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Abstract

Background: Molecular dynamics (MD) simulations offer the ability to observe the dynamics and interactions of
both whole macromolecules and individual atoms as a function of time. Taken in context with experimental data,
atomic interactions from simulation provide insight into the mechanics of protein folding, dynamics, and function.
The calculation of atomic interactions or contacts from an MD trajectory is computationally demanding and the
work required grows exponentially with the size of the simulation system. We describe the implementation of a
spatial indexing algorithm in our multi-terabyte MD simulation database that significantly reduces the run-time
required for discovery of contacts. The approach is applied to the Dynameomics project data. Spatial indexing, also
known as spatial hashing, is a method that divides the simulation space into regular sized bins and attributes an
index to each bin. Since, the calculation of contacts is widely employed in the simulation field, we also use this as
the basis for testing compression of data tables. We investigate the effects of compression of the trajectory
coordinate tables with different options of data and index compression within MS SQL SERVER 2008.

Results: Our implementation of spatial indexing speeds up the calculation of contacts over a 1 nanosecond (ns)
simulation window by between 14% and 90% (i.e., 1.2 and 10.3 times faster). For a ‘full’ simulation trajectory (51 ns)
spatial indexing reduces the calculation run-time between 31 and 81% (between 1.4 and 5.3 times faster). Compression
resulted in reduced table sizes but resulted in no significant difference in the total execution time for neighbour
discovery. The greatest compression (~36%) was achieved using page level compression on both the data and indexes.

Conclusions: The spatial indexing scheme significantly decreases the time taken to calculate atomic contacts and
could be applied to other multidimensional neighbor discovery problems. The speed up enables on-the-fly calculation
and visualization of contacts and rapid cross simulation analysis for knowledge discovery. Using page compression for
the atomic coordinate tables and indexes saves ~36% of disk space without any significant decrease in calculation time
and should be considered for other non-transactional databases in MS SQL SERVER 2008.

Background
Molecular dynamics (MD) simulations are routinely
used to study the dynamic and structural properties of
proteins and other macromolecules. MD simulations
provide atomic-level resolution of a protein andits sur-
rounding solvent environment as a function of time.

There are no experimental techniques that can provide
this level of detail. The direct results of an MD simula-
tion are the coordinates of all atoms as a function of
simulation time. Simulation time is divided into discrete
time points or frames (akin to movie frames) that repre-
sent the coordinates for the entire system at that precise
time. The assembled coordinate ‘trajectories’ (i.e. all
frames) can be analysed for various factors and visua-
lized to produce movies (examples of which can be
found at http://www.dynameomics.org).
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Nonbonded interactions within a protein are critical to
its thermodynamic behaviour, contributing to packing
and electrostatic energies reflected in the enthalpy. Such
nonbonded interactions include but are not limited to
hydrogen bonds, salt bridges, and hydrophobic contacts.
Fluctuations in these nonbonded contacts as a function
of time dictate dynamic behaviour and the conforma-
tions accessible to the protein. Dynamics are crucial for
our understanding of protein function [1], folding and
misfolding [2,3].
We have recently undertaken and completed a large

scale project, Dynameomics, in which we have simulated
the native states and unfolding pathways of representa-
tives of essentially all autonomous protein fold families
[4]. These fold families, or metafolds, were chosen based
on a consensus between the SCOP, CATH and DALI
domain dictionaries, which we call a consensus domain
dictionary (CDD) [5,6]. For our recent release set [5]
there are 807 metafolds, representing 95% of the known
autonomous domains in the Protein Data Bank (PDB).
The Dynameomics database represents the largest col-
lection of protein simulations in the world and contains
104 more structures than the PDB.
The coordinates of the MD simulations and our set of

