
METHODOLOGY ARTICLE Open Access

Efficient counting of k-mers in DNA sequences
using a bloom filter
Páll Melsted1* and Jonathan K Pritchard1,2*

Abstract

Background: Counting k-mers (substrings of length k in DNA sequence data) is an essential component of many
methods in bioinformatics, including for genome and transcriptome assembly, for metagenomic sequencing, and
for error correction of sequence reads. Although simple in principle, counting k-mers in large modern sequence
data sets can easily overwhelm the memory capacity of standard computers. In current data sets, a large fraction-
often more than 50%-of the storage capacity may be spent on storing k-mers that contain sequencing errors and
which are typically observed only a single time in the data. These singleton k-mers are uninformative for many
algorithms without some kind of error correction.

Results: We present a new method that identifies all the k-mers that occur more than once in a DNA sequence
data set. Our method does this using a Bloom filter, a probabilistic data structure that stores all the observed k-
mers implicitly in memory with greatly reduced memory requirements. We then make a second sweep through
the data to provide exact counts of all nonunique k-mers. For example data sets, we report up to 50% savings in
memory usage compared to current software, with modest costs in computational speed. This approach may
reduce memory requirements for any algorithm that starts by counting k-mers in sequence data with errors.

Conclusions: A reference implementation for this methodology, BFCounter, is written in C++ and is GPL licensed.
It is available for free download at http://pritch.bsd.uchicago.edu/bfcounter.html

Background
With recently-developed methods for massively parallel
DNA sequencing it is now practical for individual labs
to perform whole-genome or transcriptome sequencing
of a wide variety of organisms, and to perform metage-
nomic sequencing of environmental samples. Addition-
ally, these new sequencing technologies are becoming
widely used for reduced representation sequencing and
genotyping of non-model organisms [1,2], including
those with no available genome sequence.
Each of these applications involves de novo assembly

from very large numbers of short reads. Despite pro-
gress in recent years, de novo assembly remains a com-
putationally challenging task. The current research for
assembly with short reads is focused on de Bruijn graph
methods [3-7]. The nodes in a de Bruijn graph are the
k-mers of a pre-specified length k that are contained

within the sequencing reads. Two k-mers are connected
in the graph if they are adjacent in at least one sequen-
cing read. Although de Bruijn graphs provide a nice
conceptual framework that cuts down on computation
time, the size of the graph can be very large, typically
including billions of k-mers for vertebrate-sized
genomes.
In order to deal with the computational challenges of

working with such large data sets, a number of methods
have been proposed for storing k-mers efficiently. Most
de Bruijn graph assemblers store k-mers using 2 bits to
encode each nucleotide, so that each k-mer k

4 takes
bytes. The k-mers are then stored in a hash table,
usually with some associated information such as cover-
age and neighborhood information in the de Bruijn
graph. The exact memory usage depends on the hash
table used; for example, the assembly software ABySS
[6] uses the Google sparsehash library, which has mini-
mal memory overhead http://code.google.com/p/google-
sparsehash/. Additionally, ABySS can share the memory
load across multiple machines, splitting up the hash

* Correspondence: pmelsted@gmail.com; pritch@uchicago.edu
1Department of Human Genetics, The University of Chicago, Chicago IL,
60637, USA
Full list of author information is available at the end of the article

Melsted and Pritchard BMC Bioinformatics 2011, 12:333
http://www.biomedcentral.com/1471-2105/12/333

© 2011 Melsted and Pritchard; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://pritch.bsd.uchicago.edu/bfcounter.html
http://code.google.com/p/google-sparsehash/
http://code.google.com/p/google-sparsehash/
mailto:pmelsted@gmail.com
mailto:pritch@uchicago.edu
http://creativecommons.org/licenses/by/2.0


table so that each potential k-mer is assigned to a
unique machine, although this setup has more commu-
nication overhead across machines and requires addi-
tional work by the end user. A recently-developed
program named Jellyfish is specifically designed for k-
mer counting (for k-mers of up to 32 bp) [8]. It uses a
“quotienting” technique [9] to reduce the space needed
to store each k-mer in a hash table, and it achieves
much lower memory usage than other available meth-
ods. Additionally, [10] show how to compress both the
de Bruijn graph and the k-mer coverage counts to nearly
the optimal. However this compression is done after all
the k-mers have been counted, in contrast to Jellyfish.
A complementary strategy for reducing memory usage

