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Abstract

Background: Post-genomic molecular biology has resulted in an explosion of data, providing measurements for
large numbers of genes, proteins and metabolites. Time series experiments have become increasingly common,
necessitating the development of novel analysis tools that capture the resulting data structure. Outlier
measurements at one or more time points present a significant challenge, while potentially valuable replicate
information is often ignored by existing techniques.

Results: We present a generative model-based Bayesian hierarchical clustering algorithm for microarray time series
that employs Gaussian process regression to capture the structure of the data. By using a mixture model likelihood,
our method permits a small proportion of the data to be modelled as outlier measurements, and adopts an
empirical Bayes approach which uses replicate observations to inform a prior distribution of the noise variance. The
method automatically learns the optimum number of clusters and can incorporate non-uniformly sampled time
points. Using a wide variety of experimental data sets, we show that our algorithm consistently yields higher
quality and more biologically meaningful clusters than current state-of-the-art methodologies. We highlight the
importance of modelling outlier values by demonstrating that noisy genes can be grouped with other genes of
similar biological function. We demonstrate the importance of including replicate information, which we find
enables the discrimination of additional distinct expression profiles.

Conclusions: By incorporating outlier measurements and replicate values, this clustering algorithm for time series
microarray data provides a step towards a better treatment of the noise inherent in measurements from high-
throughput genomic technologies. Timeseries BHC is available as part of the R package ‘BHC’ (version 1.5), which is
available for download from Bioconductor (version 2.9 and above) via http://www.bioconductor.org/packages/
release/bioc/html/BHC.html?pagewanted=all.

Background
Post-genomic molecular biology has resulted in an
explosion of typically high dimensional, structured data
from new technologies for transcriptomics, proteomics
and metabolomics. Often this data measures readouts
from large sets of genes, proteins or metabolites over a
time course rather than at a single time point. Most bio-
logical time series aim to capture information about
processes which vary over time, and temporal changes
in the transcription program are often apparent [1].

Grouping together genes which exhibit similar varia-
tions in expression over time can identify genes that are
likely to be co-regulated by the same transcription fac-
tors [2]. Whilst there are many clustering algorithms
available which allow genes to be grouped according to
changes in expression level, the standard approaches to
clustering use pairwise similarity measures, such as cor-
relation or Euclidean distance, to cluster genes on the
basis of their expression pattern. These algorithms disre-
gard temporal information: the implicit assumption is
that the observations for each gene are independent and
identically distributed (iid) and are invariant with
respect to the order of the observations. If the order of
observations in two sequences is permuted, their
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correlation or Euclidean distance will not change. How-
ever, this does not hold for time series, where each
observation depends on its past, and gene expression
levels at adjacent time points exhibit correlation. This
was demonstrated in the classic paper of Eisen et al. [2],
who observed that the biologically meaningful clusters
obtained by hierarchical clustering of S. cerevisiae
microarray time series data, using a correlation distance
metric, disappeared when the observations within each
sequence were randomly permuted.
McLachlan et al. [3] use a model-based approach to

clustering microarray data, and demonstrate the cluster-
ing of a relatively small number of tissue samples on a
very large number of genes. Model-based approaches to
time series clustering have included the use of finite and
infinite hidden Markov models [4,5]. Another popular
approach is the use of splines as basis functions [6-9].
Liverani et al. [10] also use Fourier series as basis func-
tions. Ng et al. [11] use a random-effects model for
mixture model-based clustering of correlated microarray
data, including gene profiles over time. A number of
additional methods for time series data analysis have
been reviewed by Bar-Joseph [12].
The Bayesian Hierarchical Clustering (BHC) algorithm