standard analyses have been loaded into a relational data-
base. This Dynameomics database is implemented using
Microsoft SQL server with the Windows Server operating
system (see [7] for a more detailed description). The Dyna-
meomics protocol includes one native state simulation,
and at least 5 thermal unfolding simulations, which can be
used to characterize the unfolding process of the domains.
In order to explore the dynamics and folding in these
simulations we often calculate the nonbonded contacts for
each frame of the simulation. This problem has been well
studied and is also known as the nearest neighbor search
problem [8]. The calculation is computationally expensive;
as the naïve approach is to test all possible pairs of atoms
in the system. The number of protein atoms or amino
acids is often used as a proxy for the overall simulation
size. The average number of protein atoms in the proteins
in our Dynameomics set of simulations is 2150, with the
smallest system consisting of 494 protein atoms and the
largest of 6584 protein atoms. As all of the atoms in our
simulations are in motion, all pairs of atoms need to be re-
evaluated for each frame of the simulation, so in the case
of a 51 ns native state simulation sampled at 1 picosecond
(ps) resolution, we have 51,000 frames of pairs of contacts
to evaluate. Calculating the nonbonded contacts without
any acceleration method is not practical for a large num-
ber of simulations such as in a project like Dynameomics.

Spatial indexing overview
Spatial indexing is a commonly used method by pro-
grammers of 3D video games, in which collision

between objects are detected [9], though the methods
date back further in molecular simulation [10,11] and
other approaches similar in spirit have been described
[12]. The basic approach based on the cell index method
[10] is as follows: in order to accelerate the detection of
near neighbour objects in 3D space, the space is split
into relatively uniform small 3D bins. Each of the bins is
given an index and the objects in the system are sorted
into the indexed bins based on their 3D coordinates.
Neighboring objects can then be detected by performing
a distance calculation on all pairs of objects in the same
or immediately adjacent neighboring bins. There are a
number of other algorithms that could be used to speed
up the discovery of nearest neighbors including B-trees,
kd-trees, Z-order curves, Verlet neighbor lists, however,
we decided to implement the cell index like method
[10] since we already have experience in implementing
this in our in-house MD simulation software and have
found it to be very effecient.
Our MD simulation and analysis engine, in lucem

molecular mechanics (ilmm) [13] implements a spatial
indexing (hashing) algorithm for rapid parallel calcula-
tion of nonbonded terms [14]. The Dynameomics simu-
lations are performed in a periodic box of explicitly
represented water molecules with the hydrated protein
in the center of the box. This periodic box is concep-
tually similar to an orthorhombic unit cell in crystallo-
graphy. We typically employ the NVE ensemble as the
framework for our classical simulation where the num-
ber of atoms (N), periodic box volume (V), and total
energy (E) are constant throughout the simulation. The
fixed volume is achieved by using a fixed set of periodic
box dimensions for the system. As such a system’s spa-
tial hash structure can be utilized unchanged through-
out the simulation. To accommodate typical nonbonded
interaction criteria we split our periodic box into bins of
at least 5.4 Å on the three dimensions. This distance
was chosen as it is the maximum distance we consider a
pair of atoms to be in contact [15] (Figure 1A).
SQL Server 2008 supports two types of compression,

which can be applied separately to the data and indices
associated with a table (row and page level compression
is only available in MS SQL server 2008). Row compres-
sion is a more efficient representation of row data; it
involves storing fixed length columns in a manner simi-
lar to variable length columns where repeated bytes are
compressed. For coordinate columns, which are a set of
five 32 bit fixed length columns, the storage savings for
row compression are small. Page compression, which is
built on top of row compression, stores repeating values
in a single structure for each page and then references
that structure. This can result in significant savings as
coordinate tables contain numerous columns with
repeated data like atom number that are used for

Toofanny et al. BMC Bioinformatics 2011, 12:334
http://www.biomedcentral.com/1471-2105/12/334

Page 2 of 10



relational joins to retrieve atom information like name,
mass, element.

