
SOFTWARE Open Access

Visual gene developer: a fully programmable
bioinformatics software for synthetic gene
optimization
Sang-Kyu Jung and Karen McDonald*

Abstract

Background: Direct gene synthesis is becoming more popular owing to decreases in gene synthesis pricing.
Compared with using natural genes, gene synthesis provides a good opportunity to optimize gene sequence for
specific applications. In order to facilitate gene optimization, we have developed a stand-alone software called
Visual Gene Developer.

Results: The software not only provides general functions for gene analysis and optimization along with an
interactive user-friendly interface, but also includes unique features such as programming capability, dedicated
mRNA secondary structure prediction, artificial neural network modeling, network & multi-threaded computing, and
user-accessible programming modules. The software allows a user to analyze and optimize a sequence using main
menu functions or specialized module windows. Alternatively, gene optimization can be initiated by designing a
gene construct and configuring an optimization strategy. A user can choose several predefined or user-defined
algorithms to design a complicated strategy. The software provides expandable functionality as platform software
supporting module development using popular script languages such as VBScript and JScript in the software
programming environment.

Conclusion: Visual Gene Developer is useful for both researchers who want to quickly analyze and optimize genes,
and those who are interested in developing and testing new algorithms in bioinformatics. The software is available
for free download at http://www.visualgenedeveloper.net.

Background
Several biotech companies provide gene synthesis services
at an affordable price. Any DNA sequences can be
designed and synthesized with a fast turnaround time of
less than 1 month. At the present time, the bottom line
price has already dropped to about $0.35/base for indivi-
dual customers. So it currently costs only $500 (US Dollar)
to synthesize a typical gene of 1.5 kilo base pairs with
sequence confirmation. Although researchers relied on
natural sources or collaborators to get genes in the past,
direct synthesis of genes has become a more economic
and reliable way to obtain source genes.
Moreover, it has a great advantage in that it allows the

redesign and optimization of native DNA sequences to
improve gene expression. There have been many successful

reports demonstrating over-expression after sequence opti-
mization. One of the most popular approaches is codon
optimization for heterologous gene expression. The idea is
that host species have different preferred codon usages for
amino acid incorporation and unfavorable codons in a for-
eign gene can be replaced with favorable codons while
maintaining the expression of the same amino acids.
Although it is still controversial and recent work has called
into question its usefulness as a predictor of expression in
some hosts, CAI (Codon adaptation index) or codon bias
has been one of the most commonly used indexes to evalu-
ate genes. In a rational manner, codon optimized genes
that imitate a codon bias of especially highly expressed
genes or exclude rare codons could significantly increase
gene expression level [1-6]. According to results from
recent large scale experiments, gene expression level varied
more than 40 fold in 40 variants and up to 250 folds in 154* Correspondence: kamcdonald@ucdavis.edu

Department of Chemical Engineering and Materials Science, University of
California, Davis, 1 Shields Ave, Davis, CA 95616, USA

Jung and McDonald BMC Bioinformatics 2011, 12:340
http://www.biomedcentral.com/1471-2105/12/340

© 2011 Jung and McDonald; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://www.visualgenedeveloper.net
mailto:kamcdonald@ucdavis.edu
http://creativecommons.org/licenses/by/2.0

variants [7,8]. These studies provide compelling evidence
that synthetic gene design can have a significant impact.
However, the mechanism of gene expression is compli-

cated at the molecular level and codon bias is not the only
determinant for gene expression efficiency. For example,
there is an active debate on the relationship between
codon bias, mRNA folding energy, and gene expression.
Welch et al. synthesized more than 40 variants of two
genes each and compared actual expression levels in E. coli
[7]. They identified the most important 10 codons encod-
ing a subset of amino acids that strongly accounted for
expression level. However, they couldn’t find a correlation
between mRNA folding energy and expression probably
due to weak mRNA binding energy across the synthetic
gene library. Tuller et al. have a slightly different finding
from a genome scale study [9]. They concluded that
although the gene expression level of individual genes can’t
be determined simply from a correlation between folding
energy and expression level, mRNA folding energy still
strongly modulates translation efficiency which is corre-
lated with codon bias determined by tRNA adaptation
index. Moreover, Kudla et al. developed a larger collection
of 154 synthetic genes coding for GFP and tried to find a
rule for gene expression [8]. Their results showed that
mRNA folding energy at sites near the ribosomal binding
sites had a dominant effect on gene expression for efficient
translation initiation and also that codon bias measured by
CAI wasn’t associated with GFP expression level. There-
fore, the issue of the influence of codon bias and mRNA
folding energy on protein production is currently open to
discussion. Moreover, regarding gene design criteria, there
are many other factors such as Shine-Dalgarno or Kozak’s
context sequence, repeated sequences, potential polyade-
nylation sites, cryptic splice sites, introns, and nuclease
cleavage sites as well as restriction enzyme sites, GC con-
tent, UTR (untranslated region), and use of rare codons
that affect gene expression.
Due to the complicated gene design criteria, gene opti-

mization is not easy since it requires huge repetitive com-
putations. Thus, it is highly necessary to use software
design tools to assist in the process of gene design, analysis,
and optimization. There are several software packages cur-
rently available such as Codon optimizer [10], DNAWorks
[11], DyNAVacS [12], GeMS [13], Gene Composer [14],
Gene Designer [15], GeneDesign [16], GeneOptimizer
[17], JCat [18], OPTIMIZER [19], Synthetic Gene Designer
[20], and UpGene [21]. However, one of the challenges
arising in the implementation of gene optimization algo-
rithms is that the “ideal” gene optimization algorithm has
not been fully established since we still have very limited
understanding of gene expression and regulation mechan-
isms. Furthermore, the development of algorithms will
require extensive coupling, perhaps in an iterative fashion,
between experimental studies and computational model

development. Currently, high level expression and/or accu-
rate prediction of heterologous synthetic gene expression
cannot be guaranteed, particularly in diverse host organ-
isms. Therefore, there is a need to develop flexible software
that offers a greater variability of gene optimization strate-
gies as well as modeling tools, and the ability to couple
experimental studies with algorithm development. At the
same time, the software needs to provide diverse options
and toolboxes for gene analysis to help researchers with
the study of synthetic gene design.
In order to facilitate gene design, we have developed a

