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Abstract

Background: Regulation of gene expression plays a pivotal role in cellular functions. However, understanding the
dynamics of transcription remains a challenging task. A host of computational approaches have been developed to
identify regulatory motifs, mainly based on the recognition of DNA sequences for transcription factor binding sites.
Recent integration of additional data from genomic analyses or phylogenetic footprinting has significantly
improved these methods.

Results: Here, we propose a different approach based on the compilation of Simple Shared Motifs (SSM), groups
of sequences defined by their length and similarity and present in conserved sequences of gene promoters. We
developed an original algorithm to search and count SSM in pairs of genes. An exceptional number of SSM is
considered as a common regulatory pattern. The SSM approach is applied to a sample set of genes and validated
using functional gene-set enrichment analyses. We demonstrate that the SSM approach selects genes that are
over-represented in specific biological categories (Ontology and Pathways) and are enriched in co-expressed genes.
Finally we show that genes co-expressed in the same tissue or involved in the same biological pathway have
increased SSM values.

Conclusions: Using unbiased clustering of genes, Simple Shared Motifs analysis constitutes an original contribution
to provide a clearer definition of expression networks.

Background
A major challenge for modern molecular biology consists
in deciphering the complex regulation of gene expression.
During the two last decades, numerous experimental and
computational approaches have been developed to identify
functional regulatory domains in genes. Binding sites for
transcription factors (TFBS) are central elements in the
modulation of transcriptional activity. These short DNA
sequences are cis-regulatory motifs usually located in the
proximal promoter region of target genes and bind trans-
acting transcription factors [1]. Transcription factors have
been shown to act cooperatively [2], leading to the emer-
gence of the CRM (cis-regulatory modules) concept.
In silico approaches designed to uncover regulatory ele-

ments in gene promoters are based on this understanding

of gene regulation. A possible binary categorization of
these approaches is based on the fact that they use or not
previously described TFBS, stored in databases such as
TRANSFAC [3] or JASPAR [4]. Both strategies have
advantages and drawbacks.
Although TFBS databases are admittedly incomplete,

storing a small subset of the TFBS predicted to operate in
eukaryotic genomes [5], searching for previously described
TFBS is a much easier task than discovering de novo motifs
[6]. Multiple tools have been following this approach work-
ing either on sets of genes [7-10] or designed to scan whole
genomes [11-14]. The earlier methods were focusing on
single TFBS, the more recently published mainly focus on
CRM detection.
On one hand, not using TFBS databases allows not to be

restrained by the yet incomplete set of described binding
sites. On the other hand, uncovering regulatory elements
becomes a much more challenging problem. Aiming at
de novo discovering either single TFBS or CRM, such
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approaches are limited to sets of genes thought to be co-
regulated [15-18] (for instance observed co-expressed) and
have not yet been applied to whole genome experiments.
Aside from the CRM concept, the main advance in

the field came from the accumulation of high-through-
put gene expression data and the sequencing of multiple
genomes. Multiple genome comparisons allows to select
genetic regions undergoing a strong selection pressure
and thus accumulating less mutations over time than
the rest of a genome. Applied to promoter sequences,
phylogenetic footprinting or phylogenetic shadowing
allow to specify functional elements of the sequence,
thus reducing the search space for transcription factors
binding sites and the rate of false positive detected
TFBS [19,20]. Most of the recently published algorithms
make use of phylogenetic footprints instead of raw
genomic data.
In the present study we propose a novel approach allow-

ing genomewide regulatory element based searches without
the need to rely on TFBS databases. Our main input data-
set is the evolutionary conserved sequences of promoters
obtained from the cisRED database [21]. Instead of using
TFBS databases to narrow down the search scope, a gene
of interest is selected. The methodology compares its evo-
lutionary conserved sequences with those from all the
other genes from cisRED, searching for statistically overre-
presented sets of shared sequences. Although not permit-
ting a straightforward extraction of the motifs involved,
our study combines the advantages of performing genome-
wide searches and not being limited by described TFBS in
order to find genes potentially co-regulated with a gene of
interest.
The methodology is based on the compilation of statis-

tically exceptional number of short, degenerate and
shared sequences between gene pairs. We hypothesize
that regulation of gene expression might be characterized
by sequences involved in expression regulation whose
common feature is to be evolutionary conserved and pre-
sent in the promoter of genes (including cis-regulatory
modules and potentially structural features or epigenetic
patterns). Genes co-expressed should share some of
these sequence features. We designed an algorithm tak-
ing as input the atomic motifs described in the cisRED
database. Atomic motifs are evolutionary conserved
sequences identified in the promoter of genes through a
comparative analysis including more than 40 vertebrate
species and making use of various motif discovery algo-
rithms such as MEME [22], Consensus [8] or Motif Sam-
pler [23]. The algorithm finds all Simple Shared Motifs
(SSM), i.e. sets of complementary reverse sequences
defined by their length l, Hamming edition distance d
[24], and their occurrence in gene pairs. The number of
SSM is then statistically assessed and groups of genes
with an exceptional number of SSM are compiled. This

