. Further the arguments
gam, it and K have to be provided. Kamimura et al. give
hints on the proper setting of the arguments. In the fol-
lowing sections, we assume that prior edge confidences
are present and suggest the use of the Laplace prior.
However, the scale-free prior might be a reasonable sub-
stitute for modelling more general characteristics of net-
work structures and thus interesting for further analyses.

Results and Discussion
Testing the Laplace prior influence
For both the GA and inhibMCMC sampler several tests
were performed. The aim was to show that the inference
could be influenced in a way that on the one hand the
result was close to a given reference network and on the
other hand allowed to confute the prior, when evidence
from the data got strong enough. The following ratio-
nale was applied for these tests. First, we assumed that
our prior information was true. To ensure this, a net-
work with N = 15 nodes was sampled, data was gener-
ated depending on this network structure and the
original sampled network was used as Laplace prior
matrix B. Sampling of the network and data were
described previously (see Bender et. al. [9]). Both the
prior confidences and inferred edges only take on values
Î {0, 1, -1}, so the absolute differences were either 0, 1
or 2. All differences larger than 0 should have been
strongly penalised, so we set g = 1, leading to a sharp
decrease of the prior density (equation 8) for Δij >0.
Each mismatch in an inferred edge to the prior was thus
given a weight close to 0 (see Figure 1). We performed

tests of the reconstruction performance for the following
cases:
GA, BIC score optimisation 1000 iterations, p = 500,

q = 0.3, m = 0.8 no prior
GA, Laplace prior 1000 iterations, p = 500, q = 0.3, m

= 0.8, g = 1, l Î {1, 0.5, 0.1, 0.05, 0.025, 0.01, 0.005,
0.001}
inhibMCMC, Laplace prior 50000 iterations, burn-in

5000 iterations, g = 1, l Î {0.1, 0.05, 0.025, 0.01, 0.005,
0.001},
We performed n = 10 independent reconstructions on

the same original network and data for both the GA
and inhibMCMC samplers and calculated the Area
Under Curve (AUC) of the Receiver Operator Charac-
teristic (ROC) curves for each sampling run to measure
the quality of the inference. AUCs were calculated as
follows. For inhibMCMC, 50000 iterations were per-
formed in each run with a burn-in phase of 5000 itera-
tions. Final networks were generated by including an
edge into the network that was present in at least a
given proportion th Î [0; 1] of the 45000 non burn-in
networks. By varying th between 0 and 1, for each set-
ting of th the number of true positive, false positive,
true negative and false negative edges of the final net-
work compared to the original network could be
counted. ROC curves were set up and the AUCs calcu-
lated as area under the ROC curves.
Figure 2 shows the AUC scores for the inhibMCMC

test. It can be seen that for decreasing l the reconstruc-
tion performance increased. For l = 0.005 and l =
0.001 the reference network could be successfully recon-
structed (AUCs around 1). We suggested to inspect the
observed likelihood ratios during the sampling runs and

set l such that the quotient −
ij

λ
is on a comparable

scale (see section Laplace Prior). The right plot of Figure
2 shows the likelihood and prior ratios for one
inhibMCMC run. For l = 0.001 the prior ratios varied
over a much broader range than the likelihood ratios,
which lead to inferred networks that were nearly identi-
cal to the prior network, as it can be seen in the AUC
of around 1. For increasing l the likelihood ratios
showed a larger variance than the prior ratios, which
lead to decreasing AUCs and more variable inferred net-
works in turn. Thus, the setting of the prior parameters
determines how robust the reconstruction of the net-
works is. The settings have to be carefully adjusted to
preserve robustness, but leave enough variance to gain
additional knowledge, represented in the data, too. The
test for the GA reconstruction is shown in Figure 3.
AUCs for the GA were calculated similar than for
inhibMCMC, where final networks were estimated by
including edges if they appeared in at least a fraction th
of the networks of the final population. On the left hand
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side of Figure 3 the AUC distributions are shown. Using
the BIC score optimisation for the reconstruction of a
network of size N = 15, it is apparent that the perfor-
mance of the GA drops significantly, with AUCs around
0.5 compared to the case for N = 10 in Bender et. al.
[9], where performance was still good with AUCs
around 0.73. This strong decrease of performance with
increasing number of nodes emphasises the need for the
inclusion of prior knowledge to produce reliable results,
especially when the network size is increasing. When
using prior knowledge, for decreasing l, also an increase
in the reconstruction performance was observed. For l
= 1, the performance of the GA was comparable to
inhibMCMC performance with l = 0.1, the improve-
ment in reconstruction performance can be controlled
similar to the case for inhibMCMC using smaller set-
tings for l. Using l ≤ 0.01 gave comparable reconstruc-
tion results with AUCs above 0.95, but in contrast to
inhibMCMC, the reference network could not be
inferred entirely for even smaller settings for l. The GA
seems to reach a local optimum, but does not find the
true network, even for the test situation where the prior
strength is increased subsequently.
On the right hand side of Figure 3, the likelihood and