unique gene design software called Visual Gene Developer
(Figure 1). The software provides a user-friendly interface
and includes many useful functions such as mRNA second-
ary structure/binding energy prediction, codon usage/
mRNA optimization, GC content/Nc (effective number of
codons)/CAI calculation, sequence comparison, repeated
sequence search, multiple query sequence search, and silent
removal of undesirable sequences. Visual Gene Developer’s
interface has been optimized to handle a large number of
genes and can perform batch analysis for a genome-scale
study. In particular, the function to predict mRNA second-
ary structure or optimize the stability of mRNA is impor-
tant for optimization since mRNA structure or Gibbs free
energy may affect translation initiation and elongation and
consequently protein synthesis. A recent review paper pro-
vides a good summary on the issue [22]. Furthermore, the
software not only supports network and multi-threaded
computing that reduce the processing time significantly but
also includes an artificial neural network prediction tool-
box, a nonlinear multivariable method that has not been
implemented in other software. The artificial neural net-
work regression toolbox may be potentially useful to ana-
lyze and optimize sequences since some researchers have
used artificial neural network models to identify gene
expression patterns [23], signal peptides [24], intron splice
sites [25,26], and translation initiation sites [27], and others
have demonstrated the usefulness of linear empirical mod-
eling tools such as the PLS (Partial least square) prediction
toolbox to identify important codons and predict gene
expression level [7]. One of the powerful features that only
Visual Gene Developer has, is that the software supports
script language programming using Visual basic script
(VBScript) and Java script (or JScript), and allows a user to
develop new algorithms in an integrated programming
environment where built-in editing/test tools, 80 helper
functions of gene analysis and optimization, and a custo-
mizable graphics interface are provided. Therefore, the soft-
ware allows researchers to test new optimization strategies
or gene analysis metrics possibly allowing the discovery of
novel rules in terms of gene expression with minimal pro-
gramming effort. As a result Visual Gene Developer enables
more flexibility and expandability compared with other
commercial or free software that is currently available.

Jung and McDonald BMC Bioinformatics 2011, 12:340
http://www.biomedcentral.com/1471-2105/12/340

Page 2 of 13

Implementation
As a Microsoft Windows application, Visual Gene Devel-
oper has been developed using Microsoft Visual Studio
2010 and built on .Net™(dot Net) Framework. Like other
Windows software, Visual Gene Developer contains
interactive windows for gene design, analysis and optimi-
zation, and has an intuitive interface for the user. The
software consists of several functional modules as shown
in Figure 2 and most algorithms were compacted into
classes. For simplicity, a class can be defined as a repro-
ducible programming object that contains a collection of
functions. In order to provide a programming environ-
ment like Mathematica™ or Matlab™, a script program-
ming engine was developed along with a module editor
and in the current version (1.0 Build 619) there are 9

essential classes (AppService, GeneService, GeneCon-
struct, mRNApredict, NeuralNet, NetComService, Prop-
ertyBag, CustomUI, and ScriptService) available for
module development. Each class contains many useful
functions. For instance, the ‘GeneService’ class contains
more than 60 helper functions to assist with sequence
manipulation and analysis. In addition, several specialized
routines are also available to access GUI (Graphical User
Interface) objects of Visual Gene Developer. For example,
a user can use the function ‘Workspace_Value’ of the
class ‘AppService’ to read (or write) a sequence from (to)
a text box of the Workspace window and utilize graphics
functions of the class ‘CustomUI’ to generate user-
defined GUI windows to show analysis results as a figure.
Meanwhile, three service modules such as artificial neural

Figure 1 Screenshot of Visual Gene Developer showing basic functions. Current version carries about more than 30 user-friendly GUI
windows that provide specialized functions for gene analysis and optimization.

Jung and McDonald BMC Bioinformatics 2011, 12:340
http://www.biomedcentral.com/1471-2105/12/340

Page 3 of 13

network, mRNA secondary structure prediction, and
Network and multi-threaded computing are implemen-
ted that can be used either as classes, user-friendly win-
dows or toolboxes.

Interface
The software consists of a main menu bar, a toolbar, and
other module windows with a graphical user interface.
The main menu bar that is located at the top of the
screen contains all features and functions. As a collection
of sub menu items, the ‘Project Explorer’ window pro-
vides quick links to other module windows in connection
with the target codon usage table, the gene construct,
and configuration for gene optimization strategy or para-
meters. The ‘Gene construct view’ window shows a gra-
phical representation of a gene construct including
DNA/amino acid sequence, gene construct component
name, and size or location of bases. The ‘Toolbox’

window has a configurable menu system where user-
defined functions selectively can be added as menu items.
Double-clicking on one of menu items, a user can exe-
cute its algorithm. The ‘Workspace’ window is a place
where a sequence is analyzed and manipulated. Many
menu functions will work for the sequence in the ‘Work-
space’ window. For module development, there are four
essential windows such as ‘Module Library’, ‘Module
Editor’, ‘Property Bag Library’, and ‘Property Bag Editor’
windows. Regarding the data file format, Visual Gene
Developer saves, exports, and imports all data files as a
standard ASCII text format that is easily accessible by
other editing software. We disclosed the data file struc-
ture and allow anyone to make use of generated data files
including Project, Script, Property Bag, codon usage
table, and neural network files. Furthermore, for conveni-
ent data exchanges between Visual Gene Developer and
other software such as Microsoft Excel™, SigmaPlot™,

Communicator
New UI form

New

Graphics
Engine Predefined

Script Programming Engine

User accessible

User-defined
modules

functions

Windows
Objects Reproducible class library

modules classes

Visual Gene Developer Framework

Source
Gene

Gene design Gene analysis Gene optimization
Optimized

GenesPredefined/user-
defined analysis

Batch analysis

Configurable workflow
Automated search
Screening process

Flexible definition
Gene construct

Component

Visual Gene Developer Service Module

Batch analysis
Web DB Access

Screening process
Real-time analysis

p
Properties

Artificial neural
network module

mRNA prediction
Engine

Network & multi-
threaded computing

Figure 2 Software architecture. ‘Visual Gene Developer Framework’ allows a user to utilize implemented functions and develop new modules,
and Service Modules were developed to provide 3 useful tools. Any gene can be quickly designed, analyzed, and optimized in the integrated
software environment.

Jung and McDonald BMC Bioinformatics 2011, 12:340
http://www.biomedcentral.com/1471-2105/12/340

Page 4 of 13

or Origin™, we provide copy and paste function at many
locations of the software.
(1) Gene design, analysis, and optimization
As one of the most important features, Visual Gene Devel-
oper not only contains many useful functions to facilitate
gene design and analysis but also provides versatile optimi-
zation strategies. Since most basic functions are integrated
into the main menu of the software, a user can easily
manipulate and analyze a sequence. For example, the
‘Function’ section of the main menu includes parsing,
translating, reversing a sequence, and generating compli-
mentary sequence as well as silent removal of undesirable
sequences and codon/mRNA optimization for a sequence
in the ‘Workspace’ window. The ‘Analysis’ section of the
menu covers calculating codon usage, CAI, GC content,
Nc, searching multiple query sequence or repeated
sequence, comparing two sequences, and predicting
mRNA secondary structure. To build a codon usage table
for CAI calculation or codon usage adaptation, the soft-
ware has a function to directly import codon usage tables
from CUTG (Codon Usage Tabulated from GenBank)
website (http://www.kazusa.or.jp/codon/) and calculate
RSCU (Relative Synonymous Codon Usage), RSCUmax,
and w value (Relative adaptiveness of a codon), and also
helps users build their own local codon usage database for
highly expressed genes within genomes under translational
selection. Regarding sequence optimization, although a
user can simply use basic functions mentioned above, the
software provides a more advanced tool to solve compli-
cated optimization problems. Using ‘Gene Construct
Designer’ window, a user can design a gene construct that
has several different gene construct components, configure
optimization conditions in the ‘Configuration of Gene
Optimization’ window, and run the optimization process
in the ‘’Gene Optimization’ window. The optimization sys-
tem is based on the combination of multiple algorithms. A
user can select several different algorithms to design a
unique optimization strategy. For example, the simplest
combination may be using ‘Monte-Carlo Codon Optimi-
zation’ and ‘Check CAI’ functions. The former function is
to optimize a gene and the latter is to screen out an
improper gene when its CAI value is lower than a setpoint.
The implemented algorithms include performing silent
removal, checking repeated sequences, restriction enzyme
sites, Gibbs free energy of mRNA secondary structures,
and etc.
(2) Programming capability
As already mentioned, there have been numerous trials
to improve heterologous gene expression by modifying
the DNA sequence, including codon optimization. How-
ever, it is still not clear what the best gene design criteria
is because of insufficient knowledge of gene expression
and regulation mechanisms at the molecular level, parti-
cularly for a wide variety of potential host organisms.