simple methodology allows to perform a genomewide
search for genes potentially co-regulated with a gene of
interest by selecting a set of genes (out of the 18000
genes provided in the cisRED database) sharing a statisti-
cally exceptional SSM profile with the given gene. In sup-
port of our approach, we carried out a functional analysis
of identified genes by using gene-set enrichment analysis
(GSEA) [25,26] and gene-expression meta-analysis
(Gemma [27]). Using Gene Ontology and KEGG path-
ways annotation ([28] and [29]), we demonstrate that the
genes identified by our SSM approach are overrepre-
sented in specific biological categories. We further show
that these genes are more often co-expressed in expres-
sion array databases than randomly selected genes, thus
suggesting that the SSM approach identifies genes that
share common regulatory mechanisms. As a reverse
experiment, we applied the SSM analysis to genes pre-
viously reported as belonging to the same biological path-
way or co-expressed in the same tissue. We demonstrate
that these genes contain significantly more SSM than
genes chosen in different pathways or tissues, strengthen-
ing the association between SSM and regulatory patterns.
We believe that SSM, as a set of composite conserved
sequences, introduces a new concept in the identification
of genes subject to similar patterns of regulation within a
genome.

Methods
Simple Shared Motifs
Simple Shared Motifs (SSM) are sets of subsequences
identified through a comparative analysis of atomic
motifs from the cisRED database that contains more
than 18,000 single human genes with 12.7 ± 8.9 atomic
motifs per gene and a mean length of 11.7 ± 4.1 nucleo-
tides per atomic motif. For each nucleotide sequence,
we associate extended sequences as a set {w, wc, wr, wrc}
where wc is the complementary sequence of w, wr its
reverse sequence and wrc its reverse complementary
sequence. If d is the standard Hamming distance
between two sequences of same length, the distance
between two extended sequences W and W’ is min(d(w,
w’)) for all w, w’ in W and W’, respectively.
A SSM is a set of extended sequences extracted from

the atomic motifs from of a gene pair (g1,g2) and para-
meterized using two integers (l, d). l is the length of the
extended sequences in the SSM and d is the maximum
distance between two extended sequences. A SSM must
satisfy the three following properties:

1. the SSM contains at least an extended sequence
coming from an atomic motif of g1 and an extended
sequence coming from an atomic motif of g2;
2. the Hamming distance between two extended
sequences of the SSM is at most d;
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3. the set is maximal when these properties are
fulfilled.

The last condition means that it is impossible to add
any more sequences in the set while preserving condi-
tions (1) and (2).
We designed an algorithm to build all (l, d)SSMs for a

gene pair (g1,g2) (Additional file 1). We gather all the
length l subsequences of atomic motifs in g1 and g2. We
associate to each extended subsequence s, the set of
genes G(s) containing s. Given a distance d, we build the
graph where the i nodes are the i extended subsequences
si. An edge between s1 and s2 means that d(s1, s2) ≤ d.
We compute all maximal cliques of the graph and obtain
sets of extended sequences that satisfy properties 2 and
3. We finally discard all sets that do not satisfy property
1, the remaining set of subsequences are (l, d)SSMs. Our
strategy is reminiscent of the one presented in [30].
To take into account the SSM occurrences arising by

chance, we have to consider two factors: first, the number
of subsequences in atomic motifs which increases with
the length of atomic motifs; second, the probability of
finding a subsequence by chance which increases with
the distance parameter. As an example, let us take a
search for (8, d)SSM. A gene g1 has two atomic motifs of
length 9 and 10; the atomic motif of length 9 has two
subsequences of length 8 while the atomic motif of
length 10 has three. A gene g2 with only one atomic
motif of length 10, has three subsequences of length 8.
The total number of potential (8, d)SSM for the gene
pair (g1,g2) is (2 + 3) × 3 = 15 subsequences. Considering
a gene g3 with two atomic motifs of length 8 and 9
respectively, the total number of potential (8, d)SSM for
the gene pair (g2,g3) is 3 × (1 + 2) = 9, or more generally,
the product of the number of possible subsequences of
length l in each gene set of atomic motifs. This suggests
that small changes in the atomic motifs size can induced
a broad variation in the potential number of SSMs. In
order to correct for the influence of this noise in SSM

counts, we use the ratio SSMC = number of SSMs
number of potential SSMs.

Given a pair of genes g1, g2, both present in the cisRED
database, we define SSMC(g1, g2, l, d) as the corrected
count of (l, d)SSMs for the set of genes and hypothesize
that an exceptionally high value is the mark of common
regulation.
To measure the exceptional nature of the SSMC

obtained for a pair of genes and a SSM type, defined as
any SSM with given l and d parameters, we test the null
hypothesis that the selected pair of genes has a higher
SSMC than expected by chance with a random pair of
genes. To do this, the distribution of SSMC for the
whole set of cisRED genes is estimated through the ana-
lysis of the 50,000 pairs of randomly selected genes.

