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Abstract

Background: The lac operon genetic switch is considered as a paradigm of genetic regulation. This system has a
positive feedback loop due to the LacY permease boosting its own production by the facilitated transport of
inducer into the cell and the subsequent de-repression of the lac operon genes. Previously, we have investigated
the effect of stochasticity in an artificial lac operon network at the single cell level by comparing corresponding
deterministic and stochastic kinetic models.

Results: This work focuses on the dynamics of cell populations by incorporating the above kinetic scheme into
two Monte Carlo (MC) simulation frameworks. The first MC framework assumes stochastic reaction occurrence,
accounts for stochastic DNA duplication, division and partitioning and tracks all daughter cells to obtain the
statistics of the entire cell population. In order to better understand how stochastic effects shape cell population
distributions, we develop a second framework that assumes deterministic reaction dynamics. By comparing the
predictions of the two frameworks, we conclude that stochasticity can create or destroy bimodality, and may
enhance phenotypic heterogeneity.

Conclusions: Our results show how various sources of stochasticity act in synergy with the positive feedback
architecture, thereby shaping the behavior at the cell population level. Further, the insights obtained from the
present study allow us to construct simpler and less computationally intensive models that can closely
approximate the dynamics of heterogeneous cell populations.

Background
Since the introduction of the operon concept by Jacob
et al. [1], the lac operon genetic switch has been consid-
ered as a paradigm for genetic regulation. Several
experimental studies of this system over the past several
decades have elucidated the underlying biomolecular
interactions and a plethora of mathematical models
have integrated the complex interplays of the key bio-
chemical species in order to predict the behavior of the
system [see, for example, [2]].
Most of these models, however, pertain to the single

cell behavior [see, for example the models reviewed in
[3]] with a limited number of studies focusing on cell
populations, or taking comparative approaches. For
instance, in a mini-review article, Vilar et al. [4]

compared different models pertaining to single cells and
cell populations, in order to illustrate the performance
and limitations of different methodologies. At the single
cell level Vilar et al. [4] simulated four phenomenologi-
cal ordinary differential equations (ODEs) for the con-
centrations of permease, inducer, and b-galactosidase. A
stochastic single cell model was then developed by
transforming the phenomenological deterministic rates
into propensities. However, the latter transformation is
not unique, contrary to the case of a mechanistic model
where the reaction rate expressions are derived on the
basis of statistical mechanical assumptions [see for
instance chapter X in ref. [5], and refs [6-8]]. Thus, the
stochastic model simulated by Vilar et al. [4] is based on
ad hoc assumptions. In addition, the Vilar et al. models
do not appear to account for the dilution of the concen-
trations due to cellular growth [9], for cell division and* Correspondence: mstam@alumni.rice.edu
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for stochastic partitioning or DNA duplication effects,
which are important sources of extrinsic noise [10-12].
Furthermore, van Hoek and Hogeweg [13,14] studied

the effect of intrinsic and extrinsic sources of stochasti-
city, as well as genetic mutations and spatial heterogene-
ity, at the single-cell and the population level from an
evolutionary perspective. Their deterministic model con-
sists of an intracellular and an extracellular part, with
the latter capturing the influxes and effluxes of glucose
and lactose into and from the cells, as well as the diffu-
sion of these species over a grid, the points of which are
assumed to be vacant or occupied by single cells. The
intracellular part of the model employs ten differential
equations for the concentrations of mRNA, b-galactosi-
dase, permease, lactose, allolactose, glucose, glucose-6-
phosphate, cAMP, ATP, and the size of the cell. The
rate expressions used in this model contain Hill func-
tions to model saturation and cooperativity effects, and
account for dilution due to cell growth. Hence, stricto
sensu the model is not a mechanistic one, and the incor-
poration of stochastic effects invokes ad hoc assump-
tions rather than a formal approach based on statistical
mechanics. In particular, van Hoek and Hogeweg [13]
use the deterministic equation for the mRNA species,
but interpret the mRNA concentration as the probability
of a single mRNA molecule being present in the cell.
They subsequently use this probability to infer the fre-
quency of translational bursts.
Thus, there remain several open questions regarding

the emergence of population behavior from the complex
interplay between reaction dynamics and stochasticity at
the single cell level. Investigating this connection and
ultimately understanding cell population dynamics is
significant for two reasons. First, typical biology experi-
ments involve cell populations rather than single cells
and, thus, phenotypic distributions obtained for instance
from flow cytometry pertain to the cell population
rather than the lifetime of a single cell. Second, there
have been mathematical modeling studies for simple
genetic networks, suggesting that the behavior of the
single cell is very different from the behavior of the cell
population [12,15,16]. It would therefore be interesting
to investigate whether this is the case in the more com-
plex lac operon system, or whether one can formulate
average single cell models that can adequately capture
the behavior of the cell population.
In a previously published article, Stamatakis and Man-

tzaris [17] have presented a kinetic scheme that captures
the salient features of an artificial lac operon system,
which can be constructed in the lab by introducing
mutations to the wild-type system. In the present paper
we will incorporate that kinetic scheme into two Monte
Carlo (MC) frameworks that simulate cell population
dynamics.

The first framework assumes stochastic reaction
occurrence and takes into account stochastic DNA
duplication, division and partitioning. McAdams and
Arkin [18-20] were the first to employ the Gillespie MC
algorithm [7,8] to simulate gene induction and protein
synthesis at the single cell level. This approach was later
extended to account for cell growth and division
[21-23]. However, all these and many other studies
simulated the dynamics of biochemical pathways at the
single cell level. In a recent study we generalized and
expanded the chemical master equation (CME) to the
cell population level [10]. The resulting cell population
master equation (CPME) is simulated with a Monte
Carlo algorithm, and captures stochasticity in the intra-
cellular reaction, stochastic DNA duplication, and divi-
sion events, as well as in the partitioning of the content
of a mother cell to the two daughters. This novel frame-
work is applicable to cell populations since every single
daughter cell is tracked, thereby making possible the cal-
culation of any statistical property of the population.
In order to better understand how stochastic effects

shape cell population distributions, we develop here a
second framework that assumes deterministic reaction
dynamics and stochastic DNA duplication, cell division
and partitioning. Throughout this work, the single cell
models are derived from the reaction network developed
in ref. [17] by invoking standard assumptions based on
statistical mechanics and reaction rate theory [7,8,24]
rather than ad hoc techniques [4]. We also explicitly
take into account the dilution effect due to cell growth
in the deterministic case [9]. Furthermore, stochasticity
in the times of division and DNA duplication, as well
stochastic partitioning effects are effects that were
neglected in previous studies [4], but are explicitly taken
into account in our cell population frameworks.
Comparisons of the predictions of the two frameworks

reveal that stochasticity can create or destroy bimodality,
and may enhance phenotypic heterogeneity by creating
heavy tailed distributions, a phenomenon that has not
being shown before and can be investigated experimen-
tally. The insights provided from the new study also
allow us to construct simpler and less computationally
intensive models that can closely approximate the
dynamics of heterogeneous cell populations. Specifically,
for the case of deterministic reaction dynamics, we use
the continuum model formulation which assumes that
all cells in the population occupy a continuous and
expanding biotic phase [9]. Under this assumption, a set
of mass balances for a representative “average” cell in
the population provides a lumped description of cell
population dynamics. We demonstrate an excellent
agreement between the continuum and the cell popula-
tion models, which is encountered for the first time and
contradicts previous studies. Extending these results in