is based on the observation that in current data sets, a
large fraction of the observed k-mers may arise from
sequencing errors. Most of these occur uniquely in the
data, and hence they greatly increase the memory
requirements of de novo assembly without adding much
information. For this reason, it is frequently helpful to
either discard unique k-mers prior to building the
graph, or to attempt to correct them if they are similar
to other, much more abundant, k-mers [11-14]. For
example, the team that sequenced the giant panda gen-
ome obtained 56-fold coverage of the 2.4 GB genome
on the Illumina sequencing platform [11]. Using a
supercomputer with 512 GB of RAM, the authors
counted a total of 8.62 billion 27-mers. After removing
or correcting low-coverage k-mers, they eliminated 68%
of the observed k-mers, reducing the total number to
just 2.69 billion. Their genome assembly was based on
this reduced set.
More generally, while the number of true k-mers in a

genome sequence is at most the genome length, G (or
less in practice, due to repeats), the number of spurious
k-mers grows almost linearly with sequencing depth. To
illustrate this, if we assume a uniform error rate a per
nucleotide, then the expected number of spurious k-
mers at sequence coverage C is GCl−k+1

l (1 − (1 − α)k),
where l is the length of sequence reads. (This calcula-
tion ignores the rare events in which an identical
sequencing error occurs more than once, and that error
rates are typically highest near the ends of reads.) Then
for example, at an error rate of 1% per base, read length
of 100 bp, and k = 31, the number of spurious k-mers
would exceed the genome length G at just 5.33-fold
coverage.
However, even the seemingly simple goal of eliminat-

ing singleton, or low coverage, k-mers is computation-
ally demanding in practice, since we do not know a
priori which k-mers have low coverage. An obvious
approach would be to simply load all observed k-mers
into a hash table while counting the number of

occurrences of each. But this task alone can easily over-
whelm the memory of standard high performance
machines.
The goal then is to implement a method for identify-

ing unique k-mers (or more generally, k-mers that occur
< n times), that makes highly efficient use of memory
while providing efficient storage of k-mers with fast
insertion and query times. The problem of counting the
number of distinct k-mers is much easier if we are will-
ing to settle for an approximate answer that works with
high probability [15].
Here, we describe an approach to solving this problem

by storing an implicit and highly compact representation
of the observed k-mers, known as a Bloom filter. A
reference implementation, implemented in a C++ pro-
gram called BFCounter, is freely available. We show
empirical results of applying this method to published
sequencing data. We also discuss possible extensions
and further applications of the method.

Results and Discussion
The Bloom Filter
The Bloom filter is a probabilistic data structure sup-
porting dynamic set membership queries with false posi-
tives [16]. It allows us to identify in an extremely
compact way all k-mers that are present more than
once in a data set, while allowing a low rate of false
positives. Bloom filters have been used widely in com-
puting applications, but to date rarely in bioinformatics,
but see [14,17,18].
The essential idea is illustrated in Figure 1. The Bloom

filter is a bit array B, initialized to be 0 at every position.
We also define a set of d hash functions, h1, ..., hd,
where each hash function maps a given k-mer x to a
location in B.

inserted

not inserted

a b

c d

0 1 0 1 1 0 1 0 1 0

Figure 1 Bloom filter example. An example of a Bloom filter with
three hash functions. The k-mers a and b have been inserted, but c
and d have not. The three hash functions are represented with
arrows, and the bits corresponding to the hashes for a and b have
been set to 1. The Bloom filter indicates correctly that k-mer c has
not been inserted since not all of its bits are set to 1. However, k-
mer d is an example of a false positive: it has not been inserted, but
since its bits were set to 1 by the insertion of a and b, the Bloom
filter falsely reports that d has been seen already.

Melsted and Pritchard BMC Bioinformatics 2011, 12:333
http://www.biomedcentral.com/1471-2105/12/333

Page 2 of 7



In order to insert a k-mer x into the Bloom filter, we
set all of the d corresponding locations in B to be 1;
that is, we set B[hi(x)] = 1 for i = 1, ..., d. Then, to
determine whether a k-mer y has been inserted, we sim-
ply check whether each of the corresponding hash posi-
tions is 1: i.e., whether B[hi(y)] are all set to 1 for i = 1,
..., d. If this is the case, then we infer that y has probably
been seen before. By construction, this procedure cor-
rectly identifies every k-mer that is present more than
once in the data; however, the cost of very efficient
memory usage is that we accept a low rate of false posi-
tives in which we infer that y has been seen previously,
but in fact it has not.
The Bloom filter has a tradeoff between memory

usage (i.e., the number of bits used) and the false posi-
tive rate. When storing n k-mers in a Bloom filter of m
bits, and using d hash functions, the false positive rate is

approximately (1 − e−d n
m )d. Given n and m, the optimal

number of hash functions that minimizes the false posi-
tive ratio is d ≈ m

n ln 2[19]. In practice we may have a
rough idea in advance about n, the number of k-mers,
and we can select m as a fixed multiple of n. For exam-
ple using m = 8 · n (which corresponds to storing one
byte per k-mer), and d = 5 gives a false positive ratio of
2.16%. Many variations and improvements have been
proposed for Bloom filters [20,21]; or see [19] for a
survey.