This estimation is in the form of a cumulative distribu-
tion function which gives directly, for each SSMC value,
the probability of finding an equal or greater SSMC
value. This probability is used as an estimated p-value
for the null hypothesis. A (g1, g2, l, d)SSMC value is
considered exceptional if its estimated p-value is less
than a defined threshold t. To capture the most excep-
tional number of SSMs independently of the length and
edition distance, we introduce cp-values. Given a pair of
genes g1, g2 and a list L of (l, d)SSMs, we define the cp-
value as the lowest p-value among the p-values com-
puted for g1, g2 and each of the (l, d)SSMs. A cp-value is
considered exceptional if its value is less than a defined
threshold t. Thus our method identifies lists of genes
sharing a Combined EXceptional (CEX) number of
SSMs, independently of the SSM type. Given a gene g, a
list L of (l, d) SSMs and a cp-value threshold t, we
define the CEXlist(g, L, t) as a subset of the cisRED
genes. The CEXlist holds every cisRED gene that, paired
with g, shows a cp-value below the defined threshold t.

Functional analysis
To characterize the biological relevance of the CEXlists,
we carried out a functional analysis by using gene anno-
tations including Gene Set Enrichment Analysis (GSEA)
[25,26] and gene expression data. The GSEA method
consists in determining whether a defined set of genes
shows an over-representation of biological annotations or
categories such as Gene Ontologies or KEGG pathways.
To perform this analysis, we used the Category and
GOstats R packages that implement an improved GSEA
[31] and are freely distributed on the Bioconductor pro-
ject web site http://bioconductor.org/. Each gene from a
selected list and the whole set of cisRED human genes
were annotated with their category term and a hypergeo-
metric test was computed to assess whether the number
of selected genes associated with the term was greater
than expected by chance. We defined the following score
to measure the relative importance of gene over-repre-
sentation in biological categories:

cscore =
n∑

i=0

log(
1
pi

− 19)

where pi is the p-value associated with the ith category
among the n over-represented categories found for a list
of genes; 19 is a constant chosen to give a cscore = 0 for
a category with p-value = 0.05 (threshold set of the
hypergeometric test). This allows taking into account
the number of over-represented categories together with
the ranking of this over-representation (i.e., p-value).
We next estimated the cscores null distributions for lists
of different sizes including 100, 500, 1000, 2000 and
3000 genes randomly selected from the cisRED database.
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Figure 1 displays the cscores null distributions and shows
that they approximate a normal law. To assess the
importance of a cscore for a given list, we computed a
standard zscore :

zscore =
cscore − μ

σ

where μ and s are the mean and standard deviation of
the associated distribution, respectively. For a given list,
a null zscore implies that the over-representation of genes
in biological categories equals the average representation
of randomly selected genes, while a zscore ≥ 0 indicates
an increase of gene clustering in categories.
Next, we carried out a comparative analysis between

genes identified by our SSM approach and gene co-
expression. For that purpose we used Gemma, a data-
base containing hundreds of microarray datasets, and
software that uses as input a gene of interest to generate
a list of genes co-expressed in microarray experiments

[27]. To compare CEXlists and Gemma lists, we com-
puted the intersection according to different cp-values.
The number of Gemma genes found in a CEXlist per
gene belonging to the CEXlist is defined as a density:

density =
|G ∩ S|

|S|
where G is the set of genes obtained from Gemma

and S is the set of genes from CEXlist. The significance
of an enrichment in co-expressed genes in CEXlists was
assessed by comparing the counts of Gemma genes per
gene in the CEXlist to the counts of Gemma genes per
gene out of the CEXlist using a standard Fisher test.

Databases and biological resources
CisRED: the cis-REgulatory Database is a database for
conserved regulatory motifs predicted in promoter
regions http://www.cisred.org/. This study focuses on
the atomic motifs extracted from the database, defined

Figure 1 cscore distribution of 200 groups of random gene pairs. Each panel indicates the cscore mean, median, standard deviation (s) and
the minimal and maximal obtained zscores (zmin and zmax).
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as: “a set of sequences, typically with a common length
between 6 and 12 bp, members of which are present in
a sequence region on the target species and in corre-
sponding regions on other genomes” [21]
GO: the Gene Ontology database describes gene pro-

ducts in a species-independent manner by using three
structured controlled vocabularies for biological pro-
cesses, cellular components and molecular functions
http://www.geneontology.org/.
KEGG: the Kyoto Encyclopedia of Genes and Genomes

database is an integrated resource consisting of 16 main
databases that include the KEGG Pathway for Metabolic
and Signaling Pathways and KEGG Brite for Gene Ontol-
ogy http://www.genome.jp/kegg/.
TIGER: the Tissue-specific Gene Expression and Regu-

lation database contains tissue-specific expression pro-
files for 20,000 UniGene genes http://bioinfo.wilmer.jhu.
edu/tiger/.
Gemma: Gemma is a database and software system for

the meta-analysis of gene expression data, it contains
data from hundreds of public microarray data sets http://
www.chibi.ubc.ca/Gemma/.
SSM types: according to the size distribution for clas-

sical regulatory motifs, we selected SSMs with l ranging
form 6 to 14. To avoid alignments due to pure chance,
the editing distance d ranges from 0 to 5 and is no
longer than a third of the SSM size.