[13] is a fast approximate inference method for a Dirich-
let process mixture model, which performs agglomera-
tive hierarchical clustering in a Bayesian framework.
BHC has previously been used to cluster genes from sin-
gle time point microarray observations [14]. Heard [15],
has applied an iterative reclassification extension to
BHC which leads to improvements in the quality of the
clustering. In this paper we extend BHC for use with
time series data. Microarray time series data sets often
contain several replicate values per observation and
standard clustering algorithms lack the ability to incor-
porate this information, two exceptions being the meth-
ods of Ng et al. [11] and Zhou et al. [16]. Ng et al. [11]
demonstrate an extension of finite mixture model clus-
tering by introducing random gene effects and random
tissue effects, such that within each cluster the random
gene effects are shared among replicate measurements
from the same gene (in the same tissue), while random
tissue effects are shared among measurements from the
same tissue. In their Bayesian model-based approach,
Zhou et al. [16] use the information from replicate
experiments to inform prior distributions for the data
being clustered. Whereas Zhou et al. [16] use a replicate
experiment to inform the prior distributions and then
cluster single (non-replicated) observations, we adopt an
empirical Bayes approach that uses all the replicate
information to inform the prior distributions, and then
cluster the mean of the data profiles.
Measurement error is not the only source of noise

to consider. Genes regulated by the same transcription

factor(s) are unlikely to have identical expression pro-
files for the duration of the time series, which leads to
inherent variation in the expression data of co-regu-
lated genes. Liu et al. [17] highlight the uncertainty
about the precise biological time at which gene
expression measurements are taken. Smith et al. [18]
address the issue of outlier profiles in a data set by
demonstrating a method of setting the model hyper-
parameters which can prevent agglomerative cluster-
ing methods such as that of Heard et al. [8] from
combining outlier profiles into a single cluster at an
early stage in the clustering. In this paper, we model
the total noise variance as a sum of the measurement
error variance and the inherent biological variation
within a cluster. Typically, the noise inherent in gene
expression microarray data is modelled with a Gaus-
sian distribution, which provides a good model for the
majority of data. However, a subset of the data may
contain much higher levels of noise, which cannot be
correctly modelled by the same distribution as that
used for the majority of the data. By using a mixture
model likelihood, we explicitly model a small propor-
tion of the data as outlier measurements, and there-
fore allow genes which have noisy observations to
participate in the clustering assignment, instead of
being assigned to noisy and biologically meaningless
clusters.

Methods
Bayesian Hierarchical Clustering
Agglomerative hierarchical clustering is a commonly
used approach to group genes according to their expres-
sion levels. In this algorithm, each gene begins in its
own cluster and at each stage the two most similar clus-
ters are merged.
The BHC algorithm [13] performs agglomerative hier-

archical clustering in a Bayesian setting. It uses a
model-based criterion to decide which clusters to merge
at each stage, and learns the most likely number of clus-
ters, given the data. Another interpretation of the BHC
algorithm is as a fast approximate inference method for
a Dirichlet process mixture (DPM) model. DPM models
are frequently used in clustering, and allow for an infi-
nite number of clusters to be considered, although only
a finite number of clusters are actually ever used to
describe any data set.
The prior probability, πk, that a given pair of clusters,

C1 and C2, should be merged is defined by the DPM
and is determined solely by the concentration hyper-
parameter for the DPM and the number of genes cur-
rently in each partition of the clustering (see Savage et
al. [14] for details). BHC uses Bayes’ rule to find the
posterior probability, rk, that the pair of clusters should
be merged.
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rk =
πkP(y|Hk

1)
P(y|Tk)

(1)

where y = {y1,..., yN} is the set of N data points con-
tained in clusters C1 and C2. P(y|Hk

1) is the marginal

likelihood of the data given the hypothesis, Hk
1, that the

data y belong to a single cluster and requires the specifi-
cation of a likelihood function, f, as the probabilistic
model generating the observed data, y. P(y|Tk) is the
probability that the data could be partitioned in any way
which is consistent with the order of assembly of the
current partition, (see Heller and Ghahramani [13] for
further details), and is defined recursively:

P(y|Tk) =
πkP(y|Hk

1) + (1 − πk)P(y|Ti)P(y|Tj)
(2)

where Ti and Tj are previously merged clusters con-
taining subsets of the data in y.
While rk is greater than 0.5, it is more likely that the

data points contained in the clusters C1 and C2 were
generated from the same underlying function, f, than
that the data points should belong to two or more clus-
ters. When rk is less than 0.5 for all remaining pairs of
clusters, the number of clusters and partition best
described by the data has been found.