Therefore, currently there exists no generally accepted
way to optimize gene designs and many researchers are
trying to develop and improve gene optimization algo-
rithms. Of course each algorithm needs to be confirmed
by experiments.
In order to provide a very flexible way to design a new

algorithm, Visual Gene Developer supports script language
programming and allows users to develop new functions
and plug-ins to expand the functionality of the software
(Figure 3). For example, although several useful gene ana-
lysis index parameters such as CAI, GC content, mRNA
secondary Gibbs free energy, and Nc are known and also
available in Visual Gene Developer, there are still many
opportunities to identify other useful indices. To test a
new finding, a user can manipulate algorithm and easily
add the function to the software. To offer programming
capability, the software has an integrated script engine and
interface to process two popular script languages:
VBScript (Visual Basic script) and JScript (Java script). A
user can develop and test a new module in the ‘Module
Editor’ window and manage modules in the ‘Module
Library’ window to delete or edit modules. To facilitate
code development, Visual Gene Developer has a unique
UI called a configurable Property Bag that can contain
several different properties. As a window UI object where
an end-user can set parameter values, a Property Bag can
be defined by the user and associated with the module.
Using a specialized class, ‘PropertyBag’, a module develo-
per can read or write a value of a property calling property
name. In that way, a Property Bag works as a visual com-
munication port between an end-user and a module devel-
oper to change the behavior of a module even though an
end-user may not recognize user-defined algorithm and
interface. Two module windows (’PropertyBag Editor’ and
‘PropertyBag Library’) are used to define Property Bags. A
user can deploy a module to a specified location of a win-
dow according to defined module category.
As platform software, Visual Gene Developer provides

more than 170 helper functions that are compacted into
classes. Essential classes and their functions are sum-
marized in Table 1.
(3) mRNA secondary structure prediction
Visual Gene Developer carries a sophisticated mRNA
prediction engine that can be used to optimize a gene
construct by adjusting mRNA binding energy or struc-
ture. The engine was developed as a class by embedding
the stand-alone mRNA prediction software called Vienna
RNA Secondary Structure Package developed by
Hofacker [28]. For module developers, Visual Gene
Developer provides a user accessible class named as
‘mRNApredict’. The class contains many simplified func-
tions that can be used with a single line code in Visual
Gene Developer’s programming environment to predict
MFE (minimum free energy) mRNA secondary structure,

Jung and McDonald BMC Bioinformatics 2011, 12:340
http://www.biomedcentral.com/1471-2105/12/340

Page 5 of 13

http://www.kazusa.or.jp/codon/

calculate mRNA binding energy, visualize a predicted
structure, or read raw data of the predicted structure.
Therefore, it is highly useful to develop more compli-
cated optimization algorithm modules that utilize mRNA
structure prediction. For example, local Gibbs free energy
of mRNA structure can be repeatedly calculated to gen-
erate a binding energy profile over a test sequence.
Visual Gene Developer also includes simple menu

functions and a specialized window form for mRNA
structure prediction. After putting a sequence into a text-
box in the ‘Workspace’ window or ‘mRNA structure’
window and clicking on menu or ‘Calculation’ button, a
predicted mRNA secondary structure will be quickly
shown in the ‘mRNA structure viewer’ window with a

graphical representation of base pairing, probability of
base pairing, energy, and locations. The ‘mRNA structure
viewer’ window also has a function to export the image
or raw data to a clipboard.
With regard to mRNA structure optimization, a com-

mon problem is that it usually requires a large number of
repeated calculations of mRNA binding energy. Definitely,
it takes a much longer time to find optimal mRNA struc-
ture compared with codon optimization. To reduce the
overall calculation time, the mRNA prediction engine was
designed and optimized for network and multi-threaded
computing as will be explained later. Utilizing several
computers or multiple threads in a computer, multiple
processes of mRNA structure prediction can be performed

Figure 3 Integrated programming environment for module and custom UI development. For module development, 4 specialized
windows such as ‘Module Library’, ‘Module Editor’, ‘PropertyBag Library’, and ‘PropertyBag Editor’ are provided (top and left bottom). 4 CustomUI
forms (bottom) titled ‘Codon bias diagram’, ‘GC content analysis’, ‘CAI profile diagram’, and ‘mRNA binding energy profile’ are shown to
demonstrate how user-defined modules work.

Jung and McDonald BMC Bioinformatics 2011, 12:340
http://www.biomedcentral.com/1471-2105/12/340

Page 6 of 13

at the same time to analyze multiple gene constructs or
gene construct components. Thus Visual Gene Developer
can be used to analyze mRNA secondary structures of sev-
eral thousand genes for genome-scale studies as well as
gene optimization in itself.
(4) Artificial neural network module
An artificial neural network model can be defined as a
non-linear computational model that consists of a num-
ber of highly interconnected artificial neurons to simulate
the structure and function of biological neural networks.
The goal is mapping a set of input patterns onto a corre-
sponding set of output patterns. It has been widely used
to model complicated nonlinear systems that consist of
multiple variables to predict data patterns.
Due to the potential application of artificial neural net-

work models for gene analysis and optimization, Visual
Gene Developer includes an artificial neural network pre-
diction toolbox. The software has a configuration window
to design the topology and adjust learning parameters and
can directly import (or export) a data set from the clip-
board or typical ASCII text format files. A typical feedfor-
ward neural network with a standard back propagation
learning algorithm to train networks was implemented
[29].
As with other classes, Visual Gene Developer allows a

user to programmatically access the neural network
toolbox and class. This means that users can utilize

artificial neural network models when they develop new
modules. For example, it is possible to predict gene
expression levels of gene constructs in real time during
the gene optimization process if a user has already
developed and trained neural networks to correlate sev-
eral different parameters to the expression level. In addi-
tion, the software contains useful functions to analyze
the trained neural network map and test input and out-
put variables as 2-D or ternary diagrams.
(5) Network & multi-threaded computing
Since gene analysis and optimization processes usually
require extensive computations, it may take long time to
find optimal genes if there are a lot of genes to analyze
and/or if the gene analysis algorithms are complicated. For
example, in the case of mRNA secondary structure predic-
tion, it takes about 30 seconds to calculate a global mRNA
secondary structure for a typical size gene of 1~1.5 kilo
base pairs and it will take at least 3 days to generate
mRNA secondary structures of 10,000 genes using a Pen-
tium 4 computer. In order to reduce the calculation time,
a grid/parallel computing using a workstation or a super-
computer is very useful [30-32]. However, the problem is
that it is not easy for non-experts to access to those com-
puting resources.
Network or multi-threaded computing can be a good

alternative and Visual Gene Developer supports this
approach for the calculation of mRNA structure or