Results
From SSMs determination to CEXlists computing
The overall workflow of the SSM based approach is
described in Figure 2. Search for genes sharing similar
motif pattern with a gene g1 consists in counting all (l, d)
SSMs, l ranging from 6 to 14 and d from 0 to 5, in gene
pairs associating g1 with each other gene from the
cisRED database (g2, g3, g4, g5. . . gn). Each (l, d)SSM is
corrected by the number of potential SSMs as described
in methods section (SSMC). Next, in order to evaluate
the effect of atomic motif sizes in the evaluation of the
number of potential SSMs, we computed the distribution
of the number of SSMs for 50,000 pairs of randomly
selected genes, showing that the number of SSMs found
for gene pairs is correlated with the number of potential
SSMs. Representative distribution for (6,0), (8,1), (10,2)
and (14,4) SSM are displayed in Figure 3. These data
demonstrate that the number of SSMs found for gene
pairs is correlated with the number of potential SSMs
thereby requiring a correcting factor leading to the
SSMC. Then, the exceptional nature of each SSMC is
measured by testing the null hypothesis that the selected
gene pairs have a higher SSMC than expected by chance
with random genes (using a SSMC empirical distribution
computed from 50,000 pairs from the cisRED database).

The probability of finding an equal or greater SSMC
value than by chance, is used as an estimated p-value for
the null-hypothesis. Next, the p-values are computed for
each of the (l, d)SSMCs and the cp-value is defined as the
lowest p-value, considered as exceptional if its value is
less than a defined threshold t. Given a gene g1 and a list
L of (l, d)SSMC genes, we finally identify the CEXlist(g1,
L, t) as a subset of the cisRED genes sharing a Combined
EXceptional (CEX) number of SSMs.
To investigate the relevance of CEXlists, we analyzed

31 genes (Table 1), 20 were randomly selected and 11
with known function were arbitrarily chosen and used
as internal control for gene annotation analysis. Each
gene (g1, g2. . . g31) was independently submitted to a
SSM analysis versus all genes from the cisRED database
leading to 31 independent analyses of 18.000 gene pairs.
The 31 CEXlists, obtained with the SSM search, were
independently submitted to both GSEA and Gemma
analysis as described in the following.

SSM patterns identify gene clusters associated with
specific biological categories
To show that the SSM-based approach does indeed select
genes that share putative common regulatory motifs with
a gene of interest, we characterized genes in CEXlists
using biological category annotations (Gene Ontology and
KEGG pathways). Genes involved in the same biological
process have a greater likelihood of being coordinately
expressed, thereby potentially sharing co-regulation pat-
terns. For this purpose, we investigated the over-represen-
tation of specific categories in CEXlists compared with
random lists of gene. Briefly, CEXlists were computed for
a test set of 31 genes (Table 1) and the 31 lists were
further subjected to gene-set enrichment analysis. p-values
for over-represented categories in CEXlists were com-
puted to define the cscores that measures the relative impor-
tance of gene clustering in over-represented categories.
Finally, zscores were calculated to compare the cscores
obtained from different CEXlists with the distribution of
randomly selected genes. As shown in Figure 4, the zscores
varied according to the thresholds of defined sizes of CEX-
list. Note that the number of CEXlists with a significant
zscores strongly increased with the size of the tested lists
including 3, 6, 11 and 13 CEXlists for lists of 500, 1000,
2000 and 3000 genes, respectively. This observation could
be related to the nature of the cscores. Indeed, the cscores
depends on both the p-value of over-represented cate-
gories and the number of categories which affects the

number of terms in the sum
n∑
i=1

log(
1
pi

− 19). For small

lists of genes, the number of over-represented categories is
low and variation in the number of categories might affect
the cscores, introducing some noise. Interestingly, we
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observed that CEXlists with low cp-value threshold
showed higher zscores, suggesting that the cp-value thresh-
old used for generating CEXlists is more relevant than the
fixed CEXlist size (Figure 4). In addition, CEXlists which
showed significant variation when compared to random
lists were CEXlists obtained from genes characterized
by specific regulatory profiles, e.g. genes expressed in

differentiated tissue or highly induced by microenviron-
ment stimulation (including the CEXlists obtained from
ALB, ADAM12, SPG7 and C9orf3). We expect that genes
with such specific expression should be characterized by
the presence of strong specific regulatory motifs (such as
the binding site for MyoD in all muscle-specific genes). In
contrast, constitutively expressed housekeeping genes that