Results and Discussion
We investigated the effect of using spatial indexing in
simulation coordinate tables to accelerate the discovery
of nonbonded atomic contacts. We compared the
execution times for the commonly employed heavy-
atom (i.e. non-hydrogen) contact query for 1 ns (1000
frames) of each of our 11 representative metafolds
selected from across the spectrum of system size
(Figure 2, Table 1). In Figure 3, we show the average
execution time for the 1 ns heavy-atom contact queries
with and without the use of spatial indexing. Addi-
tional file 1, Table S1 presents a more detailed com-
parison of the execution times with and without the
spatial index. The results show that for all 11 cases
that we achieved between 13.8 and 90.3% decrease in
execution time when using spatial indexing, i.e. the
time to calculate contacts was between 1.2 and 10.3

times faster. As expected, query times decreased as the
number of distance calculations is decreased (p < 0.05)
for 11 metafolds. For one very small transcription fac-
tor metafold (PDB: 2ADR) the heavy-atom contact
execution time did not significantly change when using
spatial indexing. Further investigation of this case indi-
cates that very small systems enjoy a much more lim-
ited decrease in run-time. Specifically, the transcription
factor of 2ADR has a radius of gyration of 8.5 Å and
as each spatial bin has the minimum dimensions of 5.4
Å by 5.4 Å by 5.4 Å, the entire protein is covered by
one 27-bin chunk. For such cases, the spatial index
method reduces into the naïve neighbour discovery
method in which all pairs of heavy-atoms are consid-
ered and there is no significant difference in run-time.
However, it is worth noting that the run-time did not
increase. Practically speaking, this means that we do
not pay a penalty for the indexing when it is not effec-
tive, and, as a result, all proteins may be treated identi-
cally, regardless of size.

Figure 1 Schematic showing the spatial binning of a periodic box and subsequent evaluation of atomic contacts in adjacent bins. a).
Schematic showing the spatial binning of a periodic box. In this example, the protein (1enh, the engrailed homeodomain) is simulated in a
periodic box of water molecules with dimensions of 50 Å. The periodic box is split into smaller boxes of 10 Å these are the 3 dimensional bins.
For clarity the boxes in this figure are 10 Å, in our implementation we use box dimensions of 5.4 Å. Each bin is assigned an index and hence
every atom at every time point will have associated X, Y, Z coordinates and a bin index. b) Schematic describing the evaluation of adjacent bins.
To reduce the computational expense for detecting nearest neighbors one evaluates the atomic pair distance for atoms that are within the
same bin and the immediately adjacent bins, shown by the cyan boxes. The white transparent sphere has a radius represented by the cutoff
distance used as our criteria for the consideration of an atom to be in contact with the atom at the center of the sphere.
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The significant decrease in execution time for identifi-
cation of nonbonded contacts had three significant
implications. First, contact calculations are substantially
more tractable for very large proteins in Dynameomics.
Considering one of the largest fold representatives
(1ehe) in our Dynameomics set, which contains 399
residues (plus a heme moiety), the average execution
time dropped from 18 minutes and 10 seconds to just
under 1 minute and 45 seconds. Second, the query
execution time is fast enough to enable us to perform
large-scale multi-simulation analyses. Dynameomics is
really about the knowledge discovery over a large

number of protein systems. For example, a key query
for Dynameomics is to identify all of the types of hydro-
phobic contacts across the native state simulations for
all of the 807 metafold representatives to identify pat-
terns. Such an all-encompassing search is no longer
impractical as contact queries across multiple servers
can be executed to return the contact set rapidly. Third,
as the calculation can be run in near real time, contact
queries can be performed on the fly where the result set
can be streamed through analyses rather than stored
permanently and regenerated when required. The cost
of disk space to save the contact results may exceed the

Figure 2 11 metafolds representative of sequence length in Dynameomics. The proteins are ordered by the number of amino acid
residues in each protein. Also see, Table 1.