Storing and counting k-mers using the Bloom Filter
To count all non-unique k-mers we use a Bloom filter B
and a simple hash table T to store k-mers. The Bloom
filter keeps track of k-mers we have encountered so far
and acts as a “staging area”, while the hash table stores
all the k-mers seen at least twice so far. The idea is to
use the memory-efficient Bloom filter to store implicitly
all k-mers seen so far, while only inserting non-unique
k-mers into the hash table.
Initially both the Bloom filter and the hash table are

empty. All k-mers are generated sequentially from the
sequencing reads. Note that in most applications we do
not need to distinguish between a k-mer and its reverse
complement sequence. Thus, as we read in each k-mer
we also consider the reverse complement of that k-mer
and then work with whichever of the two versions is
lexicographically smaller (we refer to the smaller
sequence as the “canonical k-mer”).
For each k-mer, x, we check if x is in the Bloom filter

B. If it is not in B then we update the appropriate bits
in B to indicate that it has now been observed. If x is in
B, then we check if it is in T, and if not, we add it to T.
This scheme guarantees that all k-mers with a cover-

age of 2 or more are inserted into T. However a small
proportion of unique k-mers will be inserted into T due

to false positive queries to B. After the first pass through
the sequence data, one can re-iterate over the sequence
data to obtain exact counts of the k-mers in T and then
simply delete all unique k-mers. The time spent on the
second round is at most 50% of the total time, and
tends to be less since hash table lookups are generally
faster than insertions. A detailed pseudocode is given in
Figure 2.
It is also possible to obtain approximate k-mer counts

by iterating only once over the sequence reads. In this
case we record a coverage count of 2 when first inserting
a k-mer into the hash table T, and subsequently incre-
ment the counter for each additional observation of this
k-mer. This means that the coverage counts for some k-
mers are 1 higher than the true value, and some k-mers
in T are in fact false positives (i.e., present only once).

Higher Coverage Cutoffs
For some applications a higher coverage cutoff may be
required to either filter out sequencing errors or to sim-
ply extract sequences of interest. The algorithm can be
extended to use counting Bloom filters, where each bit
in the bit array is now replaced with a counter that uses
only a small number of bits. If the desired minimum
coverage is c we use an array of m ⌈log2(c)⊥-bit coun-
ters. The counting Bloom filter was introduced by [20]
to allow for deletions, but here we use the counts
directly.
To check if a k-mer should be inserted into the hash

table T we look to see if all of B[hi(x)] are equal to c -
1. Otherwise we insert it into the Bloom filter. When
inserting a k-mer x, we set

B[hi(x)] ← min{B[hi(x)] + 1, c − 1}
for i = 1, ..., d. Note that for a k-mer x, min{B[hi(x)]|i

= 1, ..., d} gives an upper bound on the number of

Algorithm 1 Bloom filter k-mer counting algorithm

1: B ← empty Bloom filter of size m
2: T ← hash table
3: for all reads s do
4: for all k-mers x in s do
5: xrep ← min(x, revcomp(x)) //xrep is the canonical k-mer for x
6: if xrep ∈ B then
7: if xrep /∈ T then
8: T [xrep] ← 0
9: else

10: add xrep to B
11: for all reads s do
12: for all k-mers x in s do
13: xrep ← min(x, revcomp(x))
14: if xrep ∈ T then
15: T [xrep] ← T [xrep] + 1
16: for all x ∈ T do
17: if T [x] = 1 then
18: remove x from T

Figure 2 Algorithm pseudocode. A pseudocode for the Bloom
filter k-mer counting algorithm.

Melsted and Pritchard BMC Bioinformatics 2011, 12:333
http://www.biomedcentral.com/1471-2105/12/333

Page 3 of 7



occurrences of x so far. Of course the basic version sim-
ply corresponds to the case of c = 2.