Figure 2 Overview of the workflow leading to CEXlists. A) The atomic motifs are extracted from the cisRED database for gene pairs
associating the gene of interest g and the 18.000 other genes described in the database. B) The number of SSMs is computed for all the
studied SSM types (L) and all the gene pairs. C) The numbers of SSMs are corrected by the amount of potential SSMs (SSMC) and the p-value
testing the null hypothesis: “the SSMC value is not greater than expected by chance” is computed. D) The lowest p-value obtained for each
gene pair is used as the cp-value. The CEXlist(g, L, t) retains the genes for which a cp-value below a threshold t is computed when paired with g.
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show low regulatory patterns should exhibit weak signa-
tures that are not considered significant by the SSM
approach. In order to validate this hypothesis, a larger set
of genes needs to be tested, however, out of the test set,
our results assigned high scores to ALB (albumin), a mar-
ker for differentiated hepatocytes, and ADAM12, specific
for the differentiation of mesenchymal cells (Figure 4,
lower panel). Although ubiquitously expressed SPG7, a
mitochondrial protease that belongs to the m-AAA pro-
tease family but displays specific substrates that affect
mitochondrial biogenesis in a tissue-specific manner, was
also selected. So was C9orf3 (aminopeptidase O), which
has been described as playing a role in the proteolytic pro-
cessing of bioactive peptides in specific tissues such as tes-
tis and heart. Genes with low z-scores included genes of
unknown function such as TRIM61 (Putative tripartite
motif-containing protein 61) or ubiquitously expressed
genes such as SLC9A3R2, which encodes a scaffold pro-
tein that connects plasma membrane proteins with mem-
bers of the ezrin/moesin/radixin family (Figure 4, lower
panel).
In support of these findings, we show that the over-

represented biological categories associated with a CEX-
list indeed matches the functional specificity of the gene

considered. For example the categories associated with
the olfactory receptor OR51Q1 are olfactory receptor
activity and sensory perception of smell (Table 2). Simi-
larly overrepresented GO categories for MYOG, the
muscle-specific transcription factor involved in myoblast
differentiation, are skeletal muscle fiber development and
myoblast migration. Finally, we focused on ADAM12, a
transmembrane disintegrin and metalloproteinase
involved in differentiation of mesenchymal cells, cell
adhesion and growth-factor signaling [32,33]. Over-
represented biological categories in the corresponding
CEXlist matched known ADAM12 functions, including
intracellular, intracellular signaling cascade, fibroblast
growth factor activity, focal adhesion (Table 2). Notably,
we also identified the over-represented biological cate-
gory positive regulation of neurogenesis, suggesting that
ADAM12 might be co-regulated with genes involved in
neuronal processes. In agreement with this observation,
several neuronal markers were recently described in the
hepatic stellate cells that are also the major source of
ADAM12 in the liver [34].
Taken together, our data clearly demonstrate that the

SSM approach identifies lists of genes, which are signifi-
cantly more closely associated within given biological

Figure 3 Analysis of the correlation between the number of SSMs and the number of potential SSMs. SSMs were identified for 50,000
pairs of randomly selected genes. Results are presented for 4 SSM types: (6,0)SSM; (8,1)SSM; (10,2)SSM and (14,4)SSM.
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processes than randomly selected lists of gene. In addi-
tion, the over-represented categories verify known func-
tion of the genes and also allow the prediction of new
ones. Finally theses results suggest that SSMs select
genes that share similar regulatory patterns.

Co-expression is a significant feature of genes identified
by the SSM approach
Co-expression criteria, widely used to search for common
regulatory elements among genes and high throughput
transcriptome data, now provides an important biological
resource. Although gene co-expression does not imply
similar regulation, especially when tissue transcriptomes
are investigated, we hypothesized that genes selected in
CEXlists might be co-transcribed in specific biological
contexts. We took advantage of Gemma, a database and
software suite for the meta-analysis of gene expression

data. Gemma contains 1474 array experiments, including
584 human data sets, which we screened with genes from
our test set (Table 1). We compared the genes obtained
from SSM analysis (CEXlists) to those obtained from
Gemma analysis (co-expressed genes). Briefly, each gene
from the test set was used as input for both SSM analyses
and Gemma (co-expression search, the scope was set to
all human and the stringency to 3, results were limited to
500 genes containing in priority genes more often
observed co-expressed with the gene of interest), note
that, at the time the analysis was performed, Gemma
contained data for 25 genes of the 31 genes test set. The
overlap between genes issued from Gemma and SSM
analyses was expressed as a density value, the number of
Gemma genes per gene belonging to the CEXlist. As
shown in Figure 5, density was clearly correlated with the
cp-value threshold. This suggests that genes sharing high