Table 1 11 representative proteins - number of residues and number of atoms

PDB4 Name Residue Range # residues # protein atoms

2adr Domain of Adr1 DBD from S. cerevisiae 102-130 29 496

1nr2 Thymus and activation-regulated chemokine 8-69 62 1011

1okt Glutathione S-transferase 1-85 85 1412

2tgi Domain of transforming growth factor-beta 2 (TGF- B2) 1-112 112 1750

1d0n Horse plasma gelsolin 27-159 133 2095

1bp5 Domain of serum transferrin 82-246 165 2487

1hgu Human growth hormone 2-190 189 3011

1p88 3-phosphoshikimate 1-carboxyvinyltransferase 25-240 216 3272

1fzw Monomer of glucose-1-phosphate thymidylyltransferase 2-293 292 4560

1qaz Alginate Lyase A1-III 4-354 351 5495

1ehe Cytochrome P450nor 5-403 399 6217
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size of the original coordinate data from which they
were derived. Hence, we would need to more than dou-
ble the size of our existing database configuration if we
were to consider storing the result of contact queries for
all simulations. Furthermore, the ability to run ad-hoc
on-the-fly analyses is the heart of our exploratory
mining efforts for Dynameomics. Our exploratory visua-
lization tool for extremely large datasets, dubbed DIVE
(Data Intensive Visualization Engine) can connect to our
SQL database and rapidly visualize, and act upon, mil-
lions of data points in many dimensions such as the
nonbonded contact queries [16].
The heavy-atom contact query is a computationally

expensive calculation that queries the atomic coordinate
tables (the largest tables in our database). We decided
to use this query (under spatial indexing conditions) as
the basis for testing different options of data and index
compression. The goal of this aspect of the study was to
find a data and index compression scheme for the coor-
dinate tables that saves disk space but does not signifi-
cantly affect query execution times. We investigated 9
sets of data and index compression options and applied

each of these to each of our 11 metafold representative
coordinate tables. As an initial test, we calculated the
heavy-atom contacts for the first nanosecond of each
metafold’s trajectory with each set of compression
options for the coordinates table. Figure 4 shows the
average execution times for calculating heavy-atom con-
tacts (with and without spatial indexing) for 1 ns (i.e.
1000 frames) for each metafold with every type of com-
pression. Figure 5 compares the average compression
for each set of data and index compression options
across all the 11 metafolds. The average compression
ranges from 8 - 36%. The lowest level of compression
arises from having no data compression but row com-
pression on the index. The largest level of compression
was obtained using page compression on both the data
and indexes.
Comparing the total execution times (Figure 5) for the

heavy-atom contacts over 1 ns on the compressed tables
versus the non-compressed tables all sets of compres-
sion options lie within the standard deviation of the
total execution times for the non-compressed tables.
This result is significant as it indicates that we can
adopt any of the compression sets and retain the same
fast execution time for the heavy-atom contacts query.
The prospect of being able to compress our coordinate
data by 36%, using both page data and page index com-
pression, was investigated further by calculating heavy-
atom contacts for the full 51 ns (i.e., 51,000 frames) of
each simulation. We compared the execution times
(with and without spatial indexing) of the non-com-
pressed coordinate tables to that of the 36% compressed
data (Figure 6). There is no significant difference (Addi-
tional file 2, Table S2a, b) in execution times for exam-
ining the full trajectories when calculating contacts from
an uncompressed coordinate table and page compres-
sion on coordinate tables and indexes with and without
spatial indexing. This result confirms our earlier finding
on uncompressed tables and demonstrates that the pro-
blem scales appropriately (Figure 5). Additional file 3,
Table S3a, b compares the full trajectory execution
times for the compressed and non-compressed tables
with and without spatial indexing. Spatial indexing, both
with and without compression, is 1.4 to ~5.3 times fas-
ter for all but the smallest two proteins. As 85% of the
Dynameomics database is made up of atomic coordinate
simulation data, a 36% space saving of 70 TB of uncom-
pressed data will net an additional 21 TB of disk space.
This compression scheme is oriented towards repeated
values, such as those found in dimension keys.
These data suggest that for other static (i.e. non-trans-

actional) databases implemented in MS SQL Server
2008, compression may offer substantial disk savings.
Furthermore, the framework of spatial indexing in a
SQL database to speed up the discovery of near