prior differences are shown. As stated in section
‘Laplace prior’, l should be set such that the prior dif-
ferences are slightly above zero. As depicted in Figure 3,
setting l = 0.1 lead to prior differences of around 10
and already had a strong influence on the reconstruction
performance and could be used as appropriate setting
for l. Nevertheless, it remains difficult to find the
proper l, and it is ongoing work to find reasonable
ways of identifying ‘good’ parameter settings for both
inhibMCMC and the GA.

Note on the choice of the algorithm
The question, of course, arises, which algorithm to
choose. One should be aware, that the purpose of both
approaches differs. The GA is used for performing opti-
misation of the network structure, while inhibMCMC
explicitly samples the space of networks. However, both
methods can be used to generate final estimates of the
network structure and provide the user with a confidence
of each edge in the final inferred network. The influence
of the prior seems to be less controllable in the case of
the GA, since rather ‘weak’ prior settings (compared to
the inhibMCMC case) already had a strong impact, but
increasing the prior strength always left some errors in
the reconstructed networks. However, a clear depen-
dency on the prior strength could be observed in both
cases and a rough guideline for finding a suitable setting
for the prior hyperparameters could be given. In general,
finding the trade-off between strength of the prior and
the influence of the data is of central importance. Too

strong prior influence will only reproduce the prior
knowledge and not allow for novel insights from the
data. If the prior is too weak, the inference might not be
able to identify the underlying network structure, due to
e.g. too wide time intervals during the measurements,
noise in the data, or nodes that were not measured at all.
As a last point, we consider the computational

demands of both approaches. Clearly, the GA is much
more expensive in terms of computation time. As an
example, consider reconstruction of networks with the
following settings (as we currently are using them): popu-
lation size p = 500, iterations = 1000, q = 0.3, m = 0.8. In
each iteration q * p = 150 individuals are processed in the
crossover step and m * p = 400 individuals are processed
during the mutation step. For each of these 150 + 400 =
550 operations, the time limiting step is the Viterbi
Training algorithm including Hidden Markov Model
(HMM) computations. In our experience, for networks of
size around N = 15, Viterbi Training is computed in less
than one second, leading to an estimate of total computa-
tion time of (1000 * 550) seconds, corresponding to ~ 6
days. For inhibMCMC, we usually use 50000 iterations
for one sampling run, which means 50000 times the
Viterbi Training in each sampling. This corresponds to
approximately half a day for one network reconstruction,
meaning that more than 10 independent samplings can
be performed in the same time as needed for one recon-
struction with a GA. If parallel computing architecture is
available, the GA computation time can be reduced to a
few days, but also the independent inhibMCMC runs can
be distributed on different computing cores or nodes,
making multiple parallel network reconstructions possi-
ble in about half a day. So due to the computational bur-
den of the GA and the improved control of the prior
strength in inhibMCMC, it is suggested to prefer
inhibMCMC over the GA.