Table 1 CEXlist test set

GENE SYMBOL DESCRIPTION

APLP1 Amyloid beta (A4) precursor-like protein 1

C6orf62 HBV X-transactivated gene 12 protein

C9orf3 aminopeptidase O

CLK3 CDC-like kinase 3

DEFA3 Defensin, alpha 3, neutrophil-specific

DUSP12 Dual specificity phosphatase 12

EEF1D Eukaryotic translation elongation factor 1 delta (guanine nucleotide exchange protein)

FSHR Follicle stimulating hormone receptor

MNT MAX binding protein

MRGPRF MAS-related GPR, member F

SH3D19 SH3 domain protein D19

TRIM61 Putative tripartite motif-containing protein 61

C1orf216 chromosome 1 open reading frame 216

C2orf67 chromosome 2 open reading frame 67

OR51Q1 Olfactory receptor, family 51, subfamily Q, member 1

CCDC64B Coiled-coil domain-containing protein 64B

SLC9A3R2 solute carrier family 9 isoform 3 regulator 2

SPG7 Spastic paraplegia protein 7

WISP2 WNT1 inducible signaling pathway protein 2

SNRPD2 Small nuclear ribonucleoprotein Sm D2 (snRNP core protein D2) (Sm-D2)

ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha)

SMAD2 SMAD family member 2

SMAD3 SMAD family member 3

AURKA Aurora kinase A

AURKB Aurora kinase B

AURKC Aurora kinase C

ACTA1 Actin, alpha 1, skeletal muscle

ALB Albumin

ALDOA aldolase A, fructose-bisphosphate

DES Desmin

LRRTM1 Leucine rich repeat transmembrane neuronal 1

Twenty genes (lane 1 to 20) were randomly selected from the cisRED database. Eleven genes (lane 21 to 31) with known functions were arbitrarily added to
complete the random selection and used as internal controls for gene annotation analyses.
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numbers of SSMs with another gene are significantly
more often co-expressed with this gene than genes shar-
ing lower numbers of SSMs. Finally, we used Fisher tests
to compare Gemma genes among genes in CEXlists (cp-
value <t) to Gemma genes among genes out of CEXlists
(cp-value >t). This comparative analysis was performed
using 25 genes and 4 cp-value thresholds leading to 100
samples. 61 samples show an enrichment of co-expressed
genes in CEXlists, Fisher tests identified 29 significant
cases (p-value < 0.05) - and one significant decrease.

Results are presented in Table 3. This analysis lends
further support to our conclusion that CEXlists are
enriched in co-expressed genes.

Genes involved in a same biological process or over-
expressed in a same tissue show higher SSM numbers
To confirm that SSM analyses capture regulatory motif
patterns, we compared the SSM number for genes either
involved in the same biological pathway or over-expressed
in the same tissue, two conditions that have been suggested

cp-value threshold cp-value threshold

cp-value threshold

C9orf3
ALB

SPG7

ADAM12

SH3D19

SLC9A3R2

C1orf216

TRIM61

EEF1D

SMAD2
MNT

OR51Q1

CCDC64B

DUSP12

C6orf62

XP_061427.1

APLP1

CLK3

SMAD3

AURKB

ALDOA

MRGPRF

AURKC

DEFA3

ACTA1

Q658L9

DES AURKA

WISP2

LRRTM1
FSHR

cp-value threshold cp-value threshold

Figure 4 Variation of the zscore as a function of the cp-value threshold for various CEXlist sizes. SSM analysis was applied to genes from
the test set and non-specific variations were calculated for 200 random gene lists (green area).
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to implicate putative co-regulatory processes. For this pur-
pose, we selected 2539 genes distributed in 162 different
human pathways from the KEGG database and 1228 genes
specifically expressed in 28 different tissues from the
TIGER database.
We hypothesized that genes implicated in the same

pathway or over-expressed in the same tissue may share
more common regulatory mechanisms than random
genes. To test this, we extensively computed the most
exceptional number of SSMs (cp-value) for every pair of
genes involved in the same pathway or tissue. These
results were then compared to the cp-values computed
for a sample of randomly selected pairs of genes
extracted from different pathways or tissues. The sam-
ples contained 70,000 and 100,000 pairs of genes for the
KEGG and TIGER databases, respectively.