Gaussian Process Regression
Gaussian process regression (GPR) is a non-linear
regression method with several previous applications in
the analysis of gene expression data [1,17,19,20].
In our GPR model a single observation at time point ti

is represented as y(ti) = f(ti) + ε. For each cluster, we
assume the latent function f is drawn from an infinite
dimensional Gaussian distribution, where the correlation
structure between the points is determined by a covar-
iance function, Σ, with hyperparameters, θΣ. We assume
ε is iid noise with a Gaussian distribution, N(0, σ 2

ε ).
Let y = [y1,T . . . yG,T] be the N = G × T observations in

a cluster of G genes, where the {yg, T} are time series of
{1,..., T} time points. Each gene is normalised to have
mean 0 and standard deviation 1 across time points. The
prior of f is given for fixed values of θΣ, such that P(f|θΣ)
= N (0, Σ). It follows that the likelihood function for f is
P(y|f , σ 2

ε ) = N(f , σ 2
ε I), where I is the N × N identity

matrix. The marginal likelihood of the data, y, is then:

P(y|θ�, σ 2
ε ) = N(0,� + σ 2

ε I)

= (2π)−
N
2 |K|− 1

2 exp(−1
2
yT(K)−1y)

(3)

where K = � + σ 2
ε I is the covariance function for y.

We have implemented both the squared exponential

and cubic spline covariance functions into BHC. The
probability P (y) is given for fixed θΣ and σ 2

ε , since all
observations in a cluster are assumed to have the same
latent function f and noise variance.

Covariance Functions
The covariance function K describes the relationship
between the values of the function, f, at different time
points and must be positive semi-definite to be valid. In
BHC we have implemented the squared-exponential
covariance function KSE, which is a widely-used choice
for K:

KSE(ti, tj) = σ 2
f

[
exp

(
−(ti − tj)

2

2l2

)]
+ σ 2

ε δij (4)

where δij is the Kronecker delta function and ti and
tj are two time points for f. The covariance function
encodes our assumptions about the underlying signal
in the data. For example in KSE the hyperparameter
σ 2
f is the signal variance, σ 2

ε is the noise variance, and

the length scale, l, is intuitively how far along the
input time axis must be travelled between stationary
points. As the inputs become closer in time, the value
of KSE increases and tends to unity, meaning these
values of f are more closely correlated. This encodes
the intuition that our time series are smoothly-vary-
ing, once we have accounted for noise. We have also
implemented the cubic spline covariance function,
KCS , to facilitate comparison with the clustering
method of Heard et al . [7], which can use cubic
splines as basis functions:

KCS(ti, tj) = σ 2
f

[ |ti − tj|υ2

2
+

υ3

3

]
+ σ 2

ε δij (5)

where v = min (ti,tj). KCS only has two hyperpara-

meters, σ 2
f and σ 2

ε , as described above, but no length

hyperparameter.

Using replicate data to learn the noise hyperparameter
For each cluster, we learn the hyperparameters θΣ and
σ 2

ε , which maximise the marginal likelihood of the data,
y, using a gradient ascent method. We want to use the
replicate information to inform the value of σ 2

ε . For this
hyperparameter we assume a Gamma prior, where
P(σ 2

ε ) = Ga(α,β).
The total noise variance, σ 2

ε , is assumed to be a sum
of the measurement error variance, σ 2

m, and of the inher-
ent biological variation in a cluster. We use the replicate
values to calculate an estimate of the measurement
error variance as follows:
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σ 2
m =

1
R(GRT − 1)

T∑
t=1

G∑
g=1

R∑
r=1

(yr,g,t − ȳg,t)
2 (6)

where G is number of genes in the cluster, R is num-
ber of replicates per observation, T is number of time

points in the time series and ȳg,t =
∑R

r=1
yr,g,t/R, where

{yr,g,t} is the set of replicates for an observation.
It is these averages of the replicate values, {ȳg,t}, that

are used as the observations in the clustering algorithm.
P ((a - 1)/b) is the modal value of the Gamma distri-

bution, and the hyperparameters a and b are chosen to
give a weakly informative prior on σ 2

ε such that:

1
�
P

(
α − 1

β

)
≈ P(1) ≈ P

(
σ 2
m

)
(7)

where P denotes the Gamma distribution and Ω is cho-
sen to be 100. Equation 7 reflects our prior knowledge
that σ 2

m is a lower bound for the total noise variance, and
also that the total noise variance is unlikely to be greater
than the total variance of the data, which is approximately
unity because of initial normalisation, see Figure 1.
The hyperparameters, θ = (θ� , σ 2