Parallelizability
The algorithm is presented above as a standard single
processor program and our current implementation is
not multi-threaded.
Nonetheless it would be possible to speed up the

operations using multiple cores with lock-free data
structures. This would require a non-blocking imple-
mentation of the hash table [22] and a modification to
the Bloom filter. The bit array in the Bloom filter is
implemented as an array of word-sized integers, usually
32 or 64 bits. To avoid accidental collisions where two
bit locations in the same word are updated, one can use
“compare-and-swap” (CAS) operations on words to
ensure atomic updates of each bit independently.
Since the role of the Bloom filter is to keep track of k-

mers seen previously, this scheme could plausibly fail in
the unlikely event that two occurrences of the same k-
mer are inserted into the Bloom filter simultaneously by
different threads. In this case the two threads would both
query the Bloom filter for a k-mer, x, and after both
receive a negative answer the two threads would insert x
simultaneously. If x occurs exactly twice in the data set
then we would fail to record it in the hash table and get a
false negative, although this type of false negative seems
unlikely to be a serious concern in practice. However this
can be fixed by extending the Bloom filter data structure
to return the number of bits set to 1 when querying, and
the number of bits changed from 0 to 1 when inserting.
This makes insertion atomic, each thread can then deter-
mine when inserting a new k-mer into the Bloom filter
whether any other threads were inserting the same k-mer
simultaneously by comparing the number of bits changed
from 0 to 1. If the two numbers do not match, we can
infer that some other thread had already inserted the k-
mer into the Bloom filter and proceed with inserting the
k-mer into the hash table.

Implementation
We implemented this algorithm in a program called
BFCounter in C++, available from http://pritch.bsd.uchi-
cago.edu/bfcounter.html The source code is licenced
under a GPL licence. For the implementation we used
the Google sparsehash library and a Bloom filter library
by A. Partow http://www.partow.net/programming/hash-
functions/index.html. We store a 1-byte counter for
each k-mer and by default k-mers take 8-bytes of mem-
ory with a maximum k of 31, although if desired, larger
k-mers can be specified at compile time. We require the
user to specify an estimate for the number of k-mers in
the sequencing data and use a Bloom filter with 4 times
as many bits as the expected number of k-mers this

corresponds to a memory usage of 4-bits per k-mer and
the optimal number of hash functions functions for the
Bloom filter is d = 3.

Example data sets
To illustrate the performance of the new method, we
describe the analysis of two data sets of sequencing
reads from human genomic DNA. The first data set
consists of 7.5 M 100 bp paired-end reads from the Illu-
mina platform that mapped to Chromosome 21. These
data, from HapMap individual NA19240, are available
from Illumina at http://www.illumina.com/truseq/tru_re-
sources/datasets.ilmn. This data set corresponds to
approximately 32-fold coverage of Chromosome 21, a
coverage-level that is typical of many contemporary
sequencing studies. Since the reads have already been
mapped to a genome this likely represents a cleaner
data set (i.e., with fewer errors and lower repeat con-
tent) than we would expect to get from unprocessed
sequence data.
The second data set consists of genome-wide

sequence data from the 1000 Genomes Project Pilot II
study [23]. Individual NA19240 was sequenced at 40-
fold coverage, using 2.66 billion 36 bp paired-end Illu-
mina reads. The data were filtered to remove sequences
with low quality scores and missing basecalls; they are
available at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
data/NA19240/sequence_read/.
Our first application is to the 32-fold sequence data

from Chromosome 21 data. We collected all k-mers
from the sequencing reads, using k = 31. Figure 3 shows
the distribution of the number of times each k-mer is
seen in the input data. Out of 80.4M observed k-mers,
slightly more than half (48.7M) are observed only a sin-
gle time. The vast majority of these singleton k-mers
(99.87%) are not found in the reference genome and
hence are most likely due to sequencing errors, thus
supporting the approach of discarding or correcting
these unique k-mers.
Figure 4 illustrates how the total number of k-mers,

and the number of nonunique k-mers increases with
sequencing depth for this data set. For the unfiltered k-
mers we see the same behavior with increasing coverage
as expected from the Introduction: namely, the total
number of k-mers found increases approximately line-
arly for coverage levels greater than about 5X. This
increase is almost completely due to the increase in
unique k-mers that contain errors. In contrast, the
number of non-unique k-mers is only slightly more
than the expected number based on the number of dis-
tinct k-mers in the hg18 genome sequence from Chro-
mosome 21.
To evaluate the computational performance of

BFCounter we compared it to Jellyfish [8] and to a naive

Melsted and Pritchard BMC Bioinformatics 2011, 12:333
http://www.biomedcentral.com/1471-2105/12/333