Stamatakis and Zygourakis BMC Bioinformatics 2011, 12:301
http://www.biomedcentral.com/1471-2105/12/301

Page 2 of 17



the stochastic case, we show that the calculation of dis-
tributions of intensive quantities (such as species con-
centrations) can be performed on the basis of single cell
simulations, instead of computationally demanding
population-level ones.

Methods
Figure 1 defines pictorially the concepts of “cell chain”
and “cell population.” A cell chain is a collection of cells
defined by starting from one mother cell, choosing one
of its daughter cells upon division, setting this as next
mother cell and repeating the process. A Bernoulli trial
with probability 1/2 governs the choice of which cell to
keep after each division event. A cell chain essentially
stores information about the history of a single cell in
time. On the other hand, a cell population consists of all
the viable offspring observed at time t that were gener-
ated by an arbitrary number of cells at t = 0. For simpli-
city, Figure 1 portrays a population that originated from
a single cell. However, our definition can be applied to
cases where more than one cells exist at time t = 0.
We are now ready to present the frameworks that will

be used for the simulating cell populations in this study.
Both frameworks treat the occurrence of division and
DNA duplication events as stochastic processes. Their
difference lies in the treatment of reactions and the par-
titioning of species between the daughter cells: the first
framework treats these as stochastic, whereas the second
one as deterministic processes. We will refer to the for-
mer as the “population model with stochastic reaction
dynamics”, and the latter as the “population model with
deterministic reaction dynamics”.

Population Model with Stochastic Reaction Dynamics
In an earlier study [10], we presented the formulation of
a cell population master equation (CPME) that describes
cell population dynamics and takes into account the
major sources of heterogeneity: stochasticity of intracel-
lular reactions, DNA-duplication, cell division, and ran-
dom partitioning of species contents into the two
daughter cells. That formulation also takes into account
cell growth and respects the discrete nature of the mole-
cular contents and cell numbers. Our approach assumes
that each cell of a population can be completely
described by a state vector z = (X, V) where X is a vec-
tor with n entries for species copy numbers and V is the
volume of the cell. Additional morphometric character-
istics like cell membrane area or length can be easily
incorporated into our framework. We also classify the
chemical species into non-chromosomal DNA species
and chromosomal DNA species that may exist in var-
ious states.
This CPME describes the evolution of the probability

of finding at time t the cell population having ν cells
that exist in states (X1, V1),..., (Xi, Vi),..., (Xν, Vν). If we
denote this probability by Jν[(X1, V1),..., (Xi, Vi),..., (Xν,
Vν); t], the analogue of the Janossy density used in the
continuous population balances [25], the CPME
becomes [10]:

∂

∂ t
Jν [(X1,V1) , ..., (Xi,Vi) , ..., (Xν ,Vν) ; t] =

FR + FS + FG + FD

(1)

where the terms FR, FS, FG and FD describe, respec-
tively, the stochastic dynamics of intracellular reactions,
DNA duplication, cell growth, and cell division. The
form of these terms is presented in Eq. 6 of Additional
file 1. Our earlier publication [10] provides the details
about the development of the CPME and the Monte
Carlo algorithm that simulates the stochastic processes
it describes (this information is also included in Section
S1 of Additional file 1 for convenience). Here, we just
note that the partitioning of cellular volumes upon divi-
sion is governed by a symmetric beta distribution.
Further, the partitioning of non-chromosomal DNA spe-
cies follows the binomial distribution whereas for chro-
mosomal DNA species partitioning is governed by a
multivariate hypergeometric distribution. These choices
result in division events where the daughters may have
different sizes and species contents; however, on average
any daughter inherits half the contents and has half the
size of the mother cell. In a more general setting, it is
possible to use sums of non-symmetric beta distribu-
tions to describe asymmetric (biased) division (see Sec-
tion S2 in Additional file 1). In this case, one daughter

Figure 1 Definition of cell chain and cell population. A cell
chain essentially stores information about the history of a single cell
in time. On the other hand, a cell population consists of all the
viable offspring observed at time t.
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will consistently inherit more of the mother’s molecular
content.

Population Model with Deterministic Reaction Dynamics
The extension of our approach to the case where reac-
tions are deterministic is straightforward and is pre-
sented in detail in Section S1 of Additional file 1. For
this model, the intracellular species contents are
assumed to be continuous vector variables that vary
according to reactions described by a system of ordinary
differential equations (ODEs). The processes of cell
growth and DNA duplication are treated in a similar
manner as before, while a modified partitioning function
is used here to account for the fact that the chemical
species are no longer discrete entities. The modified
CPME equation then describes a piecewise deterministic
Markov process (a general framework appears in ref.
[26]) and takes the form:

∂

∂ t
Jν [(X1,V1) , ..., (Xi,Vi) , ..., (Xν ,Vν) ; t] =

F∗
R + FS + FG + F∗

D

(2)

where the terms F∗
R , FS, FG and F∗

D describe, respec-
tively, the deterministic dynamics of intracellular reac-
tions and cell growth, and stochastic DNA duplication
and cell division. Section S1 of Additional file 1 provides
the details for the derivation of Eq. 2, which is essen-
tially the deterministic limit of Eq. 1 for all species
being present in large numbers inside the cell. In this
limit, the stochastic fluctuations due to the individual
reaction events are suppressed. As a consequence, reac-
tion dynamics become deterministic (see Eqs. 11, 14 and
pertinent discussion in ref. [6]) and the partitioning of
species is now governed by Dirac delta distributions (see
Section S3 of Additional file 1).