Table 1 Summary of user-accessible classes and functions

Class name Subject Example of functions

AppService Miscellaneous application service
(6 functions)

- Export data to clipboard
- Access to Workspace window

- Show instant message

GeneService Sequence manipulation, analysis, optimization
(62 functions)

- Parse, translate, reverse, etc.
- Calculate CAI, Nc, GC contents

- Search query/repeated sequences
- Do codon/mRNA optimization

- Remove undesired sequences silently

GeneConstruct Access Gene construct and components
(12 functions)

- Manipulate gene construct components
- Get current gene construct index
- Access to a real time analysis table

mRNApredict Prediction of mRNA secondary structure
(18 functions)

- Predict mRNA structure and binding energy
- Visualize predicted structure

- Read raw data of mRNA structure

NeuralNet Artificial neural network prediction module
(6 functions)

- Open trained network map file
- Set input variables
- Predict outputs

CustomUI Custom GUI form and graphics engine
(27 functions)

- Draw line, circle, rectangles, pie, arc, and text
- Export raw data and image

NetComService Network and multi-threaded computing module
(23 functions)

- Connect/disconnect service
- Get information about server, client, jobs

PropertyBag Manipulation of Property Bag
(11 functions)

- Clear and add property
- Read/write parameter values

ScriptService Execution of user defined module
(6 functions)

- Load/run user-defined script module
- Assign parameter array

- Retrieve results

Jung and McDonald BMC Bioinformatics 2011, 12:340
http://www.biomedcentral.com/1471-2105/12/340

Page 7 of 13

binding energy as well as user-defined functions. The
term ‘network computing system’ generally refers a sys-
tem that utilizes multiple computers that are connected
to a network to perform computational tasks. The idea
is that if several computers are available and they are
connected to the internet, Visual Gene Developer con-
nects those computers and splits the server’s work load
to the connected computers. For example, in order to
calculate mRNA binding energy of 10 genes, Visual
Gene Developer’s server transfer gene sequence data to
10 client computers and then receives calculated results
from them. Thus the theoretical processing time can be
reduced to 1/10 of the original processing time if data
transfer time is neglected. On the contrary to network
computing, multi-threaded computing means a utiliza-
tion of multiple threads in a single core or a multi-core
computer. The concept of multiple threads or multiple
processes has a close relationship with multi-tasking in a
computer. For reference, a computer or an operating sys-
tem runs an application on a process and each process
consists of at least one thread. As an actual programming
code, a thread performs a certain job. However, in spite
of great advantages of multi-tasking, it significantly
reduces overall performance of a single application. To
overcome this intrinsic problem, Visual Gene Developer
executes multiple client processes on a single computer
and links them together on a local network. In this way,
Visual Gene Developer simulates a multi-threaded com-
puting system that makes use of all computer resources
more efficiently.
Visual Gene Developer has a robust network & multi-

threaded computing module with a user-friendly inter-
face and provides a specialized class that contains several
useful functions to monitor network connections.
Because all functions including data communication pro-
tocol were implemented into a single executable file, the
software doesn’t require any expensive hardware and has
an ability to operate both a server and multiple clients at
the same time. Once computers are connected to the
internet, Visual Gene Developer allows a user to easily
setup a server and clients in the ‘Server’ window. On the
client side, a user can add new clients by choosing ‘Add
client’ in the main menu. The ‘Job list’ window shows the
current status and includes functions to pause the service
or cancel reserved jobs.

Results
Gene design
Visual Gene Developer has a hierarchical and expandable
system to define a gene construct and gene construct
components. A gene construct is defined as a full length
sequence that consists of several gene construct compo-
nents as building blocks. Each gene construct component

has a collection of predefined properties that is referred
to as gene construct component type. A property which
has its own name and storage space works as a variable
that can be used to store information such as DNA
sequence. A gene construct component type determines
the data structure of a gene construct component, and
each gene construct component can possess several dif-
ferent sequence or non-sequence data.
As an example, a gene construct may have 4 different

gene construct components such as 5’ HindIII restriction
enzyme site, Shine-Dalgarno sequence, GFP coding
sequence, and 3’ multiple cloning site in consecutive
order. Each gene construct component belongs to one of
the predefined gene construct component types such as
‘Coding sequence’, ‘Non-coding sequence’, ‘Restriction
enzyme site’, or ‘Multiple cloning site’. In case of ‘Coding
sequence’, it has 3 different properties whose names are
‘Original AA’, ‘Original DNA’, and ‘Modified DNA’ where
AA stands for amino acid. Each property holds amino acid
sequence or DNA sequence information. In contrast to
‘Coding sequence’, ‘Non-coding sequence’ like Shine-Dal-
garno sequence doesn’t need amino acid sequence data.
Therefore, the gene construct component type of ‘Coding
sequence’ has only two properties: ‘Original DNA’ and
‘Modified DNA’.
For reference, the ‘Original DNA’ sequence data can be

used only for special purposes such as to calculate mis-
matched bases or codons between the original and variant
sequences whereas ‘Modified DNA’ is inevitably used as
an essential property that most modules utilize to modify,
optimize, analyze, read, and write. With regard to
sequence or data size, the software permits both variable
length and null size (zero length) of a sequence. Therefore
a user can modify the sequence length during the gene
optimization process and even generate an “invisible” gene
construct component that will not be shown in the ‘Gene
Construct View’ window by setting the ‘Modified DNA’ to
be null.
Furthermore, the software lets a user define new gene

construct component types to hold unique information
and functions. A gene construct component type can be
easily designed in the ‘PropertyBag Editor’ and ‘Module
Editor’ windows. However, to be functional, it is usually
necessary to develop new modules or modify existing
modules to handle new properties.
As a main part of the user interface, the software has the

‘Gene Construct Designer’ window. A user can design a
gene construct by adding or deleting gene construct com-
ponents, or changing a location of a gene construct com-
ponent. When adding a new gene construct component to
a gene construct, a user can choose a gene construct com-
ponent type among the defined gene construct component
types that are listed in a drop down list box in the window.