Page 4 of 7

http://pritch.bsd.uchicago.edu/bfcounter.html
http://pritch.bsd.uchicago.edu/bfcounter.html
http://www.partow.net/programming/hashfunctions/index.html
http://www.partow.net/programming/hashfunctions/index.html
http://www.illumina.com/truseq/tru_resources/datasets.ilmn.
http://www.illumina.com/truseq/tru_resources/datasets.ilmn.
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA19240/sequence_read/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA19240/sequence_read/


k-mer counting program without any filtering. All com-
parisons were done on a 64-bit x86 Intel Xeon machine
with 8 cores at 2.4 GHz and 144 GB of memory running
Linux kernel version 2.6.18. The disks were all from
shared network through Lustre. All time measurements
were done with the time unix command and memory
usage was measured using strace.
The naive version simply stores all k-mers explicitly in

a Google sparsehash hash table and skips the filtering
step. Jellyfish is a sophisticated k-mer counting program
that features support for multicore machines. Further-
more Jellyfish stores an implicit representation of k-mers
in a hash table to save memory. The authors of the Jelly-
fish program recently showed that their method provides
large memory savings compared to other traditional
methods for k-mer counting. Jellyfish requires us to pre-
specify the size of the hash table to use; if the hash table
fills up, the results are written to disk and merged later.
To compare the programs we found the minimum size
so that Jellyfish could keep all k-mers in memory. For the
second data set Jellyfish could not fit all k-mers in mem-
ory with default parameters. To fit the hash table in
memory we needed to set the number of reprobes to 255
by running Jellyfish with the -p 255 option. For timing
comparisons we run Jellyfish in serial mode.

The increase in the number of k-mers affects the
memory consumption directly. Figure 5 plots the mem-
ory requirements of BFCounter, Jellyfish and the naive
version. The increase in memory levels off for BFCoun-
ter after about 7-fold coverage, whereas for the naive
version and Jellyfish the memory increases steadily as
the number of k-mers grows.
Table 1 presents the memory and time requirements for

the three methods when applied to the second data set
(40-fold coverage of a human genome with 36 bp reads).
For this analysis we set the k-mer length k = 25, which
strikes a balance between the number of k-mers produced
by each read, here 11, and the specificity of the k-mers.
Although for this data set the average basepair coverage is
fixed, the k-mer coverage decreases with k. On the other
hand increasing k gives more observed k-mers, since
sequencing errors can generate up to k unique k-mers.
There are 12.18 billion k-mers present in the sequen-

cing reads, of which 9.35 billion are unique and 2.83 bil-
lion have coverage of two or greater (compared to 2.37
billion distinct 25-mers in the hg18 genome sequence).
When BFCounter was run, about 0.5 billion of the
unique k-mers were stored in the hash table after the
first phase which corresponds to a 5.3% false positive

Number of 31−mers

Fold coverage

N
um

be
r o

f 3
1−

m
er

s 
(M

illi
on

s)

0 5 10 15 20 25 30

0

20

40

60

80

Ideal 32.5M

Unfiltered

Filtered

Figure 3 Number of k-mers . The plot shows the number of
distinct k-mers found in the sequencing data from chr21 at
different coverage levels, based on random subsampling of the
data. The total number of distinct k-mers in the hg18 genome
sequence of chr21 is 32.5 million k-mers. Unfiltered, the number of
k-mers found increases at a steady rate after 5-fold coverage. When
unique k-mers are removed, the number of filtered k-mers
approaches the ideal number at around 7-fold coverage and the
rate of increase is significantly reduced.

31−mer count distribution on Chromosome 21

31−mer coverage
N

um
be

r o
f 3

1−
m

er
s 

(m
illi

on
s)

0 10 20 30 40 50

0

.5

1

1.5

44

44.5

45

31−mers in hg18
31−mers not in hg18

Figure 4 k-mer distribution. Distribution of coverage levels for k-
mers in the sequence reads from chromosome 21. There is a clear
distinction between the coverage levels of the 31.7M observed k-
mers that are found in the hg18 reference genome sequence
compared to the 48.7M k-mers that are not in hg18. Of the k-mers
not found in hg18, 44.5M or 99.87%, are observed only once, and
are likely sequencing errors. A small fraction of k-mers that do not
match hg18 are observed many times in the data; these likely
represent SNP differences between the sequenced individual and
hg18 and would be retained by the Bloom filter.

Melsted and Pritchard BMC Bioinformatics 2011, 12:333
http://www.biomedcentral.com/1471-2105/12/333

Page 5 of 7



rate for the Bloom filter. Thus, BFCounter stored 27% of
the original k-mers after the first pass, and this was cut
to 23% after false positives were removed.
As may be seen from the table, BFCounter uses con-

siderably less memory than either Jellyfish or the naive
hash table method. Indeed the naive method ran out of
memory and was unable to complete. However,
BFCounter takes approximately three times longer to
run as Jellyfish. Part of the difference in speed is due to
BFCounter taking a second pass through the data to
obtain exact k-mer counts (which may not be essential
for all applications).