Structured Continuum Model: a Lumped Description of
Cell Population Dynamics
Since the simulation of detailed population models can
be computationally expensive, one often resorts to sim-
pler models. In this study, we will use and evaluate the
structured continuum model formulation attributed to
Fredrickson [9]. This model essentially lumps the
volume occupied by the cells into a continuous and
expanding (due to cell growth) biotic phase. Thus, the
structured continuum model consists of transient mass
balance equations written for species concentrations,
assuming deterministic reaction dynamics and taking
into consideration the dilution effect due to cell growth.
A general continuum model can thus be written as a set
of ordinary differential equations:

d [Xi]

dt
= ri ([X1] , [X2] , ..., [Xn]) − μ [Xi]

i = 1, 2, ..., n
(3)

where [Xi] is the average intracellular concentration
(an intensive quantity) of species i over the entire cell
population and μ is the average specific growth rate:

μ =
〈
1
V

· dV
dt

〉
(4)

The Artificial lac Operon Reaction Network
To simulate the artificial lac operon genetic network, we
will use the reaction network of Stamatakis and Man-
tzaris [17]. This is a minimal model that neglects effects
such as the s70 dependence of the lac promoter and
assumes that only one lacO operator is functional; thus,
DNA looping is not accounted for. The existence of
three operator sites has been previously shown to result
in stronger repression and higher sensitivity in induction
[27], as well as lower sensitivity to changes in repressor
molecules and lower transcriptional noise [28]. Compu-
tational studies of mutations and deletions in these
operators have been able to successfully reproduce
experimental results [29,30].
Here, our intention has been to model an artificial lac

operon that can be constructed in the lab rather than the
natural lac operon system. This artificial system incorpo-
rates the positive feedback from the LacY permease
resulting in bistable behavior, and thus, allows us to iso-
late the contributions of stochasticity and bistability in
shaping the behavior of the cell population. A more com-
plicated pathway incorporating the aforementioned inter-
actions would be intractable within the cell population
frameworks that we have developed, and it is not within
the scope of this work to investigate these effects.
Table 1 lists the reactions of this network and presents

the corresponding propensity functions needed for the
term FR of the CPME (1) with stochastic reaction
dynamics. Table 2 presents the rate equations needed for
the term F∗

R of the modified CPME (2) with deterministic
reaction and growth dynamics and stochastic DNA-
duplication and division. The transient mass balances
that constitute the structured continuum model (Eqs. 3
and 4 above) are presented in Section S4 of Additional
file 1. Note again that the variables of the structured con-
tinuum model are intensive quantities that correspond to
the average intracellular concentrations of a chemical
species over the entire population that is treated as a
lumped and expanding biotic phase [9].
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Table 1 Reactions and Propensity Functions for the Stochastic lac Operon Model

Reaction Propensity Function1, 2, 3

(1-1) ∅ ksMR−−→ MR α1 = VE.coli · NA · ksMR
(1-2) MR

ksR−→ MR + R α2 = ksR · MR

(1-3) 2R
k2R−→ R2 α3 =

k2R
VE.coli · NA

· R · (R − 1)

(1-4) R2
k−2R−−→ 2R α4 = k−2R · R2

(1-5) R2 + O
kr−→ R2O α5 =

kr
VE.coli · NA

· R2 · O
(1-6) R2O

k−r−→ R2 + O α6 = k−r · R2O

(1-7) 2 I + R2
kdr1−−→ I2R2 α7 =

kdr1
(VE.coli · NA)

2 · R2 · I · (I − 1)

(1-8) I2R2
k−dr1−−→ 2 I + R2

α8 = k−dr1 · I2R2

(1-9) 2 I + R2O
kdr2−−→ I2R2 + O α9 =

kdr2
(VE.coli · NA)

2 · R2O · I · (I − 1)

(1-10) I2R2 + O
k−dr2−−→ 2 I + R2O α10 =

k−dr2

VE.coli · NA
· I2R2 · O

(1-11) O
ks1MY−−→ O + MY α11 = ks1MY · O

(1-12) R2O
ks0MY−−→ R2O + MY α12 = ks0MY · R2O

(1-13) MY
ksY−→ MY + Y α13 = ksY · MY

(1-14) Y + Iex
kp−→ YIex α14 = kp · [Iex] · Y

(1-15) YIex
k−p−→ Y + Iex α15 = k−p · YIex

(1-16) YIex
kft−→ Y + I α16 = kft · YIex

(1-17) Iex
ht−→ I α17 = AE.coli · NA · ht · [Iex]

(1-18) I
ht−→ Iex α18 =

AE.coli

VE.coli
· ht · I

(1-19) MR
λMR−−→ ∅ α19 = λMR · MR

(1-20) MY
λMY−−→ ∅ α20 = λMY · MY

(1-21) R
λR−→ ∅ α21 = λR · R

(1-22) R2
λR2−→ ∅ α22 = λR2 · R2

(1-23) Y
λY−→ ∅ α23 = λY · Y

(1-24) YIex
λYIex−−→ I α24 = λYIex · YIex

(1-25) I2R2
λI2R2−−→ 2 I α25 = λI2R2 · I2R2

1 Variables without brackets denote number of molecules of the corresponding species.
2 All propensity functions have units of min-1.
3 Avogadro’s number: NA = 6.0221367·1014 nmol-1.
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Finally, Table 3 presents the parameter values of the
lac operon reaction model, the propensities as and ad
appearing in the terms FS and FD of Eqs. 1 and 2, the
growth rate g needed for the term FG, and the volume-
related part of the partitioning PDFs (see Eq. 12 in
Additional file 1). The parameter set is consistent with
the one used in ref. [17].
There is considerable uncertainty for some parameters.

For instance, the equilibrium constant for repression, k-r/
kr is in the range of 10-13 to 10-11 M [31-33]. The half-life
for dissociation of operator DNA fragments from the
repressor has been reported as 30 ~ 49 s [31,34]; thus, we
have taken the dissociation rate k-r = 2.4 min-1 and kr =
960 nM-1·min-1 which results in k-r/kr = 2.5·10-12 M. This
value for kr turns out to be much higher than the experi-
mentally measured one of 0.6 nM-1·min-1, which is
deduced by the 59 s time needed for a repressor to find an
operator [35], assuming VE.coli = 10-15 L. Yet, simulations
of the single cell deterministic model with this value of kr
produce quantitatively identical bifurcation structures with
the nominal parameter set, provided that the value of k-r
has been adjusted to keep the thermodynamic constant
for repression the same. Since the timescale for repression
will be different in this case, the single cell stochastic

model is expected to exhibit bistability for different induc-
tion levels. Previous work [17] showed that slower repres-
sor-operator association and dissociation results in wider
bistable regions. In general, however, we expect all qualita-
tive features reported here, to be valid for slower repres-
sor-operator dynamics as well.
For the lac operon networks whose parameters are

presented in the previous Tables, the propensity func-
tions and rate expression associated with free thiomethyl
beta-D-galactoside (TMG) transport require knowledge
of the cell membrane area AE.coli. The latter can be cal-
culated assuming that the E. coli cells consist of a
cylindrical segment with length w and radius R0 and
two hemispherical caps of radius R0 at both ends. Then
the overall length of the cell L is equal to w + 2·R0.
Since the diameter of E. coli changes only about 8% or
less during one division cycle [36], we neglect this
change as insignificant in comparison to the two-fold
length change of the bacterium. Thus, we assume that
R0 is fixed in the following expression for the volume:

V (t) =
4
3

· π · R3
0 + π · R2

0 · w (t) (5)

Table 2 Rate Equations for the Deterministic lac Operon Model

(2-1) dMR

dt
= ksMR · V − λMR · MR

(2-2)
dR
dt

= ksR · MR − 2 · k2R
V

· R2 + 2 · k−2R · R2 − λR · R

(2-3)

dR2

dt
=

k2R
V

· R2 − k−2R · R2 − kr
V

· R2 · O + k−r · R2O − kdr1
V2

· R2 · I2 + k−dr1 · I2R2

−λR2 · R2

(2-4)
dO
dt

= −kr
V

· R2 · O + k−r · R2O +
kdr2
V2

· R2O · I2 − k−dr2

V
· O · I2R2

(2-5)
dR2O
dt

=
kr
V

· R2 · O − k−r · R2O − kdr2
V2

· R2O · I2 + k−dr2

V
· O · I2R2

(2-6)

dI
dt

= −2 · kdr1
V2

· R2 · I2 + 2 · k−dr1 · I2R2 − 2 · kdr2
V2

· R2O · I2 + 2 · k−dr2

V
· O · I2R2

+kft · YIex + ht · A · [Iex] − ht · A
V

· I + 2 · λI2R2 · I2R2 + λYIex · YIex

(2-7)
dI2R2

dt
=

kdr1
V2

· R2 · I2 − k−dr1 · I2R2 +
kdr2
V2

· R2O · I2 − k−dr2

V
· O · I2R2 − λI2R2 · I2R2

(2-8)
dMY

dt
= ks0MY · R2O + ks1MY · O − λMY · MY

(2-9)
dY
dt

= ksY · MY +
(
kft + k−p

) · YIex − kp · [Iex] · Y − λY · Y

(2-10)
dYIex
dt

= − (
kft + k−p

) · YIex + kp · [Iex] · Y − λYIex · YIex
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The cell membrane area can be then calculated as a
function of the volume (for given R0):

A (t) = 4 · π · R2
0 + 2 · π · R0 · w (t)

=
2
R0

· V (t) +
4
3

· π · R2
0

(6)

Results and discussion
Comparison of Deterministic and Stochastic Reaction
Dynamics
Deterministic Reaction Dynamics: Phenotypic Distributions
and Statistics
The lac operon system is well known for its ability to
exhibit bistable behavior when artificial inducers are

used [37]. In our model bistability arises from the posi-
tive feedback that LacY exerts on its own expression.
Other studies suggest that DNA loop structures also
play a key role in the bistable behavior of the lac operon
system [refer to [38,39]]. In this work, however, we
focus solely on the aforementioned autocatalytic
architecture.
Thus, Figure 2 demonstrates the key behavior result-

ing from this architecture by presenting two representa-
tive transient simulations with the modified CPME of
Eq. 2. For both simulations, the extracellular inducer
TMG concentration is [Iex] = 24 μM and the only differ-
ence is in the initial conditions. In panels (a) and (b),
the population is initialized with a single cell having spe-
cies concentrations close to the off state of the lac

Table 3 Parameters of the lac operon models

Symbol Value Units Description

R0,E. coli 0.4 μm E. coli radius

LE. coli 2.3 μm Representative E. coli length

AE. coli 5.8 μm2 E. coli membrane area (for the above length)

VE. coli 1.0 fL E. coli volume (for the above length)

OT 1 (copy number) operator molecular content

ksMR 0.23 nM·min-1 lacI transcription rate

ksR 15 min-1 LacI monomer translation rate constant

k2R 50 nM-1·min-1 LacI dimerization rate constant

k-2R 10-3 min-1 LacI dimer dissociation rate constant

kr 960 nM-1·min-1 association rate constant for repression

k-r 2.4 min-1 dissociation rate constant for repression

kdr1 3·10-7 nM-2·min-1 association rate constant for 1st derepression mechanism

k-dr1 12 min-1 dissociation rate constant for 1st derepression mechanism

kdr2 3·10-7 nM-2·min-1 association rate constant for 2nd derepression mechanism

k-dr2 4.8·103 nM-1·min-1 dissociation rate constant for 2nd derepression mechanism

ks1MY 0.5 min-1 lacY transcription rate constant

ks0MY 0.01 min-1 leak lacY transcription rate constant

ksY 30 min-1 lacY translation rate constant

kp 0.12 nM-1·min-1 LacY-inducer association rate constant

k-p 0.1 min-1 LacY-inducer dissociation rate constant

kft 6·104 min-1 TMG facilitated transport constant

ht 1.55·10-6 dm·min-1 TMG passive diffusion permeability constant

lMR 0.462 min-1 lacI mRNA degradation constant

lMY 0.462 min-1 lacY mRNA degradation constant

lR 0.2 min-1 LacI monomer degradation constant

lR2 0.2 min-1 LacI dimer degradation constant

lY 0.2 min-1 LacY degradation constant

lYIex 0.2 min-1 LacY-inducer degradation constant

lI2R2 0.2 min-1 repressor-inducer degradation constant

g 0.0231 (min-1) cell growth rate parameter

nd 25 (dim/less) division propensity sharpness exponent

Vd,crit 15 (fL) critical volume for division

q 80 (dim/less) beta distribution sharpness exponent

ns 25 (dim/less) DNA duplication propensity sharpness exponent

Vs,crit 10 (fL) critical volume for DNA duplication

Stamatakis and Zygourakis BMC Bioinformatics 2011, 12:301
http://www.biomedcentral.com/1471-2105/12/301

Page 7 of 17



operon switch. Panel (a) shows the total LacY concen-
trations, LacYT, for every cell in the population versus
time. Notice that all offspring remain close to the off
state of the lac operon switch. Also, the concentrations
of the mother and daughter cells are the same at the
time of division (Eq. 18 of Additional file 1), and thus,
each division appears as a bifurcation in this plot. For
example, the first division occurs at 33.8 min. Panel (b)
shows the dynamics of the population average for
LacYT, and the number of cells considered in the popu-
lation (Ncellsmax = 104, a value reached at 415 min). On
the other hand, panels (c) and (d) pertain to the case
where the population is initialized with a single cell hav-
ing species concentrations close to the on-state of the
lac operon switch. For this case, all offspring remain
close to the upper state (panel c), and so does the popu-
lation average plotted in panel (d).