Jung and McDonald BMC Bioinformatics 2011, 12:340
http://www.biomedcentral.com/1471-2105/12/340

Page 8 of 13

Sequence analysis
Visual Gene Developer includes basic functions to
manipulate a sequence such as sequence parsing, back
translation, and conversion into the reverse sequence or
the complementary sequence. After putting the source
sequence into a text box in the ‘Workspace’ window, a
user can click on one of the main menus to perform the
function. Otherwise, a user can develop a module to
modify the input sequence in the ‘Workspace’ window
and then expose the module on the ‘Toolbox’ window
as a typical menu item. For gene analysis purposes, the
software includes several gene analysis algorithms for
calculating the CAI, GC content, and Nc, Codon usage
table, and performing sequence comparisons, repeated
sequence searches, multiple sequence searches, and
mRNA secondary structure prediction. The software
also supports a batch processing to analyze several thou-
sands of genes. After setup in the ‘Gene Optimization’
and ‘Gene Construct Designer’, a user can import a
ASCII text file that contains multiple sequence data and
then check the analysis result in the ‘Gene Optimization’
window. Owing to the programming capability, a user
can make use of implemented classes and add new gene
analysis metrics or predictions to Visual Gene
Developer.
(1) CAI (Codon adaptation index)
The CAI has been widely used as an effective measure of
synonymous codon usage bias. It was originally proposed
by Sharp and Li to quantify the extent of codon usage
similarity between a reference set of genes and a gene of
interest [33]. The CAI ranges from 0 to 1 where higher
CAI means highly codon biased or higher codon usage
similarity between two different codon usage tables. In
order to calculate the CAI, we follow the same procedure
and make use of the original definition given by Sharp and
Li [33]. For reference, the software calculates the RSCU
(Relative Synonymous Codon Usage) from a codon usage
table of a reference gene and then computes wi (Relative
adaptiveness of a codon) value for each codon by dividing
RSCU by RSCUmax. Finally, CAI value can be calculated
using the following equation.

CAI = exp

⎛
⎝1
L
·

18∑
i=1

ki∑
j=1

Xij lnwij

⎞
⎠

where Xij is the total number of the jth codon for the
ith amino acid in the test gene, wij is the relative adap-
tiveness of the jth codon for the ith amino acid in the
reference gene, ki is the number of synonymous codons
for the ith amino acid, and L is the total number of
codons excluding AUG (Met) and UGG (Trp) in the test
gene. As a special case, if wij is smaller than 0.01, it is
adjusted to 0.01 [34].

(2) Nc (Effective number of codons)
This quantity was originally defined by Wright [35] to
measure a degree of codon bias. It is a number between
20 and 61 where 20 means extremely biased and 61
stands for equally biased between synonymous codons.
In contrast to CAI, the calculation of Nc doesn’t need a
reference codon usage table. First of all, the software
calculates codon homogygosity (F̂) of the amino acid
[35].

F̂i =

(
n

ki∑
j=1

p2j

)
− 1

n− 1

where F̂i the codon homogygosity of the ith amino
acid, n is the total number of the amino acid in the test
gene, ki is the total number of synonymous codons of
the ith amino acid, and pj is the codon frequency of the
jth allele (synonymous codon).
The effective number of codons is then calculated by

summation of the average homogygosities.

N̂c = 2 +
9
¯̂F2

+
1
¯̂F3

+
5
¯̂F4

+
3
¯̂F6

where ¯̂Fm (m = 2, 3, 4, or 6) is the average homogyg-
osity for the amino acids whose total number of synon-
ymous codons is m. For example,
¯̂F6 =

(
F̂Arg + F̂Leu + F̂Ser

)
/3.

As Wright suggested, if some amino acids are missing
then Visual Gene Developer computes the average
homogygosity by taking an average of homogygosities of
amino acids present in the test gene. If isoleucine is
absent or rarely used, Fuglsang’s estimation is used to
calculate ¯̂F3[36].

¯̂F3 = F̂Ile =

(
2
¯̂F2

− 1

)−1

+

(
2

3 ¯̂F4
+
1
3

)−1

+

(
2

5 ¯̂F6
+
3
5

)−1

3

(3) Repeated sequence search
The software allows a user to identify repeated
sequences in a test sequence. It detects not only forward
directional and backward complimentary repeated
sequences but also palindromic sequences and consecu-
tively connected repeated sequences. In order to find
repeated sequences, a moving window method was
employed. The algorithm generates a short sequence
clipped from a test sequence and then compares the
partial sequence with the test sequence to find matched
locations. The search process is repeated while the mov-
ing window scans along the test sequence. When the
scanning is completed, potentially duplicate findings are

Jung and McDonald BMC Bioinformatics 2011, 12:340
http://www.biomedcentral.com/1471-2105/12/340

Page 9 of 13

removed if they are already included in other findings.
The feature is named as the ‘Smart filter’ in the ‘Search
sequences’ window.
(4) Multiple query sequence search
This function was developed to identify locations of
query sequences within a sequence. A user can input a
set of multiple query sequences or restriction enzyme
names separated by Tab, comma (,), or Carriage Return
(Enter key) in the ‘Search sequences’ window. For in-
depth analysis a query string is split into multiple strings
of single query sequence. In case of restriction enzyme
names, they are converted into DNA sequences. After
performing repeated searches for all query sequences in
a test sequence, the software shows detailed information
about the total number of occurrences and their loca-
tions in a gene for every query sequence. A user can
choose one of a predefined sequence set such as com-
mon restriction enzyme sites, potential intron cryptic
splice sites or polyadenylation signal sequences.
(5) Profile calculation of CAI, mRNA Gibbs free energy, or
GC content
The software contains 3 implemented modules that are
used to calculate a profile of CAI, mRNA binding energy,
or GC content of a test sequence. Their algorithms are
quite similar between them as the moving window
approach was equally adopted and their codes were
developed from the same template code. In general, any
single calculation such as GC content can be repeatedly
performed while a moving window is sliding over a test
sequence. The procedure is initiated when a moving
window is located at the first base of the test sequence.
For example, mRNA binding energy of the first 60 bases
is calculated if the size of the moving window is set to be
60 bases that can be adjusted by the user. After the first
calculation, the moving window steps forward to the next
location such as to the 11th base of the test sequence if
the step size of the moving window is 10 bases. In this
way, the RNA binding energy is repeatedly computed at
an interval of 10 bases until the moving window arrives
at the end of the sequence. To generate data for a profile
plot, both the location of the moving window and its cor-
responding mRNA binding energy are recorded as a table
format. Since the codes were written in VBScript, a user
can easily modify source codes to develop new profiling
functions.

Sequence optimization
Visual Gene Developer contains useful modules to opti-
mize a gene construct in terms of codon usage, mRNA
binding energy, known conserved sequence, or undesir-
able sequence. Owing to programming capability, a user
can develop new modules utilizing simplified helper
functions of the classes mentioned earlier.