Figure 3 Comparison of heavy-atom contacts query with and
without spatial indexing for 11 metafold representatives over
1 ns. With no spatial indexing (circles) applied the calculation of
heavy-atom contacts over 1 ns (1000 frames) takes an average of
~20 minutes (n = 6) for the largest protein 1ehe. For the smallest
protein, 2adr, the average time taken is around 10 seconds. When
spatial indexing is applied (triangles) the is a dramatic decrease in
execution time for 1ehe from ~20 minutes to an average of 1
minute 46 seconds. There is almost no change in execution time for
2adr since it is an extremely small protein, such that spatial indexing
has little effect.
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neighbours can be applied to other neighbor discovery
problems, such as calculation of the distance between
galaxies and/or planets in the field of astrophysics. The
spatial indexing framework can be applied to those pro-
blems where the space is not bound to three-dimen-
sions, but have fixed dimensional boundaries, and could
be used to cluster highly dimensional data sets.

Conclusions
The spatial indexing implementation presented herein for
our multi-terabyte MD simulation database decreases
neighbour discovery and interaction query execution
times by up to 90%. While the speed-up for small proteins
was less pronounced, the implementation was suitable for
all sizes of simulation systems without introducing over-
head for small systems and significant improvement in
performance for larger systems. In addition, this work

shows that all sets of page and row compression across
the data and indexes we tested have no appreciable effect
on the run-time of the heavy-atom contact query. The
page/page compression set for data in indexes yielded a
36% disk savings for full trajectories over non-compressed
tables. This represents a huge savings for large data sets.

Methods
MD Simulations
Details of how we selected the 807 metafolds for simula-
tion in our Dynameomics project can be found else-
where ([4,5]). The MD simulations were performed
using in lucem molecular mechanics (ilmm) [13] follow-
ing the Dynameomics protocol described by Beck et al.
[15]. Each of the metafolds had at least one native-state
simulation performed at 298 K for at least 51 ns of
simulation time, along with 5-8 unfolding simulations at

Figure 4 Comparison of 9 sets of compression options and their effect on query execution times with and without spatial indexing. P
= page, R = row, N = none, e.g. PP represents Page compression on both the data and index where as NR represents no data compression but
row compression on the index. Execution times with spatial indexing off are in circles and triangles denote spatial indexing on.
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498 K with two of these simulations being at least 51 ns
long. Structures were saved every 0.2 ps for the shorter
simulations and every 1 ps for the longer simulations.
Coordinates and analyses from the simulations were
loaded into our Dynameomics database (for a more in-
depth discussion on the development and technical
details of the database see [7]).
When a simulation is loaded into the database, it is

assigned a unique identifier and a specific location, i.e.
server and database. Three tables were created in the
assigned database to hold the underlying data for the
simulation: a trajectory coordinate table, a box table,
and bins table. Each table was named by the simulation
identifier, for example the tables for simulation with
identifier 37 would be “Coord_37,” “Box_37,” and
“Bins_37.” The coordinate table contained columns for
each of the three-dimensional coordinates, atom num-
ber, step, structure identifier, and instance (which is
used to identify monomers in a multimer system). The
box table had columns for the x, y, and z dimensions of
the periodic box at each time point. The bins table
recorded the set of adjacent bins for each primary bin in
the box. All three tables had clustered primary keys and
constraints and the coordinate table also had a second-
ary covering index.

Figure 5 Total table size using different compression options
and total execution times for the 1 ns contacts query. P =
page, R = row, N = none, e.g. PP represents Page compression on
both the data and index where as NR represents no data
compression but row compression on the index. Total execution
times are the sum of the individual representatives query times.
Even with the largest compression using page compression on
both the data and indexes, total execution times were comparable
to the non-compressed tables.