ε ), are estimated by
maximising log P (θ|y) using a gradient ascent method.
The partial gradient of the log marginal likelihood with
respect to θj = σ 2

ε is:

∂

∂θj
log P(θ |y) =

1
2
tr

((
γ γ T − K−1) ∂K

∂θj

)
+

αj − 1

θj
− βj

(8)

where g = K-1y, ∂ K/∂θj is a matrix of element-wise
derivatives and ‘tr’ denotes the trace of the matrix. In
the case of the remaining hyperparameters, a flat prior,
P (θj), is assumed, and therefore the corresponding par-
tial gradients contain only the trace term above. If repli-
cate information is not required to be included in BHC,
a flat prior is also assumed for σ 2

ε .

Modelling outliers
We have so far considered the total noise in microarray
measurements to have a Gaussian distribution. However,
despite averaging replicate values, microarray data typi-
cally contain some outliers that are not well modelled
by the Gaussian noise distribution used for the majority
of the data.
Kuss et al. [21] introduce the idea of a mixture

model for the likelihood function, P (y|f), where the
likelihood functions for observations with regular noise
have a Gaussian distribution, and a likelihood function
of a different form is assumed for the outlier measure-
ments. Stegle et al. [1] used such a mixture model
likelihood with an expectation propagation scheme to
identify differentially expressed genes. They show that
the mixture model likelihood provides more accurate
predictions.
We simplify our notation to denote, ȳg,t, a single

expression value from gene g and time point t, as yn.
Following the reasoning in Kuss et al. [21], we assume
there is a small probability, b, that this value, yn, was
generated by an unknown likelihood function, Po, pro-
ducing outlier measurements, and a probability a = 1 -
b that yn is a regular value, which was generated by a
Gaussian likelihood function, Pr. This mixture likelihood
function is therefore:

P(yn|fn, θ) = aPr(yn|fn, θ) + bPo(yn|fn, θ) (9)

The expression for the marginal likelihood then
becomes:

P(y|θ) =∫
df P(f |θ)

N∏
n=1

[aPr(yn|fn, θ) + bPo(yn|fn, θ)].
(10)

Multiplying out the likelihood function product
would result in 2N terms. In the case that Po is a con-
jugate distribution to Pr, evaluation of this integral
would be analytically solvable, but computationally
intractable for large numbers of observations. How-
ever, if the proportion of outlier measurements is
small, this series can be approximated. Making the fol-
lowing simplifications to notation: An = Pr (yn|fn, θ)
and Bn = Po (yn|fn, θ) gives:

Figure 1 Gamma prior on the total noise variance. A Gamma
prior is assumed for the hyperparameter σ 2

ε
. This reflects our prior

knowledge that σ 2
m is a lower bound for the total noise variance.

The total noise variance is unlikely to be greater than the total
variance of the data, which is approximately unity because of
normalisation, see Equation 7.
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σ 2
m (11)

The term with coefficient aN represents the case
where no observations are outliers. Terms with coeffi-
cient aN-1b represent the case that a single observation
is an outlier.
Terms with b2 or higher order in their coefficients

represent the case that two or more observations are
outliers. Since b is small, these terms are considered to
represent events unlikely to occur and are disregarded.
Our first order approximation considers every datum as
an outlier; higher order approximations would incur a
disproportionate computational burden.
The likelihood function for the outlier terms, Bn, is

modelled as the same constant function for all measure-
ments, B = 1/Range, where Range is the difference
between the highest and lowest observations in the data
set.
When the An represent Gaussian distributions, it fol-

lows that

P(y|θ) ≈ aN(2π)−
N
2 |K|−

1
2 exp

(
−1
2
yT(K)−1y

)
+

aN−1b
N∑
n=1

⎡
⎣B(2π)

−
N − 1

2 |K−n|−
1
2 exp(Q)

⎤
⎦.