As shown in Table 4, the number of pairs with an
exceptional SSM number was significantly higher
between pairs of genes involved in the same biological
pathway or expressed in the same tissue than in differ-
ent ones. It is important to note that the increase in cp-
value threshold stringency was associated with an
increase in enrichment of gene pairs selected within a
biological process (KEGG) or tissue (TIGER), with a
maximum of a 3.484-fold increase for cp-value = 10e-5.
Among tissues, placenta had the highest SSM-based
pairs of genes, including PSG1/PSG6, PSG1/PSG11,
PSG1/PSG8, PSG1/PSG9 and PSG8/PSG9 pairs, which
showed highly significant cp-values (< 8.10-5). It is of
interest to note that the common regulation between
members of PSG family genes has been suggested to be
related to chromatin structure [35], suggesting that epi-
genetic markers might be also detected by the SSM
approach. Taken together, our data show that genes

Table 2 Representative categories

CATEGORY p-value

OR51Q1

olfactory receptor activity (MF) 5.7 × 10-10

sensory preception of smell (BP) 2.4 × 10-10

MYOG

skeletal muscle fiber development (BP) 3.8 × 10-3

myoblast migration (BP) 4.8 × 10-3

ADAM12

fibroblast growth factor activity (MF) 1.2 × 10-3

intracellular signaling cascade (BP) 1.8 × 10-3

intracellular (CC) 1.7 × 10-7

focal adhesion (K) 6.1 × 10-3

positive regulation of neurogenesis (BP) 2.5 × 10-4

Representative categories in CEXlists from OR51Q1, MYOG and ADAM12. MF,
Molecular Function; BP, Biological Process; CC, Cellular Component and K,
KEGG pathways.

Figure 5 Association between SSM enrichment and co-
expression. Genes (circles) from the sample set were submitted to
both SSM and Gemma analyses and the overlap between genes
was expressed as a density value (number of Gemma genes per
gene in CEXlist) according to different cp-value thresholds. Circle
size is correlated with the number of genes in CEXlists.

Table 3 Comparison between co-expressed genes and
not co-expressed genes in CEXlists

cp-value threshold 0.05 0.01 0.005 0.001

ACTA1 1.601 1.168 1.187 2.215

DES 1.366* 1.285 0.659 0.000

SPG7_HUMAN 2.078* 1.957* 1.846* 2.078*

SMAD2 1.877* 1.414* 1.297 1.361

SMAD3 1.363* 1.354 1.206 0.000

ADAM12 0.803 0.965 1.003 0.777

C9orf3 1.662* 1.400* 1.443* 1.381

APLP1 0.879 1.228 1.380 0.525

WISP2 1.311 0.559 0.000 0.000

SLC9A3R2 1.079 1.083 1.380 2.673

MNT 1.789* 1.893* 1.426 0.855

ALDOA_HUMAN 1.008 0.986 0.759 0.000

DEFA3 0.974 1.576 0.000 0.000

AURKA 1.274 1.247 0.687 1.145

AURKB 1.999* 2.263* 2.249* 2.353*

FSHR 0.000 0.000 0.000 0.000

LRRTM1 0.871 0.000 0.000 0.000

AURKC_HUMAN 0.556* 0.515 1.180 0.000

MRGPRF 1.559 1.697 1.300 0.000

Q658L9_HUMAN 0.000 0.000 0.000 0.000

DUSP12 1.446* 2.139* 1.555 1.993

EEF1D 1.649* 1.515* 1.634* 1.348

ALB 1.953* 1.877* 1.769* 0.972

C6orf62 1.930* 1.756* 1.926* 1.626

CLK3 0.759* 0.970 0.558 1.953

For four cp-value thresholds, t, the table compares Gemma genes present in
CEXlists (cp-value <t) and Gemma genes not present in CEXlists (cp-value >t).
For genes present or not in CEXlists, the ratio of genes in Gemma per gene is
computed. The final value in the Table is the ratio of the result obtained for a
CEXlist and the genes out of it. Thus, a value above one indicates an
enrichment of co-expressed genes in a CEXlist. Fisher tests were used to
compare the distribution of Gemma genes in and out of CEXlists, a “*”
indicates a distribution significantly different (p < 0.05).
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associated with the same biological process or expressed
in the same tissue share more SSMs than random genes,
thereby serving as a useful and novel marker for com-
mon regulatory mechanisms.

Discussion
Many methods have been developed to identify cis-regula-
tory elements and the recent integration of both phyloge-
netic footprinting and co-expression data demonstrably
enriches the predictive function of these methods. How-
ever, our understanding of the regulation of gene expres-
sion is far from complete and the discovery of functionally
important sequence modules remains a difficult task. To
improve on these in silico investigative methods, instead of
searching for putative regulatory motifs [36-38], we
searched for genes which share common sequence profiles
in promoter regions, without a priori information about
sequence motifs per se. In agreement with our approach,
others have shown that regulatory signals are supported by
the involvement of combinatorial interactions between
transcription factors that function as cis-regulatory modules
with complex signatures [39] and dynamics [40]. We based
our method on previously computed conserved sequences,
using the atomic motifs from the cisRED human database.
Other methods can be used to identify conserved sequences
such as the global multiple alignment [41] and Footprinter
approaches [42]. Note that conserved upstream sequences
from the CORG database [43] have been previously used to
search for short regulatory motifs [44]. However, CORG
only includes orthologous genes from the human and
mouse genomes and the authors further reduced their
benchmark by adding filters based on common Gene
Ontology and Gene Expression. In the present study, our
analysis was conducted on more than 18,000 conserved
sequences across 40 species and all pairs of genes implicat-
ing a gene of interest were exhaustively investigated.
The performance of the SSM approach to uncover