RPPA data from breast cancer cell line HCC1954
To demonstrate how the prior knowledge inclusion
improves reconstruction results from real data, we show
an inference performed on a series of protein phosphory-
lation measurements for proteins selected from the ERBB
signalling network. Measurements were generated on
Reverse Phase Protein Arrays (RPPA, [16]) from
HCC1954 cells after ligand stimulation with EGF, HRG
and the combination of both. The data set is attached to
our R-package as dataset hcc1954 and described in our
previous publication [9]. Prior edge confidences were
generated as described in section ‘Laplace Prior’, and a
final reference network was assembled as follows. Edges
with confidence ≥ 0.1 were included in the prior network,
while the edge type information was preserved. This
threshold fits best our expectations on the prior network.
Additionally, several edges were included manually, that
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were described in current literature resources. The prior
network is shown in Figure 4.
Using this prior network, we applied inhibMCMC

inference with 50000 iterations, where the first 25000
iterations were regarded as burn-in and discarded. The
following parameters were chosen: l = 0.0025, g = 1. To
assess convergence and ensure robustness of the results,
10 independent inhibMCMC chains were run in parallel,
each starting at a randomly sampled initial network
structure. Figure 5 shows the posterior traces of the 10
MCMC chains. It can be seen that the posterior prob-
abilities converge to a stationary distribution after sev-
eral thousand iterations. Comparing the number of
activation and inhibition edges sampled in each of the

10 runs (after the burn-in phase), it can be seen that
similar numbers are found, hinting at good mixing
properties of the sampler (compare additional file 1).
Note that each chain might visit distinct networks with
similar posterior during the inference. According to the
posterior probability, the chains seem to be converged,
but there might be still substantial differences in the
high scoring networks, reflected in increased variation in
the numbers of edges. For instance, panel MTOR, col-
umn CSRC in supplementary figure S1 (in additional file
1) shows rather high variation in the number of activat-
ing and inhibiting edges. Nevertheless, the shift in the
number of sampled edges (higher number of inhibitions
compared to activations in the example) reflects

Figure 4 Prior network. Prior network derived in discussion with our lab staff after setting up an edge confidence matrix using the KEGG
database.
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stronger support for the inhibition in the data and
might be of interest for further investigation of this par-
ticular edge. It is difficult to overcome this problem, but
we think that using a suitable summarisation method to
identify edges (e.g. as shown below) can help to identify
true consensus networks described in the different
inhibMCMC chains. However, the user should be aware
of this issue and take precaution to avoid misleading
inference results. We also refer to Cowles and Carlin
[17] for a good review on convergence in MCMC
methods.
For each run, a summarised network was generated by

including a particular edge, if it occurred in at least a
fraction th Î [0; 1] of the 25000 non burn-in networks.
This left us with 10 summarised networks, that were
merged into a consensus network. For this, we counted,
how often each edge was an activation, inhibition or
empty edge in all of the 10 summarised networks. A
simple majority rule decided on the final type of the
edge. In the case of ties, the edge type was chosen that
had the larger posterior probability average over all
summary networks with the same edge type.
The following rationale was applied for inferring a net-

work from the HCC1954-data using our assembled prior
network. Because the ERBB network has already been
extensively studied, we assume that much of this infor-
mation is true. We intended to include a strict bias
towards the a priori known edges, guaranteed by the
prior hyperparameter l set to 0.0025. By this, the general