(1) Codon optimization
The software provides a predefined module that is based
on a well-known Monte-Carlo simulation or a predefined
probability table [13,15,19,20]. It utilizes a codon usage
table and replaces original codons with new ones while
maintaining the identity of the same amino acids. To be
specific, Visual Gene Developer not only has a function
to import codon usage tables from CUTG (Codon Usage
Tabulated from GenBank) but also provides a manual
edit mode for the target codon usage map and allows a
user to generate a local database of reference sets of opti-
mal codon usage tables. The software automatically cal-
culates the RSCU, RSCUmax, and wi values, and then
generates a look-up table (LUT) of synonymous codons.
For example, if alanine has four synonymous codons
such as GCA, GCC, GCG, and GCT whose expected
fractions are 0.1, 0.2, 0.3, and 0.4, respectively, the LUT
will consist of 100 GCAs from 1 to 100, 200 GCCs from
201 to 300, 300 GCGs from 301 to 600, and 400 GCTs
from 601 to 1000 in a memory array. Finally, one of 1000
codons is randomly chosen and then it replaces the origi-
nal codon. By utilizing the look-up table, it is possible to
perform codon optimization very quickly. In addition,
the software has a pre-defined function that allows a user
to keep track of changes in codon usage bias as a graphi-
cal representation. Meanwhile, since the current version
of the software doesn’t have a built-in database of opti-
mal codon usage maps of highly expressed genes, a user
may need to rely on other available sources including
papers and web databases where a user can get an opti-
mal codon usage map for a specific host genome and
then put it into Visual Gene Developer.
(2) mRNA optimization
In order to optimize a gene in terms of mRNA binding
energy, the algorithm was developed utilizing both
mRNA prediction and codon optimization modules. At
the code level, an original sequence is continuously mod-
ified until its Gibbs free energy is in a specific range
given by minimum or maximum Gibbs free energy where
the modification refers to synonymous substitution. With
regard to the modification strategy, the simplest
approach is that the number of mutations is gradually
increased one by one when the calculated Gibbs free
energy is out of range. Meanwhile, the base module was
also used to develop more complicated modules. For
example, a binding energy profile of a long test sequence
can be optimized by repeatedly applying the base algo-
rithm to all local sequences with a moving window
method. In this way, all local mRNA structures can be
optimized while minimizing the number of base changes.
Similarly, a user can increase or decrease binding energy
at specific locations in a sequence. Visual Gene Develo-
per has a specialized window for mRNA optimization for

Jung and McDonald BMC Bioinformatics 2011, 12:340
http://www.biomedcentral.com/1471-2105/12/340

Page 10 of 13

a typical user and provides related class functions for a
module developer.
(3) Removal of undesirable sequences
The coding region of a gene may include undesirable
sequences such as restriction enzyme sites, potential poly-
adenylation signal sequences, or cryptic splice sites. Visual
Gene Developer provides a function to remove such
unwanted sequences without changing the resulting
amino acid sequence. The algorithm is based on the
synonymous substitution and similar to that for codon
optimization except it replaces only a few codons with
correspondent synonymous codons in the target sequence
region that needs to be modified (Figure 4). The first step
is to identify the location of the target DNA sequence in a
gene and then determine the location of the site for synon-
ymous substitution. To simplify the substitution process,
terminal sequences of the target sequence are truncated if
they are located outside of complete codons. The current
version of the software carries 4 relevant modules that are
written in VBScript. A user can easily remove undesirable
sequences including predefined potential polyadenylation
signals and intron cryptic splice sequences.

Optimization process
To help users design unique optimization processes,
Visual Gene Developer has a versatile and configurable
optimization strategy and interface. First of all, the opti-
mization process is based on a novel combination of mul-
tiple modules. Each independent and fully functional
module does a simple job like codon optimization or
silent removal. By integrating individual modules into a
comprehensive optimization process, it is possible to
implement a more complicated and diverse gene optimi-
zation strategy. A user can easily add new modules by
choosing one of the listed algorithms in the ‘Configura-
tion for Gene Optimization’ window. At the same time, a
user can determine their priority or the order of module
execution. For module development, there are 5 different
types of optimization modules such as ‘Sequence optimi-
zation’, ‘mRNA structure optimization’, ‘Gene manipula-
tion’, ‘Constraint’ and ‘Search strategy’. Especially, ‘Search
strategy’ belongs to a global optimization module that
determines the optimization process and controls all
other modules.

Secondly, the software has an ability to generate and
handle a large quantity of candidate gene constructs that
satisfy the user’s gene design criteria. This is important
because the number of possible variant genes is practically
infinite even after codon, mRNA structure, or UTR opti-
mization in spite of screening out of undesired gene con-
structs. Simply, the number of possible variants of a gene

can be calculated to be
3.28

18
20

n if we assume equal prob-

ability between 20 amino acids where n means total num-
ber of amino acids of the gene and 3.28 is an average
number of synonymous codons of 18 amino acids that
have multiple codons. For instance, if a gene consists of
250 amino acids, total number of possible variants is
about 1.18 × 10116. One cycle of the optimization process
will generate single candidate gene constructs and multi-
ple cycles will produce many candidate gene constructs. A
user can check all generated gene constructs in the ‘Gene
Optimization’ window. As one interesting feature of the
software, a generated gene construct can have its origin
like a relationship between mother and daughter, and a
user can specify a source gene construct for the next
round of the optimization process. The option is useful to
find desirable sequences step by step in a short time.
Thirdly, the software has a built-in screening system to

remove undesirable gene constructs. A researcher may
prefer using active processes such as silent removal of
unwanted sequences. However, the screening process can
be a faster and simple way to find good candidate gene
constructs. Any designed modules that are registered as
‘Constraint’ type will be used to determine whether a
gene construct satisfies a certain set of criteria or not. If a
module returns a ‘Not pass’ value, the current gene con-
struct will be discarded.
(1) Excluding query sequences or specified restriction
enzyme sites
The purpose of the module is to avoid undesirable DNA
sequences including potential cryptic splice sites, polya-
denylation signal, and restriction enzyme sites. When
those sequences are found, the gene construct will be
excluded from the candidate gene construct list.
(2) Checking stability of mRNA secondary structure
This algorithm is a modification of the ‘mRNA Gibbs
free energy plot’. It is used to analyze mRNA secondary

GCG CTA TCG A GC GCT ATC GA

... GAG CTA GCG CTA TCG ATA TCG CTA TGC GCT ATC GAT GAC CGC ...

Undesirable sequence
Gene

Sites for synonymous substitution
Figure 4 Schematic diagram of algorithm for silent removal. Target sequences are identified, truncated and then replaced with synonymous
codons.

Jung and McDonald BMC Bioinformatics 2011, 12:340
http://www.biomedcentral.com/1471-2105/12/340

Page 11 of 13

structures of all partial sequences of a sequence. If the
calculated Gibbs free energy of a local sequence in a
moving window is lower than a threshold value, the
module returns ‘Not pass’ value and consequently the
gene construct will be screened out.
(3) Removing repeated sequences
In order to prevent repeated sequences in a gene con-
struct, the module is developed to count the total num-
ber of repeated sequences in a sequence. If the number
is more than a prescribed set point, the gene construct
will be ruled out.