The oscillations shown in Figure 2 are due to the
fluctuations of the promoter concentration during
growth and DNA duplication. In particular, at the
beginning of the life cycle of a newborn cell, a single
promoter exists and the cell has a small volume. Thus,
the promoter concentration is high and drops as the
cell grows. Right after the DNA duplication event, the
concentration of the promoter doubles and subse-
quently drops again as the cell continues to grow up
to the point it divides. Upon cell division, the promo-
ter concentration could also change if division is not
symmetric, and thus the daughters inherit half the pro-
moter content but they have volumes that are not
equal to Vmother/2. Of course, the concentrations of all
other species (that are modeled deterministically)
remain the same during DNA duplication and cell divi-
sion (see section S3 in Additional file 1).

Figure 2 Simulation results from the CPME model with deterministic reaction dynamics. The simulations for panels (a) and (b) start with a
single cell close to the off-state, while the simulations for panels (c) and (d) start with a single cell close to the on-state. [Iex] = 24 μM for all
simulations and all other parameters as in Table 3. Panels (a) and (c): Transients for all the cells in the corresponding populations. Panels (b) and
(d): The solid lines show the dynamics of the population mean for the total LacY concentration for the simulations of panel (a) and (c)
respectively. The dashed lines indicate the total number of cells for the corresponding simulations. The constant number technique is used for
times greater than 415 min (when Ncellsmax = 104).
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The results of Figure 2 may give the impression that it
is impossible for a cell to switch between the two states.
Furthermore, single cell simulations (Ncellsmax = 1) that
follow only one daughter at each division show that even
for large simulated times (6000 min ≈ 4 days), no transi-
tions between the upper and the lower attracting state
were observed (Figure 3a, b). This behavior can be attrib-
uted to the assumption of deterministic reaction
dynamics. Thus, in the absence of intrinsic noise it might
appear that noise induced transitions are impossible.
This assertion is not true, however, because other sources
of noise exist in our system. As a matter of fact, a transi-
tion from the off to the on state can be achieved just by
means of an extremely asymmetric division (see Figure
3c and its legend for details). Such a division results in
high DNA concentrations in one daughter (since DNA is

partitioned equally). Consequently, the existing free LacY
is able to turn on the lac operon in that cell, thereby
allowing it to reach the upper attracting vicinity. In addi-
tion, the opposite transition can also be achieved by
means of a delayed cell division (see Figure 3d and its
legend for details). The prolonged cell growth after DNA
duplication results in low concentrations for the opera-
tor, thereby decreasing LacY production rates. Conse-
quently, the autocatalytic feedback weakens and the lac
operon switches to the low state.
For the simulations of Figure 3c and Figure 3d we

have biased the process in order to observe such transi-
tions. Still, we must emphasize the fact that we did not
impose conditions that are totally unrealistic. Both
extremely asymmetric divisions and long delays in divi-
sion are possible, albeit highly improbable. Thus, they

Figure 3 Attracting states and transitions in the CPME model with deterministic reaction dynamics. [Iex] = 24 μM for all simulations and
all other parameters as in Table 3. Panels (a) and (b): Dynamics for two cell chains that start with a cell initialized close to (a) the off-state and
(b) the on-state. Panel (c): Transition from the off- to the on-state. Cell was initialized close to the off-state. A division occurs at t = 127 min. We
impose Vdaughter1/Vmother = 0.15 for this division and follow the smaller daughter cell. This is the only intervention throughout the simulation. The
cell reaches the on-state and remains there. Panel (d): Transition from the on- to the off-state. For this simulation and just after a DNA
duplication occurring at t = 113 min, the division time is set to 50 min. An arbitrary daughter is followed, which eventually reaches the off-state.
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are not observed within the reasonable simulated time
intervals of 6000 min. These observations are in line
with results obtained with the models of Vilar et al. [4]
and van Hoek and Hogeweg [13], which also predicted
no switching between the two equilibrium states,
namely, induced and uninduced.
Effect of Stochasticity on Cell Population Behavior
Having analyzed the case where reaction dynamics fol-
low deterministic laws, we will now investigate the case
of stochastic reaction occurrence since the small copy
numbers of molecules encountered in this system are
expected to result in significant intrinsic stochasticity.
Stochasticity in reaction occurrence results in tran-

scriptional and translational bursts, as shown in panel
(a) of Figure 4 that depicts the timecourses of the cells
in a population, that is, all daughter cells originating
from a single cell. Thus, each cell exhibits noise-induced
transitions between states with high and low total LacY
contents. We previously saw that in the case of determi-
nistic reaction dynamics, such transitions were possible
but extremely rare and were generated either by strongly
unequal partitioning or long delays in cell division.
Thus, the frequent noise-induced transitions observed in
the present case are novel and genuine outcomes of the
stochastic nature of reaction occurrence. Furthermore,
panel (b) shows the temporal evolution of the cell popu-
lation average, in which we observe that the cell popula-
tion average reaches a plateau and fluctuates around an
equilibrium point. Note that these fluctuations are a
consequence of the finite sample size (low value for
Ncellsmax = 500). If we were to simulate without any
restriction on the sample size, any fluctuations in the
cell population average would eventually disappear. Also
note that the population average appears to equilibrate
faster in the case of stochastic (Figure 4b) versus that of

deterministic (Figure 2, panels b and d) reaction
dynamics.
We have just discussed the effects of stochasticity on

the transient behavior of the cells as well as the cell
population average. In order to characterize the cell
population dynamics, however, one needs to know the
entire number density function (NDF) which expresses
the number of cells that exist in states (X, V) and (X, V
+dV) (see section 7.1 in ref. [25]). Figure 5 compares
the NDFs of the two models, both accounting for sto-
chastic division and DNA duplication, but incorporating
deterministic versus stochastic reaction occurrence,
thereby revealing the effect of the latter on population
heterogeneity.
For low extracellular TMG concentrations, [Iex], sto-

chasticity creates a heavy tail in the NDF, whereas the
simulation with deterministic reactions exhibits a narrow
peak in the total LacY concentration (panel a). This
heavy tail can be attributed to the autocatalytic mechan-
ism present in the lac operon system, an assertion that
could be used as a starting point for formulating experi-
mentally testable hypotheses. Heavy tails have also been
observed in the absence of positive feedback [40]. In that
case heavy tails result from the additive noise due to par-
titioning of species, as well as due to the exponential evo-
lution of protein number during a division cycle, when
protein numbers are large, or the fluctuations in protein
production rate, for small protein numbers. These effects
exist in our model as well; note, however, that in this
study we observe heavy tails in the intensive quantities
(species concentrations) as opposed to the extensive
quantities (number of protein molecules) of ref. [40].
Since the increase of the protein numbers inside the cell
is accompanied by an increase in volume, focusing on the
concentration would offset the effect of cell growth.