ERBB scaffold is retained unless there is strong support
included in the data that contradicts the prior knowledge.
The question is how to set the inclusion threshold used
to determine the edges that are contained in the final
network. Under our settings, for values th Î [0.7, 0.85],
the inferred network equals the prior network, and no
new information can be gained. For higher inclusion
thresholds th >0.85, edges are disappearing subsequently.
This is expected because in the sampling procedure it is
unlikely that an edge is contained in very high propor-
tions of all sampled networks. Indeed, in our samplings
at th = 0.94, no edges remain in the final networks.
Therefore we decided to decrease the inclusion threshold
until differences to the prior were observed. This was the
case at th = 0.69. The inferred network using prior
knowledge for this setting of th is shown in Figure 6 on
the right side. The left side of Figure 6 displays the
inferred network, when the GA and BIC score optimisa-
tion was used. It is apparent that the inference was
improved using the prior knowledge when looking at the
structure of known signalling cascades. For example, the
MAPK kinase cascade EGF ® ERBB1 ® MEK12 ®
ERK12 ® p70S6K or the cascade HRG ® ERBB3 ®
PDK1 ® AKT were inferred, which could be expected,
because these are major signalling cascades that are ubi-
quitously present in biological systems. Using this prior
setting, the inferred network is strongly biased towards
the reference network, and only two new edges could be
seen in Figure 6 (marked as blue edges): ERK12 ® p38
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Figure 5 inhibMCMC posterior traces for 10 MCMC chains. Posterior traces of 10 inhibMCMC chains, 50000 iterations, l = 0.0025, g = 1 and
a thinning interval of 50, showing the convergence to the stationary distribution after several thousand iterations.
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and PKC ⊣ AKT. To allow more differences in the net-
work structure, the parameter l can be increased. The
purpose here is to pinpoint the way of how bias towards
the reference can be controlled using the l parameter.
For a detailed analysis of networks, e.g. under different
experimental conditions, a suitable l should be identified
first by comparing inference results to the expectations
on the network structures. Once a setting for l is deter-
mined, the resulting network structures and inferred
model parameters (see additional file 2 for an example
plot of the model parameters) can be further investigated.

Conclusions
We present our R-package ‘ddepn’ for inference of sig-
nalling networks from longitudinal high-throughput
data. The method is able to model the effects of external
perturbation, as it might be introduced by external sti-
mulations or inhibitions. Two different network struc-
ture search algorithms are available in the package, a
GA performing network structure optimisation and a
Metropolis Hastings MCMC approach that samples the
space of possible networks. We extend MCMC structure
sampling by the ability to sample two edge types, one
for activation and one for inhibition. Further, two mod-
els for the inclusion of prior knowledge are included in
the package. The first uses a reference network as

guidance for the inference (Laplace prior), the second
uses a general property of biological networks, namely
that node degrees follow a power law and high node
degrees are penalised (scale-free prior). We also give a
guideline on how to adjust parameters for the Laplace
prior model, such that precise control on how close the
reconstruction will be to the prior knowledge is possible.
We show the dependence of the reconstruction perfor-
mance on the prior parameter setting and give an
assessment of both methods and their usage. Finally, for
a data set measuring phosphorylation of proteins related
to the ERBB signalling network, it is described, how
inclusion of the prior is improving the outcome of the
network reconstruction.

Availability and requirements
Project home page http://ddepn.r-forge.r-project.org
Operating systems Linux, Windows
Programming language R
Other requirements graphviz
Licence GNU GPL

Additional material

Additional file 1: Edge confidences across 10 MCMC runs. Shows the
confidences for each edge obtained in multiple inhibMCMC runs.

Figure 6 Comparison of network reconstruction without and with prior knowledge incorporation for data set hcc1954. Comparison of
the network inferred using the GA and BIC score optimisation (left, adapted from Bender et. al. [9]) and using inhibMCMC together with the
Laplace prior, l = 0.0025 (right). Using the prior results in correct identification of signalling cascades like MAPK
(EGF®ERBB1®MEK12®ERK12®p70S6K) or PI3K/AKT (HRG®ERBB3®PDK1®AKT). Additionally, two new edges were found, marked in blue
(ERK12®p38 and PKC⊣AKT). These reflect changes in the connectivity that were strongly supported by the data and that were inferred although
not included in the reference.
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Additional file 2: Model parameters for Gaussian distributions.
Shows the Gaussian model parameters for active/passive states of each
protein.

List of abbreviations
AUC: Area under curve; CRAN: Comprehensive R Archive Network; GA:
Genetic Algorithm; HMM: Hidden Markov Model; MCMC: Markov Chain
Monte Carlo; ROC: Receiver Operator Characteristic; RPPA: Reverse Phase
Protein Array.
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