Figure 6 Comparison of heavy-atom query execution times with and without spatial indexing using uncompressed tables and page/
page compression. NN denotes no data and no index compression whilst PP denotes page compression on the data and index. There is no
significant difference in execution times.
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We selected 11 metafolds to represent the range in
sequence size that our Dynameomics project covers
from the smallest: ADR1 DNA-binding domain from
Saccharomyces Cerevisiae (2adr, 29 residues and a zinc
ion, [17]); to one of our largest: cytochrome P450 (1ehe,
399 residues and heme, [18]). Figure 2 shows the meta-
folds selected. In the test conducted in this study we
chose to look at the 51 ns native state (298 K) simula-
tions for each of these proteins.

Implementation of spatial indexing in the database
To calculate contacts in SQL, an expensive self-join of
the coordinate table must be used in addition to joins
with structural data tables. A simplified version of this
query is shown in Figure 7. Conditions in the JOIN
clauses ensure that comparisons were made within the
same frame (a.step = b.step) and with a granularity of 1
ps (a.step % 500 = 0 and b.step % 500 = 0). As distance
is reflexive, we only calculated the distance from a
heavy-atom in “a” to another in “b” where the atom
index of a was less than b (a.atom_number < b.atom_-
number). We also excluded contacts in the same or
adjacent residues (a.residue_id < b.residue_id - 1) as
these are either through bond contacts or simply non-
informative. Finally, the query only considered heavy-
atoms, that is all non-hydrogen atoms (c.heavy_atom =
1 and d.heavy_atom = 1).
There are three supported join types in SQL Server:

Hash, Merge, and Loop. Normally queries are expressed
using only the keyword JOIN, leaving the optimizer free
to choose the join type when an execution plan for a
query is prepared. Join types are described in detail else-
where [19]. The self-join of the coordinate table pre-
sented unique difficulty because of the size of the
coordinate table. The optimizer will consistently choose
a hash join, which will cause an expensive build of a
temporary hash structure. In contrast, the merge join
type does not require the temporary structure, and as
the data are ordered based on the primary key, this
approach is significantly faster.
We optimized the structure of the query with the use

of two right associative joins [20] to cause early evalua-
tion of the coordinate and atom ID table joins. We also
pushed predicates directly into the join clauses. How-
ever, despite these optimizations a great deal of time
was spent calculating distances for atoms that are out-
side the 5.4 Å distance of interest. These additional cal-
culations added a significant performance burden,
making it impractical to run this query over more than
a handful of trajectories.
In our spatial indexing implementation we subdivided

the periodic box used for simulation and divided it
evenly into bins with dimensions of at least 5.4 Å on all
axes. The bins were assigned consecutive numbers

creating a one-dimensional hash. For our simulation
data, the number of bins in a system does not exceed
232-1 bins, so it is possible to represent the bin index as
a SQL 32bit integer. Equation 1.1 was used to sort the
atoms based on their coordinates x, y, and z into the bin
array. Subsequently, Eq. 1.2 was used to calculate the

SELECT     j.sim_id
         , j.step
         , j.residue_id_x
         , j.atom_number_x
         , j.residue_id_y
         , j.atom_number_y
         , SQRT(j.distance) as distance
INTO dbo.ha_contacts_3326_Full
FROM (
         SELECT  a.sim_id
                 , a.step
                 , c.residue_id as residue_id_x
                 , c.atom_number as atom_number_x
                 , c.atom_type as atom_type_x
                 , d.residue_id as residue_id_y
                 , d.atom_number as atom_number_y
                 , d.atom_type as atom_type_y
                 ,   (b.x_coord - a.x_coord) * (b.x_coord - a.x_coord) +
                     (b.y_coord - a.y_coord) * (b.y_coord - a.y_coord) +
                     (b.z_coord - a.z_coord) * (b.z_coord - a.z_coord) as distance
         FROM    (   dbo.Coord_3326 AS a
                     INNER MERGE JOIN dbo.id as c
                         ON (    c.heavy_atom = 1
                                 AND a.struct_id   = c.struct_id
                                 AND a.atom_number = c.atom_number
                                 AND a.[step] % 500 = 0
                                 AND a.[step] between 0 and 25500000
                                 ))
                     JOIN dbo.Bins_3326 AS n
                           ON ( n.hash3d_index = a.bin )
 