Figure 4 Simulation results from the CPME model with stochastic reaction dynamics. [Iex] = 24 μM for all simulations and all other
parameters as in Table 3. Panel (a): Timecourses of all cells in the population. Panel (b): The population average from a batch of 20 simulations
with Ncellsmax = 500 in each batch (solid line) and the number of cells in one of the batches (dashed line).
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Further, heavy tails have been observed for the single cell
lac operon model in the absence of growth [17], further
supporting our assertion that this behavior is due to the
autocatalytic dynamics of the system.
For intermediate inducer concentrations [Iex], the

deterministic reaction NDF is clearly bimodal, in con-
trast to that for stochastic reaction, which exhibits a
much less prominent higher mode (panel b). Thus,
intrinsic noise in this case suppresses bistability; yet, a
heavy tail indicative of the positive feedback dynamics is
still observed. Note that intrinsic noise does not always
result in the suppression of bistability: in a previous
study pertaining to the single cell level [17] it was
shown that intrinsic stochasticity alone can also result
in extending the bistable region to parameter values for
which a deterministic model would predict monostable
behaviour. Finally, for high [Iex] the NDF for

deterministic reaction is unimodal (panel c). However,
the NDF for stochastic reaction appears bimodal, with a
sharp peak at total LacY concentration equal to zero
and a wide peak at high [Y]T. In this case, stochasticity
in reaction occurrence appears to extend the region
where the NDF is bimodal and widen the upper mode
of the distribution.
In all cases (Figure 5), the heterogeneity exhibited by

the population model with stochastic reaction occur-
rence is significantly larger than that exhibited by the
model with deterministic reaction occurrence. This
observation agrees with previous results by van Hoek
and Hogeweg [13], whose model also predicted that, in
the absence of spatial and genetic heterogeneity, the
population variability exhibited by the stochastic simu-
lation is much larger than that of the deterministic
one.

Figure 5 Comparison of the NDFs computed with deterministic versus stochastic reactions. NDFs computed with deterministic dynamics
are marked as “Deter. Rxn” whereas the ones with stochastic reaction occurrence are marked as “Stoch. Rxn”. For all deterministic simulations,
the cell population was initiated with 20 cells and Ncellsmax = 104. For all stochastic simulations batches of 20 simulations were run with Ncellsmax

= 500. In all cases sampling was performed at t = 300 min. Panel (a): [Iex] = 10 μM. Panel (b): [Iex] = 24 μM. Panel (c): [Iex] = 50 μM. All other
parameters as in Table 3.
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Structured Continuum Model for Deterministic Reaction
Dynamics
Simulating in detail the intra- and inter-cellular pro-
cesses at the population level is computationally
demanding. Therefore, it is natural to ask whether one
can adequately predict the dynamics of the population
average with the use of a lumped model that neglects
heterogeneity. For this purpose, we will use the struc-
tured continuum model formulation [9] that treats all
cells as a lumped and expanding (due to cell growth)
biotic phase. Section S4 in Additional file 1 presents all
the transient mass balances that constitute the struc-
tured continuum model defined by Eqs. 3 and 4. In our
case, μ is equal to g (Eq. 4) because we have assumed
exponential growth, which implies a constant average
specific growth rate. Note again that these balances are
written for the average intracellular concentrations
(intensive quantities) of the chemical species of interest
over the entire cell population. The structured conti-
nuum model is valid for all times. The assumption here
is that the concentrations in any cell at any time remain
close to the concentrations predicted by this continuum
model. Note that we did not include the dilution effect
for the operator species O, since the DNA duplication
process continuously regenerates O.
Simulations with the structured continuum model

require estimates for the average membrane area over
the volume 〈A/V〉 and the average total operator con-
centration 〈[O]T〉. These average quantities can either be
obtained directly from the population simulation or esti-
mated if we know approximately the sizes at which the
cells duplicate their DNA or divide.
The average ratio of area over volume 〈A/V〉 can be

estimated by assuming that a newborn cell with volume
1/2·Vd,crit divides when it reaches Vd,crit. Since the cell is
growing exponentially and the A/V is known from Eqs.
5 and 6:

A
V

=
4
3

· π · R0
2 · V−1 +

2
R0

(7)

Therefore, the average 〈A/V〉 can be calculated over
the time course of a birth-division cycle using the first
mean value theorem for integration:

〈
A

V

〉
=

1
tdivision − tbirth

·
tdivision∫
tbirth

A (t)
V (t)

dt =

g
ln (2)

· 4
3

· π · R0
2 ·

ln(2)/g∫
0

(
1
2

· Vd,crit · eg·t
)−1

dt +
2
R0

(8)

Using the parameters of Table 3, this estimated aver-
age equals 5.69 μm-1. Cell population simulations give
an average equal to 5.76 μm-1. Thus, using these

heuristic arguments, we estimated the average ratio 〈A/
V〉 with a remarkably low error (1.2%).
To estimate the average operator concentration 〈[O]T〉,

let us assume that a newborn cell with volume 1/2·Vd,crit

duplicates its DNA when it reaches Vs,crit and divides
when it reaches Vd,crit. Since the cell is growing expo-
nentially and the initial operator content is 1 copy
before duplication:

〈[O]T〉 =

1
tdivision − tbirth

·

⎡
⎢⎣

tduplication∫
tbirth

1
V (t)

dt +

tdivision∫
tduplication

2
V (t)

dt

⎤
⎥⎦ =

g

ln (2)
·

⎡
⎢⎢⎢⎢⎢⎢⎣

1
g

·ln
( Vs,crit

0.5 · Vd,crit

)
∫
0

1

NA · 1
2

· Vd,crit · eg·t
dt+

1
g

·ln
( Vd,crit

0.5 · Vd,crit

)
∫

1
g

·ln
( Vs,crit

0.5 · Vd,crit

)
2

NA · 1
2

· Vd,crit · eg·t
dt

⎤
⎥⎥⎥⎥⎥⎥⎦

(9)

Using the parameters of Table 3, we obtain an esti-
mate of the average operator concentration equal to
2.40 nM. Cell population simulations give an average
equal to 2.48 nM (or 3.2% error).
Panel (a) of Figure 6 compares the results obtained by

the structured continuum model to those obtained by
the modified CPME with deterministic reaction
dynamics (Eq. 22 in Additional file 1). The solid and
dashed curves show bifurcation diagrams for the total
steady state LacY concentration calculated by the struc-
tured continuum model. For the solid curve, the average
values for the membrane area over cell volume ratio
and the total operator concentration were computed
from the cell population simulation. For the dashed
curve, these average values were taken to be equal to
the estimates of Eqs. 8 and 9. The symbols with the
error bars give the average and standard deviation
respectively of the modes of the resulting NDFs com-
puted by the modified CPME with deterministic reac-
tion occurrence. Each segment of the error bar is one
standard deviation, so the full error bar is equal to two
standard deviations. If the NDF is bimodal (as shown,
for example, in panel (b) of Figure 6), the two subpopu-
lations are identified and the means and standard devia-
tions for each subpopulation are computed.
The qualitative agreement between the steady states of