(12)

Where Q = − 1
2 y

T
−n(K−n)−1y−n, y−n is the vector of N -

1 observations excluding the nth observation and K-n is
the corresponding covariance matrix.
After optimisation of the hyperparameters for the cov-

ariance function, K, the proportion of outliers, 1 - a, is
calculated to optimise the marginal likelihood P (y|θ).
Simplifying the notation, such that P(y|θ) ≈ aNV1 + aN-1

(1 - a)V2, we have amax = (1 - N)V2/N(V1 - V2) as the
value of a giving the highest value for P(y|θ). Therefore
if 0 <amax < 1, then a = amax, otherwise a = 1.

Datasets
For the computational experiments we have used time
series data sets from four published microarray studies,
which we refer to as S. cerevisiae 1, S. cerevisiae 2, H.
sapiens and E. coli. The S. cerevisiae 1 data set uses the
17 time point cell-cycle data from Cho et al. [22] and
contains 169 genes from eight clusters as found by the
multiple data source integration method of Savage et al.
[23]. There are no replicates for this data set.
The S. cerevisiae 2 data set uses the 15 time point

data from Orlando et al. [24] for the 440 genes which
were identified as periodic in the paper, and which
were also identified as such by Spellman et al. [25] and
Pramila et al. [26]. Two independent biological repli-
cate samples were taken for each time point. The data

from Rangel et al. [27] comprises two biological repli-
cates of 34 and 10 technical replicates respectively of
58 genes from an experiment investigating how the H.
sapiens Jurkat T-cell line responds to PMA and iono-
mycin treatment. This data is used for the H. sapiens
data set. These samples were taken at 10 unequally
spaced time points. The data set of Carzaniga et al.
[28] measures the transcriptional response of E. coli K-
12 cells as they are moved from 10°C to 37°C at 12
unequally spaced time points. In this data set there are
three biological replicates each with two technical
replicates. The genes were first ranked for differential
expression using the method of Stegle et al. [1] and
the 200 top ranked differentially expressed genes used
as the E. coli data set.

Performance metrics
When comparing BHC to other clustering methods, we
are interested in identifying which method produces the
most biologically meaningful clusters, and therefore use
the Biological Homogeneity Index (BHI) [29] as a qual-
ity measure to reflect this. We used the R package clVa-
lid [30] to calculate the BHI scores. The BHI
performance metric scores a clustering partition
between 0 and 1, with higher scores assigned to more
biologically homogeneous partitions with respect to a
reference annotation set. For these sets we used the
gene ontology (GO) annotations in the Bioconductor
packages org.Sc.sgd.db, hgu133plus2.db and org.EcK12.eg.
db for the S. cerevisiae 1 and 2, H. sapiens and E. coli
data sets respectively.
The average Pearson correlation coefficient, PCC, of

the expression profiles within the clusters, was used as a
measure of the similarity of gene expression shapes
within clusters.
The BHI and average PCC both represent mean values

of a large number of pairwise similarity comparisons.
For BHI, we considered whether or not pairs of (anno-
tated) genes that have been allocated to the same cluster
share GO annotations. For each such pair of genes, we
thereby obtained a 1 or 0, depending on whether or not
the genes do (1) or do not (0) have the same annotation.
The confidence intervals for the BHI scores provided in
Table 1 were determined by applying a nonparametric
bootstrap (1000 iterations) to the set of all calculated 0’s
and 1’s in each cluster in order to obtain an estimate of
the standard error of the mean [31]. The confidence
intervals for the average PCC were determined similarly
with 100 iterations.
Over-represented GO annotations were found using

the GOstat web-based interface http://gostat.wehi.edu.au
for a Benjamini and Hochberg False Discovery Rate con-
trolled at 1%, unless otherwise stated.
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Results and Discussion
Comparison of BHC to other clustering methods
For each of the four data sets, we compared the BHC
time series algorithm using squared exponential (BHC-
SE) and cubic spline (BHC-C) covariances to the clus-
tering methods of SplineCluster [7] using both linear
(SC-linear) and cubic (SC-cubic) splines, SSClust [9],
CAGED [32] and the method of Zhou et al [16]. These
methods are designed to account for the correlations
between the observations in time series data. For a clear
comparison with the BHC algorithm, we did not use a
mixture model likelihood, or include any replicate infor-
mation. We also compared BHC to Euclidean distance
average linkage hierarchical clustering (HCL) as imple-
mented in the MeV software [33], and MCLUST [34].
For these two methods the clustering partitions are
invariant to permutation of the time points.
Freely available software is available for each method,