                     INNER MERGE JOIN (  dbo.Coord_3326 AS b
                         INNER MERGE JOIN dbo.id as d
                             ON (  d.heavy_atom = 1
                                   AND b.struct_id   = d.struct_id
                                   AND b.atom_number = d.atom_number
                                   AND b.[step] % 500 = 0
                                  AND b.[step] between 0 and 25500000
                         ))
                         ON (    a.[step] = b.[step]
                                 AND a.atom_number <b.atom_number
                                 AND c.residue_id < d.residue_id-1
                                 AND n.hash3d_index_neighbor = b.bin )
) AS j
WHERE j.distance < (CASE
                     WHEN j.atom_type_x = 'C'
                          AND j.atom_type_y = 'C' THEN 29.16
                     ELSE 21.16
                    END)

Figure 7 Simplified heavy-atom contacts query. The size of the
join is reduced by applying two right associative join clauses,
shown in bold. Right associative joins are a mechanism to control
the order of join evaluation. In this case we insure that only the
rows meeting satisfying the given predicates participate in the final
self-join (i.e. heavy-atoms and only the first 1 ns of simulation time).
The spatial-index join is shown in bold-italics. This clause allows
SQL to trim away most atoms outside the cutoff range without
needing to perform the distance calculation, greatly reducing the
number of operations as well as rows that would later be thrown
away by the distance cutoff. Finally, MERGE joins are explicitly
specified to avoid the optimizer choosing a HASH join for the
coordinate table self-join.
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bin index and this result was stored in the coordinate
table, alongside the coordinates. The bins table was cre-
ated for each simulation, in which each row is the list of
26 adjacent bins for a given bin index. This table was
populated using a C# user defined function at the time
the simulation coordinate data are loaded.

bincoord(x, y, z) =(
x + boxsizex

2

binsizex
,
y + boxsizey

2

binsizey
,
z + boxsizez

2

binsizez

)
(1:1)

binindex(i,j,k) =

i + j ∗ binsx + z ∗ binsx ∗ binsy
(1:2)

With the bins table in place, the contact query pre-
sented earlier can be modified slightly to filter coordi-
nates considered using the bin column in the coordinate
table. The modification is shown in bold (Figure 7).
This simple join allows the query optimizer to quickly
remove distance calculations based on a comparison of
integer columns instead of projecting and transforming
x, y, z from each half of the join. In this way, the bins
table acted as a highly optimized spatial index.

Table and index compression in the database
To investigate the effect of compression on database
queries, we returned to the contacts query introduced
earlier in this section, as it is a commonly used and
computationally expensive query in trajectory analysis
and reviewed performance data collected against all
combinations of compression options across our sample
set of 11 protein simulations. We also considered non-
compressed and fully page compressed contact queries
for the first 1 nanosecond that did not utilize the spatial
indexing optimization.