Conclusions
Counting k-mers from sequencing data is an essential
component of many recent methods for genome

assembly from short read sequence data. However, in
current data sets, it is frequently the case that more than
half of the reads contain errors and are observed just a
single time. Since these error-containing k-mers are so
numerous, they can overwhelm the memory capacity of
available high-performance machines, and they increase
the computational complexity of downstream analysis.
In this paper, we describe a straightforward applica-

tion of the Bloom filter data structure to help identify
and store the reads that are present more than once (or
more than n times) in a data set, and are therefore far
more likely to be correct. By doing so, we achieve
greatly reduced memory requirements compared to a
naive but memory-efficient hash table method, as well
as to Jellyfish (which has been highly optimized for
memory efficiency, while storing all k-mers). For many
applications, it may be sufficient to simply ignore the
unique k-mers (as was done for the panda genome);
alternatively, users may prefer to “correct” reads by
comparing unique k-mers to common k-mers [11-14].
In summary, the approach presented here could be
straightforwardly incorporated into a wide variety of
algorithms that start by counting k-mers.
Our method trades off reduced memory usage for an

increase in processing time. In many cases the memory
limitation is a hard threshold and the counting of k-mers
is only run once and a fixed set of k-mers is stored for
future computation. For genome assembly methods the
construction of de Bruijn graphs dominates memory con-
sumption [7] and the time for completion can be several
days [13], depending on the amount of postprocessing.

Funding
This work was funded by a grant from the National
Institutes of Health: MH084703. JKP is supported by the
Howard Hughes Medical Institute.

Acknowledgements
We thank Guillaume Marçais for help with running Jellyfish, and Jean-
Baptiste Veyrieras and members of the Gilad, Pritchard, Przeworski and
Stephens labs for helpful discussions.

Author details
1Department of Human Genetics, The University of Chicago, Chicago IL,
60637, USA. 2Howard Hughes Medical Institute, The University of Chicago,
Chicago IL, 60637, USA.

Authors’ contributions
PM and JKP contributed ideas and participated in writing this article. PM
designed the algorithm, implemented the software and ran the experiments.
Both authors read and approved the final manuscript.

Received: 14 May 2011 Accepted: 10 August 2011
Published: 10 August 2011

References
1. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU,

Cresko WA, Johnson EA: Rapid SNP Discovery and Genetic Mapping

Memory Usage

Fold coverage

M
em

or
y 

in
 M

B

0 5 10 15 20 25 30

0

200

400

600

800

BFCounter

Naive

Jellyfish

Figure 5 Memory usage . The memory usage of the three
programs at different coverage levels (Chromosome 21 data). Note
that Jellyfish and the naive counter are storing all k-mers while
BFCounter filters out most unique k-mers without storing them
explicitly in memory. The memory usage of BFCounter and the
naive version roughly mimic the shape for the number of filtered k-
mers in Figure 3. The discrete jumps in the memory usage of
Jellyfish are due to implementation details as the size of the hash
table has to be a power of 2.

Table 1 Memory usage and Time for whole genome data

Program Time (hrs) Memory (GB)

BFCounter 23.82 42

Jellyfish 8.03 71

Naive* >26.38 >128

Memory and time usage for the 1000 Genomes data set (40-fold coverage of
individual NA19240). *The naive version ran out of memory after processing
84.7% of the reads.

Melsted and Pritchard BMC Bioinformatics 2011, 12:333
http://www.biomedcentral.com/1471-2105/12/333

Page 6 of 7

http://www.ncbi.nlm.nih.gov/pubmed/18852878?dopt=Abstract


Using Sequenced RAD Markers. PLoS ONE 2008, 3(10):e3376[http://dx.doi.
org/10.1371/journal.pone.0003376].

2. Andolfatto P, Davison D, Erezyilmaz D, Hu TT, Mast J, Sunayama-Morita T,
Stern DL: Multiplexed shotgun genotyping for rapid and efficient genetic
mapping. Genome Research 2011 [http://genome.cshlp.org/content/early/
2011/02/28/gr.115402.110.abstract].

3. Pevzner PA, Tang H, Waterman MS: An Eulerian path approach to DNA
fragment assembly. Proceedings of the National Academy of Sciences of the
United States of America 2001, 98(17):9748-9753[http://www.pnas.org/
content/98/17/9748.abstract].