Comparison with other similar web servers and software
Basically, most available software including Visual Gene
Developer share a similar codon optimization strategy.
Monte Carlo algorithm or ‘one amino acid-one codon
method’ is frequently adopted [19]. For high gene expres-
sion, several programs such as Gene Composer, Gene
Designer, JCat, OPTIMIZER, and Synthetic Gene Designer
include optimal codon usage maps of highly expressed
genes. Regarding mRNA secondary structure optimization,
Gene Composer and Visual Gene Developer carry the
most sophisticated modules. Both software have functions
to eliminate stable mRNA hairpin structure and control
Gibbs free energy utilizing advanced mRNA folding algo-
rithms. GeneOptimizer, Gene Designer, GeMS, and JCat
don’t calculate Gibbs free energy of mRNA folding. How-
ever, they indirectly eliminate potential mRNA structure
sequences by analyzing sequence repetitions or calculating
energy scoring functions in a short range of a test
sequence. The other software tools such as Codon optimi-
zer, DNAWorks, DyNAVacS, GeneDesign, OPTIMIZER,
Synthetic Gene Designer, and UpGene don’t have a func-
tion to predict mRNA secondary structure and don’t per-
form mRNA optimization that means the use of Gibbs
free energy analysis to assess the stability of mRNA sec-
ondary structure. Compared with other available software,
Visual Gene Developer has several novel implementations
that have not been implemented elsewhere such as artifi-
cial neural network modeling, integrated programming
environment using VBScript and JScript (= Java script),
network/multi-threaded computing, and sophisticated
batch analysis and optimization process for multiple gene
construct candidates. However, one of the limitations is
that Visual Gene Developer is platform-dependant as a
Microsoft Windows™ application whereas other software
supports multiple platforms or web browsers (DyNAVacs,
GeneDesign, Gene Designer, GeneOptimizer, JCat, OPTI-
MIZER, Synthetic Gene Designer). In addition, further
development is needed to include other useful features
such as a built-in database of codon usage tables of highly
expressed genes or robust regression toolboxes like PLS
(partial least square) or SVM (support vector machine)
model that have not been implemented yet.

Conclusion
As an emerging research area, synthetic gene design stu-
dies have demonstrated that well designed gene constructs
can greatly improve gene expression level. Not to mention
that good software is definitely an essential tool to opti-
mize a gene or discover new gene design optimization cri-
teria. Visual Gene Developer offers a variety of built-in
features as well as the ability for the user to incorporate
new functions. The software’s framework is well designed
and the built-in design concepts or features are good
examples that can inspire the development and incorpora-
tion of new modules by other workers, including unique
optimization algorithms for complicated non-linear, multi-
variable systems.

Availability and requirements
Visual Gene Developer is available for free download at
http://www.visualgenedeveloper.net. The website pro-
vides a full description of the software and functions,
and includes helpful tutorials covering common gene
design approaches to custom module development. The
software supports Windows XP/Vista/7 and requires at
least an Intel Pentium 3-class processor or equivalent
working at 800 MHz and 512 MB of RAM.

Acknowledgements
We thank Dr. Sun Bok Lee (sblee@postech.ac.kr) at the Pohang University of
Science and Technology (POSTECH), South Korea for developing artificial
neural network module, and Dr. Hofacker at the University of Vienna, Austria
for sharing mRNA prediction software called Vienna RNA package. The
development of Visual Gene Developer was partially funded by Chevron
Technology Ventures (RSO #23).

Authors’ contributions
SKJ conceived and developed the software. SKJ also wrote the manuscript
and built the software website. KM initiated the project and provided
feedback on the software development and manuscript. Both authors read
and approved the manuscript.

Received: 26 April 2011 Accepted: 16 August 2011
Published: 16 August 2011

References
1. Cormack BP, Bertram G, Egerton M, Gow NAR, Falkow S, Brown AJP: Yeast-

enhanced green fluorescent protein (yEGFP): A reporter of gene
expression in Candida albicans. Microbiol-Uk 1997, 143:303-311.

2. Hale RS, Thompson G: Codon optimization of the gene encoding a
domain from human type 1 neurofibromin protein results in a threefold
improvement in expression level in Escherichia coli. Protein Expres Purif
1998, 12(2):185-188.

3. Te’o VSJ, Cziferszky AE, Bergquist PL, Nevalainen KMH: Codon optimization
of xylanase gene xynB from the thermophilic bacterium Dictyoglomus
thermophilum for expression in the filamentous fungus Trichoderma
reesei. Fems Microbiol Lett 2000, 190(1):13-19.

4. Slimko EM, Lester HA: Codon optimization of Caenorhabditis elegans
GluCl ion channel genes for mammalian cells dramatically improves
expression levels. J Neurosci Meth 2003, 124(1):75-81.

5. Burgess-Brown NA, Sharma S, Sobott F, Loenarz C, Oppermann U, Gileadi O:
Codon optimization can improve expression of human genes in
Escherichia coli: A multi-gene study. Protein Expres Purif 2008, 59(1):94-102.

6. Laguia-Becher M, Martin V, Kraemer M, Corigliano M, Yacono M,
Goldman A, Clemente M: Effect of codon optimization and subcellular

Jung and McDonald BMC Bioinformatics 2011, 12:340
http://www.biomedcentral.com/1471-2105/12/340

Page 12 of 13

http://www.visualgenedeveloper.net
http://www.ncbi.nlm.nih.gov/pubmed/10981683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10981683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10981683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10981683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20633272?dopt=Abstract

targeting on Toxoplasma gondii antigen SAG1 expression in tobacco
leaves to use in subcutaneous and oral immunization in mice. Bmc
Biotechnol 2010, 10(1):52..

7. Welch M, Govindarajan S, Ness JE, Villalobos A, Gurney A, Minshull J,
Gustafsson C: Design parameters to control synthetic gene expression in
Escherichia coli. PLoS ONE 2009, 4(9):e7002..

8. Kudla G, Murray AW, Tollervey D, Plotkin JB: Coding-sequence
determinants of gene expression in Escherichia coli. Science 2009,
324(5924):255-258.

9. Tuller T, Waldman YY, Kupiec M, Ruppin E: Translation efficiency is
determined by both codon bias and folding energy. Proceedings of the
National Academy of Sciences 2010, 107(8):3645-3650.

10. Fuglsang A: Codon optimizer: a freeware tool for codon optimization.
Protein Expres Purif 2003, 31(2):247-249.

11. Hoover DM, Lubkowski J: DNAWorks: an automated method for
designing oligonucleotides for PCR-based gene synthesis. Nucleic Acids
Research 2002, 30(10):e43..

12. Harish N, Gupta R, Agarwal P, Scaria V, Pillai B: DyNAVacS: an integrative
tool for optimized DNA vaccine design. Nucleic Acids Research 2006,
34(suppl 2):W264-W266.