Database and System setup
Two Dell R710 servers each equipped with dual hex-
core processors were used to collect run-time data. The
base operating system is Windows Server 2008 Enter-
prise x64 R2 and the database engine used was SQL
Server 2008 R2 Enterprise x64 R2. Detailed hardware
and software configuration information is shown in
Table 2.
One database called hash3d-700 was created on each

server and populated with a copy of coordinate trajec-
tory tables and dimension tables from our primary data
warehouse [7,21]. The base coordinate tables were then
copied to additional tables, adding an additional suffix
to indicate data and index compression settings. After
all coordinate tables were created and populated, identi-
cal primary keys, constraints and indexes were applied.
Tables were then compressed using ALTER TABLE

statements. A script was run on all the coordinate table
compression combinations to create contact tables. The
size of each hash3d-700 database size was then adjusted
upwards to 1.2 TB and the SQL Server process shut-
down. Finally, the data and system partitions were
defragmented with the defrag.exe to clean up file sys-
tem fragmentation caused by auto-growth during
loading.
Queries were run in SQL Server Management studio

running on a remote machine with a connection to the
test database server. Queries were executed with SET
STATISTICS IO ON and SET STATISTICS TIME ON
to capture logical and physical read statistics. To control
for performance gains caused by data and/or query plan
caching; and background write operations from result
tables, a series of three system statements were executed
prior to running the test query (Additional file 4, Figure
S1). The CHECKPOINT statement insures that any
dirty pages (such as those result rows written out by the
previous query) are written to disk. The FREESYSTEM-
CACHE command eliminates any stored query or proce-
dure plans. The DROPCLEANBUFFERS flushes out the
current cache leaving it effectively cold, as though SQL
Server had just started. During the collection of run-time
data, access to both servers was restricted and only the
query of interest was permitted to run.
We calculated the pairs of heavy-atom contacts for the

1st nanosecond of each simulation (1000 frames) and
compared the execution times with and without spatial
indexing. Queries were written in SQL and executed in
MS SQL management studio as described in the above
section. Heavy-atom contacts calculations were per-
formed in triplicate for each simulation, ensuring the
system cache was cleared between each run to obtain
accurate performance statistics. Statistics were calculated

Table 2 Detailed hardware and software configuration
information

Hardware Description

Server Dell R710

Processors Dual Intel Xeon X5650s (x64 Hex Core)

Memory 48 GB

Storage H700 Integrated RAID SAS Disk Controller

System
Disks

136 GB on two 15K RPM 150GB SAS disks, RAID 1
(Mirrored)

Data Disks 7,450 GB on six 7200 RPM 2TB SAS disks, RAID 0
(Striped)

Software

OS Windows Server 2008 R2 Enterprise x64

Database SQL Server 2008 R2 Enterprise x64

SQL Enabled for all CPUs

SQL
Memory

Limited to 40,960 MB (8GB for OS)

Anti-Virus Sophos Endpoint Security and Control, version 9

Toofanny et al. BMC Bioinformatics 2011, 12:334
http://www.biomedcentral.com/1471-2105/12/334

Page 9 of 10



using a two sample two-sided t-test for unequal
variances.
We investigated 9 sets of compression options on

both data and indices for each coordinate table for the
11 simulations in our test set. We recorded the extent
of compression of each set of compression options com-
pared with the non-compressed coordinate tables. We
then ran an initial test of performance by investigating
the execution time and disk input and output operations
of the heavy-atom contacts query over the first nanose-
cond of the simulation. Subsequently, we examined the
execution time of the heavy-atom contacts query over
the full 51 ns (51,000 frames) native state trajectory for
each of the proteins in our test set.

Additional material

Additional file 1: Table S1. Comparison of 1 ns contact query time
with and without spatial indexing. Statistics carried out using a two-
sample t test with unequal variances - comparing contact query time
with and without spatial indexing over 1 ns trajectories.

Additional file 2: Table S2. Comparison of 51 ns contact query time
with/without spatial indexing on compressed and uncompressed
tables. Statistics carried out using a two-sample t test with unequal
variances - comparing contact query time on compressed and
uncompressed tables with and without spatial indexing over 51 ns
trajectories.

Additional file 3: Table S3. Comparison of 51 ns contact query time
with and without spatial indexing on compressed and
uncompressed tables. Tables showing the effect of spatial indexing on
contact query time when the tables and compressed.

Additional file 4: Figure S1. SQL commands for clearing the system
cache. SQL commands for clearing the system cache.
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