4. Zerbino DR, Birney E: Velvet: Algorithms for de novo short read assembly
using de Bruijn graphs. Genome Research 2008, 18(5):821-829[http://
genome.cshlp.org/content/18/5/821.abstract].

5. Butler J, MacCallum I, Kleber M, Shlyakhter IA, Belmonte MK, Lander ES,
Nusbaum C, Jaffe DB: ALLPATHS: De novo assembly of whole-genome
shotgun microreads. Genome Research 2008, 18(5):810-820[http://genome.
cshlp.org/content/18/5/810.abstract].

6. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I: ABySS: A
parallel assembler for short read sequence data. Genome Research 2009,
19(6):1117-1123[http://genome.cshlp.org/content/19/6/1117.abstract].

7. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K,
Li S, Yang H, Wang J, Wang J: De novo assembly of human genomes
with massively parallel short read sequencing. Genome Research 2010,
20(2):265-272[http://genome.cshlp.org/content/20/2/265.abstract].

8. Marçais G, Kingsford C: A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers. Bioinformatics 2011, 27(6):764-770
[http://bioinformatics.oxfordjournals.org/content/27/6/764.abstract].

9. Knuth DE: In The art of computer programming, sorting and searching.
Volume 3.. 2 edition. Redwood City, CA, USA: Addison Wesley Longman
Publishing Co., Inc; 1998.

10. Conway TC, Bromage AJ: Succinct data structures for assembling large
genomes. Bioinformatics 2011, 27(4):479-486[http://bioinformatics.
oxfordjournals.org/content/27/4/479.abstract].

11. Li R, Fan W, Tian G, et al: The sequence and de novo assembly of the
giant panda genome. Nature 2010, 463(7279):311-317[http://dx.doi.org/
10.1038/nature08696].

12. Kelley D, Schatz M, Salzberg S: Quake: quality-aware detection and
correction of sequencing errors. Genome Biology 2010, 11(11):R116[http://
genomebiology.com/2010/11/11/R116].

13. Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ,
Sharpe T, Hall G, Shea TP, Sykes S, Berlin AM, Aird D, Costello M, Daza R,
Williams L, Nicol R, Gnirke A, Nusbaum C, Lander ES, Jaffe DB: High-quality
draft assemblies of mammalian genomes from massively parallel
sequence data. Proceedings of the National Academy of Sciences 2011,
108(4):1513-1518[http://www.pnas.org/content/108/4/1513.abstract].

14. Shi H, Schmidt B, Liu W, Müller-Wittig W: A Parallel Algorithm for Error
Correction in High-Throughput Short-Read Data on CUDA-Enabled
Graphics Hardware. Journal of Computational Biology 2010, 17(4):603-615
[http://www.liebertonline.com/doi/abs/10.1089/cmb.2009.0062].

15. Bar-Yossef Z, Jayram T, Kumar R, Sivakumar D, Trevisan L: Counting Distinct
Elements in a Data Stream. In Randomization and Approximation
Techniques in Computer Science, Volume 2483 of Lecture Notes in Computer
Science. Edited by: Rolim J, Vadhan S. Springer Berlin/Heidelberg;
2002:952-952[http://dx.doi.org/10.1007/3-540-45726-7_1].

16. Bloom BH: Space/time trade-offs in hash coding with allowable errors.
Commun ACM 1970, 13:422-426[http://doi.acm.org/10.1145/362686.362692].

17. Stranneheim H, Käller M, Allander T, Andersson B, Arvestad L, Lundeberg J:
Classification of DNA sequences using Bloom filters. Bioinformatics 2010,
26(13):1595-1600[http://bioinformatics.oxfordjournals.org/content/26/13/
1595.abstract].

18. Krishnamurthy P, Buhler J, Chamberlain R, Franklin M, Gyang K, Jacob A,
Lancaster J: Biosequence Similarity Search on the Mercury System. The
Journal of VLSI Signal Processing 2007, 49:101-121[http://dx.doi.org/10.1007/
s11265-007-0087-0].

19. Broder A, Mitzenmacher M: Network Applications of Bloom Filters: A
Survey. Internet Mathematics 2004, 1(4):485-509.

20. Fan L, Cao P, Almeida J, Broder AZ: Summary cache: a scalable wide-area
web cache sharing protocol. IEEE/ACM Trans Netw 2000, 8:281-293[http://
dx.doi.org/10.1109/90.851975].

21. Pagh A, Pagh R, Rao SS: An optimal Bloom filter replacement. Proceedings
of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, SODA

‘05, Philadelphia, PA, USA: Society for Industrial and Applied Mathematics
2005, 823-829[http://portal.acm.org/citation.cfm?id=1070432.1070548].