13. Jayaraj S, Reid R, Santi DV: GeMS: an advanced software package for
designing synthetic genes. Nucleic Acids Research 2005, 33(9):3011-3016.

14. Lorimer D, Raymond A, Walchli J, Mixon M, Barrow A, Wallace E, Grice R,
Burgin A, Stewart L: Gene Composer: database software for protein
construct design, codon engineering, and gene synthesis. Bmc Biotechnol
2009, 9(1):36..

15. Villalobos A, Ness J, Gustafsson C, Minshull J, Govindarajan S: Gene
Designer: a synthetic biology tool for constructing artificial DNA
segments. Bmc Bioinformatics 2006, 7(1):285..

16. Richardson SM, Nunley PW, Yarrington RM, Boeke JD, Bader JS: GeneDesign
3.0 is an updated synthetic biology toolkit. Nucleic Acids Research 2010,
38(8):2603-2606.

17. Raab D, Graf M, Notka F, Schödl T, Wagner R: The GeneOptimizer
Algorithm: using a sliding window approach to cope with the vast
sequence space in multiparameter DNA sequence optimization. Systems
and Synthetic Biology 2010, 4(3):215-225.

18. Grote A, Hiller K, Scheer M, Münch R, Nörtemann B, Hempel DC, Jahn D:
JCat: a novel tool to adapt codon usage of a target gene to its potential
expression host. Nucleic Acids Research 33(Suppl 2):W526-W531.

19. Puigbò P, Guzmán E, Romeu A, Garcia-Vallvé S: OPTIMIZER: a web server
for optimizing the codon usage of DNA sequences. Nucleic Acids Research
2007, 35(suppl 2):W126-W131.

20. Wu G, Bashir-Bello N, Freeland SJ: The Synthetic Gene Designer: A flexible
web platform to explore sequence manipulation for heterologous
expression. Protein Expres Purif 2006, 47(2):441-445.

21. Gao W, Rzewski A, Sun H, Robbins PD, Gambotto A: UpGene: Application
of a web-based DNA codon optimization algorithm. Biotechnology
Progress 2004, 20(2):443-448.

22. Plotkin JB, Kudla G: Synonymous but not the same: the causes and
consequences of codon bias. Nat Rev Genet 2011, 12(1):32-42.

23. Bicciato S, Pandin M, Didonè G, Di Bello C: Pattern identification and
classification in gene expression data using an autoassociative neural
network model. Biotechnology and Bioengineering 2003, 81(5):594-606.

24. Dyrløv Bendtsen J, Nielsen H, von Heijne G, Brunak S: Improved prediction
of signal peptides: SignalP 3.0. Journal of Molecular Biology 2004,
340(4):783-795.

25. Eden E, Brunak S: Analysis and recognition of 5’ UTR intron splice sites in
human pre-mRNA. Nucleic Acids Research 2004, 32(3):1131-1142.

26. Reese MG, Eeckman FH, Kulp D, Haussler D: Improved splice site detection
in Genie. Journal of Computational Biology 1997, 4(3):311-323.

27. Pedersen AG, Nielsen H: Neural network prediction of translation
initiation sites in eukaryotes: Perspectives for EST and genome analysis.
Proceedings of the 5th International Conference on Intelligent Systems for
Molecular Biology AAAI Press; 1997, 226-233.

28. Hofacker IL: Vienna RNA secondary structure server. Nucleic Acids Research
2003, 31(13):3429-3431.

29. Jung S-K, Lee SB: In situ monitoring of cell concentration in a
photobioreactor using image analysis: Comparison of uniform light
distribution model and artificial neural networks. Biotechnology Progress
2006, 22(5):1443-1450.

30. Andrade J, Andersen M, Sillen A, Graff C, Odeberg J: The use of grid
computing to drive data-intensive genetic research. Eur J Hum Genet
2007, 15(6):694-702.

31. Maltsev N, Glass E, Sulakhe D, Rodriguez A, Syed MH, Bompada T, Zhang Y,
D’Souza M: PUMA2 - grid-based high-throughput analysis of genomes
and metabolic pathways. Nucleic Acids Research 2006, 34:D369-D372.

32. Schmidt HA, Strimmer K, Vingron M, von Haeseler A: TREE-PUZZLE:
maximum likelihood phylogenetic analysis using quartets and parallel
computing. Bioinformatics 2002, 18(3):502-504.

33. Sharp PM, Li W-H: The codon adaptation index-a measure of directional
synonymous codon usage bias, and its potential applications. Nucleic
Acids Research 1987, 15(3):1281-1295.

34. Bulmer M: Are codon usage patterns in unicellular organisms
determined by selection-mutation balance? Journal of Evolutionary Biology
1988, 1(1):15-26.

35. Wright F: The ‘effective number of codons’ used in a gene. Gene 1990,
87(1):23-29.

36. Fuglsang A: The ‘effective number of codons’ revisited. Biochemical and
Biophysical Research Communications 2004, 317(3):957-964.

doi:10.1186/1471-2105-12-340
Cite this article as: Jung and McDonald: Visual gene developer: a fully
programmable bioinformatics software for synthetic gene optimization.
BMC Bioinformatics 2011 12:340.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Jung and McDonald BMC Bioinformatics 2011, 12:340
http://www.biomedcentral.com/1471-2105/12/340

Page 13 of 13

http://www.ncbi.nlm.nih.gov/pubmed/20633272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20633272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19759823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19759823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19359587?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19359587?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12000848?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12000848?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16845007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16845007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15911632?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15911632?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19383142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19383142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16756672?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16756672?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16756672?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20211837?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20211837?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21189842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21189842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21189842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17439967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17439967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15058988?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15058988?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21102527?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21102527?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12514809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12514809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12514809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15223320?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15223320?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14960723?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14960723?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9278062?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9278062?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12824340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17022685?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17022685?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17022685?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17377522?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17377522?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381888?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381888?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11934758?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11934758?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11934758?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3547335?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3547335?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2110097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15081433?dopt=Abstract

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Interface
	(1) Gene design, analysis, and optimization
	(2) Programming capability
	(3) mRNA secondary structure prediction
	(4) Artificial neural network module
	(5) Network & multi-threaded computing

	Results
	Gene design
	Sequence analysis
	(1) CAI (Codon adaptation index)
	(2) Nc (Effective number of codons)
	(3) Repeated sequence search
	(4) Multiple query sequence search
	(5) Profile calculation of CAI, mRNA Gibbs free energy, or GC content

	Sequence optimization
	(1) Codon optimization
	(2) mRNA optimization
	(3) Removal of undesirable sequences

	Optimization process
	(1) Excluding query sequences or specified restriction enzyme sites
	(2) Checking stability of mRNA secondary structure
	(3) Removing repeated sequences

	Comparison with other similar web servers and software

	Conclusion
	Availability and requirements
	Acknowledgements
	Authors' contributions
	References