gene expression regulation signatures is demonstrated

by the SSM enrichment of genes co-expressed in similar
tissues (TIGER) or biological pathway (KEGG). An ori-
ginality of the method is the creation of CEXlists which
are lists of genes predicted to be co-regulated with a
gene of interest. We demonstrated that the genes
obtained in a CEXlists for a gene g, show clustering in
biological categories related to the function of g and are
significantly more co-expressed with g than randomly
selected genes.
It is important to note that although we have shown

the SSM approach was able to uncover regulatory signals,
the fuzzy nature of SSM makes difficult to relate specific
results to previously described regulatory signals such as
TFBS. This is especially true when the result is obtained
with short and degenerated SSM (in the case of (6, 2)
SSM for instance).
During last years, numerous integrative approaches

that search for regulatory elements have been developed
by incorporating co-expression datasets and/or ontology
annotation within an unique algorithm to improve the
discovery of regulatory modules in various organisms
such as archeae [45], bacteria [46], yeast [47] and human
[48,49].
Overall these approaches are thought to be promising,

computational predictions are still mainly based on geno-
mic sequences [50]. However, one criticism that can be
formulated regarding current sequence-based methods
(including ours) is that they do not yet take into account
the microenvironmental regulatory context, including epi-
genetic factors and the dynamics of transcription factor
binding, although these sequences necessarily share regu-
latory signals. Such epigenetic signals might be captured
using fuzzy sequence based method such as SSM. Never-
theless, integration of additional biological information
linked to gene regulation, including methylation and chro-
matin remodeling might improve cis-regulatory patterns
discovery in the future.

Conclusions
The coordinated transcriptional regulation of gene expres-
sion is essential for cells to respond to their environment
and mediate complex processes including proliferation, dif-
ferentiation and death. Binding of transcription factors to
cognate DNA binding sites within promoters of genes can
account for their expression and numerous methods have
been developed to identify or predict transcription-factor
binding sites. However, data derived from genome-wide
sequencing, high-throughput analyses of DNA-protein
interactions and integration of epigenetic signaling necessa-
rily lead to a much more intricate view of the mechanisms
that account for the regulated expression of gene networks.
Accordingly, a major challenge lies in the development of
new computational approaches that successfully extract
from DNA sequence alone gene expression signatures

Table 4 Comparative analysis of SSM counts with TIGER
and KEGG databases

Threshold KEGG TIGER

0.01 1.081* 1.117*

0.005 1.087* 1.134*

0.001 1.094* 1.115

0.0001 1.197 1.234

0.00001 1.404 3.484*

Analysis of SSM count for genes expressed within specific tissues (TIGER
database) or pathways (KEGG database). According to different thresholds, the
number of gene pairs with an exceptional SSM count divided by total gene
pairs was computed for genes either associated or not associated, within the
same tissue or pathway. Data are expressed as a ratio between these two
values, a ratio superior to 1 indicating an enrichment of gene pairs with an
exceptional SSM number when genes are expressed in a same tissue or
pathway(*, p ≤ 0.05)
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characteristic of ensembles of co-regulated or co-expressed
genes. The new approach we describe clusters genes from
whole-genome sequences according to a broad range of
degenerate shared short sequence motifs. This successfully
selects for genes that are highly enriched for sets associated
with given biological processes or found to be significantly
more frequently co-expressed in the same tissues. The
computational identification of genes that possess such
functional signatures should prove useful to decipher the
multi-layered patterns of co-regulated gene expression that
form the basis for complex biological pathways.

Additional material

Additional file 1: Diagram of the algorithm leading to the
construction of a set of (l, d)SSM for a pair of genes. A)
Representation of the atomic motifs for 2 genes (gray). Gene 1 and Gene
2 have 3 and 2 atomic motifs, respectively. The colored areas stress some
subsequences of length l of the atomic motifs used as examples in the
following panels, matching colors indicate matching extended
sequences. In the first step of the algorithm, a sliding window of length l
travels through the sequence of all atomic motifs, analyzing all
overlapping subsequences. B) Subsequences drawn from the first step of
the algorithm are stored in PreSSM structures. 2 subsequences having
matching extended sequence are stored in the same PreSSM (i.e. PreSSM
2). PreSSMs store the identifier of the genes the subsequences were
drawn from. C) A graph is created whose nodes are PreSSMs and
vertices between 2 nodes indicate a Hamming distance ≤ d between the
extended sequence of 2 PreSSMs. Maximal cliques of the graph are
computed. D) Maximal cliques whose PreSSMs contain subsequences
from genes 1 and 2 are (l, d)SSM. In the diagram example, 2 SSMs are
found.
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