the structured continuum model and the population
averages is excellent. The agreement between the two
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models is remarkably good when the population-average
values for A/V and [O]T are used in the structured con-
tinuum model. When we use the estimated values from
Eqs. 8 and 9, the total LacY concentration at maximal
induction is slightly underestimated due to the underes-
timation of the average total operator concentration.
Thus, the level of agreement between the steady states
of the structured continuum model and the averages of
the population model depends on how good the esti-
mates for the average cell characteristics are.
The above results pertain to the time invariant beha-

viors of the cell population. It is interesting, however, to
also compare the dynamical behavior of the structured
continuum and the cell population model.
Panels (a) and (b) of Figure 7 show two such compari-

sons. The solid curves on both panels show the
dynamics of the cell population average as predicted by
the CPME model with deterministic reaction dynamics.
For the run of panel (a), a population simulation is first
performed for [Iex] = 0 μM. At time t = 1000 min, the
resulting cell population (Ncellsmax = 104) has equili-
brated to the stationary distribution that corresponds to
[Iex] = 0 μM. Then, this population is used as initial
condition for a simulation with [Iex] = 60 μM in order
to observe the dynamics of switching from the low to
the high state at the population level. This computa-
tional procedure mimics the experimental task of inocu-
lating cells to different environment conditions. The
dynamics of the opposite switch are simulated for panel
(b): first the cells equilibrate at 60 μM TMG and then
the population is “transferred” to 0 μM TMG).

The dashed and dash-dotted curves on panels (a) and
(b) of Figure 7 present predictions of the structured
continuum model. For the dash-dotted curves, the aver-
age values for the cellular characteristics 〈A/V 〉 and 〈[O]
T〉 were taken from the cell population simulations,
while for the dashed curves these values were estimated
using Eqs. 8 and 9. For panel (a), the structured conti-
nuum models are simulated for [Iex] = 60 μM, using as
initial conditions the steady state concentrations calcu-
lated for [Iex] = 0 μM. The dynamics of the opposite
switch are presented in panel (b).
The agreement between the transient behaviors pre-

dicted by the structured continuum model and the
population model is excellent even in the case where
the intracellular dynamics are significantly slower than
the proliferation rates of the cell as shown in panels (c)
and (d) of Figure 7. Panel (c) shows that for slow lacY
mRNA dynamics the switching from the low to the high
state takes approximately 300 min, which is much
longer than the 30 min average doubling time (panel d).
Even so, the structured continuum model yields excel-
lent predictions of the population average. Similar
observations were previously reported by Vilar et al. [4],
who showed that an approach taking into account single
cell stochasticity and population level heterogeneity may
not be needed, depending on the system studied and the
conditions of interest. In particular, Vilar et al. [4] noted
that, when the lac operon is under the influence of high
inducer concentrations, averages taken over independent
cells versus the overall population give very similar
results.

Figure 6 Comparison of the average stationary behavior of the CPME model that incorporates deterministic reaction dynamics with
the steady state of the structured continuum model. [Iex] = 24 μM for all simulations and all other parameters as in Table 3. Panel (a):
Predictions from the cell population model agree with those from the structured continuum model when the average values for A/V and [O]T
are used. For the solid S-shaped curve, the average values for A/V and [O]T were taken from the population simulations. For the dashed curve,
the average values were estimated using Eqs. 8 and 9. Panel (b): a representative bimodal NDF and the corresponding averages and standard
deviation.
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This agreement between the steady state and the tran-
sient behavior of the structured continuum and the cell
population models can be explained as follows. In this
system, the only coupling between the cells is due to
stochastic partitioning that can generate variability but
no bias on the total LacY concentration, in the sense
that one does not observe consistently higher LacYT

concentrations in one daughter versus the other. In fact,
the two newborn daughters may have different LacYT

contents, but they always have equal LacYT concentra-
tions, which are identical to their mother’s LacYT con-
centration just before division. Similarly, unsynchronized
DNA duplication and division events also contribute to
the observed variability in LacYT, but they cannot con-
sistently bias the LacY concentration.
In general, the key to understanding this effect lies in

the fact that in the cell population, division results in

the removal of an “old” mother cell and the addition of
two “young” daughter cells. If the properties of the “old”
cells are different than those of the “young” daughters,
then this effect results in the properties of the “young”
ones being overrepresented in the population. On the
other hand, such an effect is absent in a cell chain,
where each division results in the removal of a mother
cell and the addition of a single daughter, and thus, the
properties of both subpopulations are equally repre-
sented in the cell chain probability distribution.
Let us now suppose that the property we chose to

investigate is a species concentration (intensive variable).
The concentrations of mother and daughter cells are on
average the same, due to the symmetric properties of
the binomial and beta distributions that model division.
Consequently, the cell chain and cell population distri-
butions will be practically indistinguishable. On the

Figure 7 Comparison of the dynamical behavior of the CPME model that incorporates deterministic reaction dynamics with that of
the structured continuum model. Parameters as in Table 3 unless otherwise noted. Panels (a, b): Transient dynamics of the population mean
for the switching from the low ([Iex] = 0 μM) to the high state ([Iex] = 60 μM) (panel a) and conversely (panel b). For the dashed curve
(continuum 1), the average values for [O]T and A/V were calculated from Eqs. 8 and 9, and for the dash-dotted curve (continuum 2) they were
taken from the population simulations. Panel (c): As in panel (a) but with ks0MY = 0.025 min-1, ks1MY = 0.0005 min-1, lMY = 0.001155. Panel (d): The
distribution of the division times (for comparison with the switching times).
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other hand, if we chose an intensive property to investi-
gate, the two distributions would be different in general,
as we have shown in our previous work [Figure 6 in ref.
[10]]. This point is rigorously proven for deterministic
reaction dynamics in an earlier publication [41], where
we establish that a population balance equation trans-
forms into a continuum model for the species concen-
trations if certain conditions are satisfied. The
conditions, in summary, call for equal species concentra-
tions in mother and daughter cells, size-independent
intensive reaction rates, size-dependent but concentra-
tion-independent growth and division rates and parti-
tioning probability density function. All conditions hold
true to a good approximation in our present simulations
and they are also expected to be biologically plausible
for a range of systems of interest.
These observations contradict previously published

results by Mantzaris for different biological systems
[12,16,42,43]. In these studies, comparisons of the steady
states of structured continuum models with the station-
ary averages of cell population balances (CPBs) showed
that the regions in which the two models exhibit specific
types of behavior, such as bistability, were vastly differ-
ent. These differences were interpreted as effects of cell
population heterogeneity. However, we believe that the
differences shown by Mantzaris [12,16,42,43] are not
genuine effects of heterogeneity, but rather stem from
the modeling assumptions employed.
More specifically, these studies incorporated into the