and all but HCL estimate the number of clusters for a

data set. However, the BIC score in SSClust generally
continued to improve with an increasing number of
clusters, suggesting overfitting. For the method of Zhou
et al., we used the JAGS code (available from http://
faculty.washington.edu/jonno/biometrics_code.txt) for
the first order random walk model described in Zhou et
al. [35], which allows incorporation of prior information.
This method is a generalised case of the method
described in Zhou et al. [16], which is specifically for
periodic data. The JAGS implementation required the
preferred number of clusters to be pre-specified. Details
of the priors used for this method are available in Addi-
tional File 1. Therefore for HCL, SSClust and the
method of Zhou et al., the number of clusters was fixed
at the number obtained for BHC-SE. The CAGED algo-
rithm was tried with all possible Markov orders allowed
by its software, but a low number of clusters was always
favoured, a phenomenon also found by Heard et al. [8].
We restricted the MCLUST clustering to models with

Table 1 Comparison of clustering methods using performance metrics

# S. cerevisiae 1 # S. cerevisiae 2 # H. sapiens # E. coli

Clustering
method

clusts PCC ± stdev clusts PCC ± stdev clusts PCC ± stdev clusts PCC ± stdev

BHC-SE 13 0.68 ± 0.005 58 0.883 ± 0.003 6 0.75 ± 0.009 24 0.84 ± 0.003

BHC-C 9 0.66 ± 0.004 40 0.877 ± 0.002 2 0.55 ± 0.009 15 0.80 ± 0.003

SC-linear 7 0.60 ± 0.006 40 0.881 ± 0.002 4 0.69 ± 0.009 17 0.78 ± 0.004

SC-cubic 4 0.49 ± 0.005 22 0.852 ± 0.002 2 0.44 ± 0.010 8 0.67 ± 0.004

HCL 13* 0.53 ± 0.009 58* 0.881 ± 0.002 6* 0.66 ± 0.016 24* 0.68 ± 0.006

SSClust 13* 0.60 ± 0.008 58* 0.846 ± 0.003 6* 0.69 ± 0.015 24* 0.72 ± 0.010

CAGED 2 0.42 ± 0.042 6 0.606 ± 0.003 3 0.55 ± 0.020 2 0.47 ±0.005

MCLUST 8 0.60 ± 0.004 30 0.858 ± 0.002 6 0.75 ± 0.011 11 0.73 ± 0.004

Zhou 13* 0.60 ± 0.008 58* 0.853 ± 0.004 6* 0.75 ± 0.011 24* 0.74 ± 0.006

# S. cerevisiae 1 # S. cerevisiae 2 # H. sapiens # E. coli

Clustering method clusts BHI ± stdev clusts BHI ± stdev clusts BHI ± stdev clusts BHI ± stdev