22. Purcell C, Harris T: Non-blocking Hashtables with Open Addressing. In
Distributed Computing, Volume 3724 of Lecture Notes in Computer Science.
Edited by: Fraigniaud P. Springer Berlin/Heidelberg; 2005:108-121[http://dx.
doi.org/10.1007/11561927_10].

23. The 1000 Genomes Project Consortium: A map of human genome
variation from population-scale sequencing. Nature 2010,
467(7319):1061-1073.

doi:10.1186/1471-2105-12-333
Cite this article as: Melsted and Pritchard: Efficient counting of k-mers in
DNA sequences using a bloom filter. BMC Bioinformatics 2011 12:333.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Melsted and Pritchard BMC Bioinformatics 2011, 12:333
http://www.biomedcentral.com/1471-2105/12/333

Page 7 of 7

http://www.ncbi.nlm.nih.gov/pubmed/18852878?dopt=Abstract
http://dx.doi.org/10.1371/journal.pone.0003376
http://dx.doi.org/10.1371/journal.pone.0003376
http://genome.cshlp.org/content/early/2011/02/28/gr.115402.110.abstract
http://genome.cshlp.org/content/early/2011/02/28/gr.115402.110.abstract
http://www.ncbi.nlm.nih.gov/pubmed/11504945?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11504945?dopt=Abstract
http://www.pnas.org/content/98/17/9748.abstract
http://www.pnas.org/content/98/17/9748.abstract
http://www.ncbi.nlm.nih.gov/pubmed/18349386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18349386?dopt=Abstract
http://genome.cshlp.org/content/18/5/821.abstract
http://genome.cshlp.org/content/18/5/821.abstract
http://www.ncbi.nlm.nih.gov/pubmed/18340039?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18340039?dopt=Abstract
http://genome.cshlp.org/content/18/5/810.abstract
http://genome.cshlp.org/content/18/5/810.abstract
http://www.ncbi.nlm.nih.gov/pubmed/19251739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19251739?dopt=Abstract
http://genome.cshlp.org/content/19/6/1117.abstract
http://www.ncbi.nlm.nih.gov/pubmed/20019144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20019144?dopt=Abstract
http://genome.cshlp.org/content/20/2/265.abstract
http://www.ncbi.nlm.nih.gov/pubmed/21217122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21217122?dopt=Abstract
http://bioinformatics.oxfordjournals.org/content/27/6/764.abstract
http://www.ncbi.nlm.nih.gov/pubmed/21245053?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21245053?dopt=Abstract
http://bioinformatics.oxfordjournals.org/content/27/4/479.abstract
http://bioinformatics.oxfordjournals.org/content/27/4/479.abstract
http://www.ncbi.nlm.nih.gov/pubmed/20010809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20010809?dopt=Abstract
http://dx.doi.org/10.1038/nature08696
http://dx.doi.org/10.1038/nature08696
http://www.ncbi.nlm.nih.gov/pubmed/21114842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21114842?dopt=Abstract
http://genomebiology.com/2010/11/11/R116
http://genomebiology.com/2010/11/11/R116
http://www.pnas.org/content/108/4/1513.abstract
http://www.ncbi.nlm.nih.gov/pubmed/20426693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20426693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20426693?dopt=Abstract
http://www.liebertonline.com/doi/abs/10.1089/cmb.2009.0062
http://dx.doi.org/10.1007/3-540-45726-7_1
http://doi.acm.org/10.1145/362686.362692
http://www.ncbi.nlm.nih.gov/pubmed/20472541?dopt=Abstract
http://bioinformatics.oxfordjournals.org/content/26/13/1595.abstract
http://bioinformatics.oxfordjournals.org/content/26/13/1595.abstract
http://dx.doi.org/10.1007/s11265-007-0087-0
http://dx.doi.org/10.1007/s11265-007-0087-0
http://dx.doi.org/10.1109/90.851975
http://dx.doi.org/10.1109/90.851975
http://portal.acm.org/citation.cfm?id=1070432.1070548
http://dx.doi.org/10.1007/11561927_10
http://dx.doi.org/10.1007/11561927_10
http://www.ncbi.nlm.nih.gov/pubmed/20981092?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20981092?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and Discussion
	The Bloom Filter
	Storing and counting k-mers using the Bloom Filter
	Higher Coverage Cutoffs
	Parallelizability
	Implementation
	Example data sets

	Conclusions
	Funding
	Acknowledgements
	Author details
	Authors' contributions
	References