CPB single cell models that are written for species con-
centrations. However, the CPB accepts single cell mod-
els written for cellular contents (amounts), which are
extensive quantities, and not concentrations which are
intensive [9]. One immediate consequence of this fact is
by partitioning the concentrations upon cell division
one would violate mass conservation. Moreover, the cell
volume is not taken into account in any of these studies.
Cells in the exponential phase, however, are continu-
ously growing and dividing, thereby changing their
volume roughly two-fold during one division cycle. In
turn, the change in volume shifts the thermodynamic
equilibrium point and also affects the dynamics if multi-
molecular reactions are present in the reaction scheme,
which is the case in all of the systems considered in
these studies [12,16,42,43]. Therefore, neglecting the
change of the cell volume as time progresses changes
creates a priori an inconsistency between the single cell
expressions incorporated into the population balance
and the structured continuum model.
Furthermore, some of these studies used unequal parti-

tioning to artificially generate complex behavior, such as
oscillations in a reaction network with 0th and 1st order
reactions. However, the asymmetry in E. coli division is
negligible: cells may stochastically divide in two unequal

daughters, but consistent generation of one large and one
small daughter has not been experimentally observed. In
fact, it has been shown that the distribution of daughter
cell sizes has a mean corresponding to equal partitioning
and a small coefficient of variation [44,45].

Simulation of Cell Chains for Stochastic Reaction
Dynamics
Given the high computational expense of simulating the
population model with stochastic reaction dynamics, we
pose the question of whether there is a simpler method
for obtaining good approximations for the distributions
of phenotypic characteristics. In contrast to the case of
deterministic reaction dynamics, we cannot use a conti-
nuum model for comparison purposes here. The main
reason is that in chemical systems far from the thermo-
dynamic limit, the size influences noise strength. In the
case of stochastic reaction occurrence, therefore, growth
results in dilution of molar contents and also suppres-
sion of stochastic fluctuations. Consequently, we cannot
create a lumped model that accounts for growth with
just the incorporation of a dilution term as was done in
the deterministic case.
However, we can take a different approach. We have

already observed that cell population dynamics emerge
from single cell behavior and that, on average, the two
daughters share the same concentrations as their mother
cell. Therefore, instead of tracking the NDF in a cell
population, we could compute the PDF in a cell chain.
Simulation of a cell chain tracks only one daughter after
each division event. Thus, instead of focusing on the
expected number of cells of the population that exist in
state z, we turn our attention to the probability of find-
ing a single cell of the cell chain at state z. Note, how-
ever, that we will be comparing the PDF and NDF of
intensive quantities, in particular the total LacY
concentration.
A comparison of the cell population NDF with the

single cell PDF for [Y]T shows a remarkable agreement
between the two (Figure 8). Such an agreement is
obtained for different parameter sets that generate dis-
similar distributions. Note that this comparison pertains
to stationary conditions and refers to intensive quanti-
ties (namely the total LacY concentration). Essentially,
this comparison shows that under the assumptions used
to build the models, the cell chain behavior is indicative
of the population behavior. Thus, we can successfully
predict the stationary NDF of the concentrations just by
simulating a cell chain, which is computationally less
expensive than simulating the cell population.

Conclusions
This study generalized the deterministic and stochastic
single cell lac operon models of an earlier publication
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[17] using two cell population frameworks that account
for stochastic and deterministic dynamics of the bio-
chemical reactions. We subsequently performed simula-
tions to investigate the behavior of the cell population
and demonstrated the effect of stochasticity in reaction
dynamics. We concluded that this source of stochasticity
can amplify population heterogeneity by introducing
heavy tails to the phenotypic distributions and can cre-
ate or destroy bimodality.
We also carried out a systematic comparison of pre-

dictions obtained by a structured continuum model and
a detailed cell population model with deterministic reac-
tion dynamics. These comparisons showed that the
structured continuum model gives satisfactory results
for the average LacYT concentration of the population,
even in the case where the reaction dynamics are much
slower than the proliferation dynamics. This agreement
between the two models was attributed to the similar
intensive properties (such as species concentrations)
between mother and daughter cells.
Finally and in the case of stochastic reaction dynamics,

we demonstrated that by simulating the dynamics of a
cell chain we can obtain very accurate approximations
of the cell population dynamics. The PDFs obtained by
cell chain simulations for the LacYT concentration were
in excellent agreement to the cell population NDF com-
puted with the Monte Carlo algorithm implementing
the CPME of Eq. 1.
Our study shows that for cell populations in which the

cells interact weakly, through division only, it is possible
to accurately model and explain the population behavior
in terms of the single cell dynamics. For such systems,

the key parameters for describing the behavior of the
population are the kinetic constants of the underlying
pathway of interest, and the physiological functions that
express the single cell growth rate, DNA-duplication
and division propensity, as well as the partitioning
mechanism. Intrinsic noise can be inherently accounted
for, once the cell size has been specified and thus no
additional parameters are needed for this purpose. Such
a description is expected to be of great importance in
bioinformatics studies focusing on population variability,
since, for cells interacting though division only this
variability can be explained in terms of a limited num-
ber of parameters.
Finally, deviations between the experimentally

observed population dynamics and the behavior pre-
dicted by our framework may indicate the presence of
more complex effects that are not accounted for in this
framework. For instance, the cells could be non-iso-
genic, or coupled with strong interaction mechanisms.
Another source of complexity is the existence of multi-
ple compartments in the cell, which would invalidate
the assumption of a single well-mixed intracellular
space. Such effects would have to be incorporated to the
framework in order to obtain a more accurate descrip-
tion of the system of interest.
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Figure 8 Comparisons of cell chain probability distribution functions with cell population NDFs. Panel (a): For the population distribution,
a batch of 20 simulations was run with Ncellsmax = 500, [Iex] = 24 μM and the nominal parameter set (Table 3) and sampled at t = 500 min. For
the cell chain simulation, tfinal = 105 min and samples were taken periodically in time with Δt = 10 min. Panel (b): as in panel (a) but with 100-
fold faster lacY transcription (ks1MY = 50 min-1, ks1MY = 1 min-1) and slower translation (ksY = 0.3 min-1). The simulation batch consisted of 20
simulations and was sampled at t = 250 min. The cell line was tracked for 105 min of simulated time.
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Additional material

Additional file 1: Supplementary text that includes: (1) detailed
descriptions of the population level modeling frameworks for
deterministic and stochastic reaction dynamics; (2) a discussion of
asymmetric volume partitioning; (3) the derivations of the partitioning
probabilities for population models with deterministic reaction dynamics
(4) the structured continuum model simulated in Figure 6 and Figure 7.
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