BHC-SE 13 0.70 ± 0.07 58 0.57 ± 0.03 6 0.62 ± 0.06 24 0.46 ± 0.06

BHC-C 9 0.73 ± 0.11 40 0.55 ± 0.03 2 0.78 ± 0.05 15 0.47 ± 0.04

SC-linear 7 0.69 ± 0.10 40 0.55 ± 0.02 4 0.66 ± 0.07 17 0.35 ± 0.03

SC-cubic 4 0.64 ± 0.02 22 0.53 ± 0.01 2 0.70 ± 0.03 8 0.32 ± 0.02

HCL 13* 0.50 ± 0.04 58* 0.56 ± 0.04 6* 0.52 ± 0.07 24* 0.44 ± 0.07

SSClust 13* 0.65 ± 0.03 58* 0.56 ± 0.02 6* 0.64 ± 0.05 24* 0.36 ± 0.03

CAGED 2 0.64 ± 0.02 6 0.52 ± 0.02 3 0.68 ± 0.04 2 0.21 ± 0.01

MCLUST 8 0.69 ± 0.02 30 0.55 ± 0.02 6 0.61 ± 0.06 11 0.47 ± 0.04

Zhou 13* 0.66 ± 0.03 58* 0.54 ± 0.02 6* 0.61 ± 0.06 24* 0.43 ± 0.07

# S. cerevisiae 1 # S. cerevisiae 2 # H. sapiens # E. coli

Clustering method clusts log marginal
likelihood

clusts log marginal
likelihood

clusts log marginal
likelihood

clusts log marginal
likelihood

BHC-SE 13 -3293 58 -3956 6 -633 24 -2497

BHC-C 9 -3356 40 -4294 2 -734 15 -2622

Table 1 shows the average Pearson correlation Coefficient (PCC) and BHI score of the four data sets for the different clustering algorithms. Confidence intervals
represent ± one standard deviation, calculated by performing a nonparametric bootstrap. For the number of clusters in the partition (# clusts),* denotes that the
number has not been optimized by the algorithm, but fixed at the number obtained for BHC with squared exponential covariance. The clustering methods are
explained in the Methods Section. The table also shows the log-marginal likelihoods, log (P(y|T)), for BHC-SE and BHC-C. The best values for each data set are in
bold.
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spherical and diagonal covariance matrices, since we
found that permitting full covariance matrices tended to
yield poor results. When using SplineCluster, the prior
precision on the coefficients was selected by maximisa-
tion of the log marginal likelihood of the clustering.
Only BHC, SplineCluster and the method of Zhou et al.
were able to incorporate the non-uniformly sampled
time intervals for the H. sapiens and E.coli data sets.
Table 1 shows the results of the two performance

metrics PCC and BHI for these comparisons, where
higher values are better for both metrics. In all cases the
BHC algorithm gives the most coherent or joint most
coherent clustering according to expression level, as
measured by the PCC. For the H. sapiens data set the
MCLUST and Zhou methods give an identical cluster-
ing, which has an equal PCC to the almost identical
clustering of the BHC-SE method. BHC also gives the
most biologically relevant clustering partition as mea-
sured by the BHI, except in the case of S. cerevisiae 1
where the BHI confidence intervals of BHC-C and SC-
linear overlap considerably. However, the greater num-
ber of clusters generated by BHC-C are more biologi-
cally meaningful (see Figure 2). Liverani et al. [10] also
find a greater number of clusters for their data set than
the SplineCluster method of Heard et al. [7] and

demonstrate this is an improvement in the quality of
clustering.
At each stage, the BHC algorithm calculates the mar-

ginal likelihood of the tree structure for the data, p(y|
Tk), as given by Equation (2). Denoting the final,
unpruned tree structure returned by the algorithm as T,
we may use the final (root node) marginal likelihood, p
(y|T), in order to do model comparison between differ-
ent choices for the covariance function (a similar strat-
egy is employed by Heller and Ghahramani [13] in
order to select model hyperparameters). In Table 1, we
provide (log) marginal likelihoods for the squared expo-
nential and cubic spline covariance functions. For all
data sets considered in this paper, the squared exponen-
tial covariance function yields the higher log-marginal
likelihood. We note that this is in good agreement with
the PC̄C, which is also consistently higher for BHC-SE.
For all data sets the gene lists and plots of clusters for
BHC-SE and BHC-C are available in Additional File 2.
Figure 2 shows the over-represented GO annotations
using the R package GOstats in the clusters resulting
from BHC-C and SplineCluster using linear splines, for
the S. cerevisiae 1 data set. Grey and white vertical shad-
ing separates the clusters and each row represents a GO
annotation, where the dark block shading indicates an

Figure 2 GO annotation matrices. Over-represented GO annotations, p < 0.01 for the BHC-C clusters left (BHI = 0.73) and the SplineCluster
clusters using linear splines right (BHI = 0.69). The vertical grey shading separates gene clusters and each row is a GO annotation. Black shading
indicates a GO annotation associated to the corresponding gene is over-represented in the cluster. A representative GO annotation is given. For
the full GO annotations and a large version of the Figure, see Additional Files 3 and 4. Data set: S. cerevisiae 1 [22]

Cooke et al. BMC Bioinformatics 2011, 12:399
http://www.biomedcentral.com/1471-2105/12/399

Page 7 of 12



annotation is over-represented in the cluster. A repre-
sentative GO annotation is given for each cluster. Figure
2 shows that BHC is able to separate the clusters of
mitochondrial and ATP synthesis functions and also the
M- and S-Phase mitotic cell cycle genes, that Spli-
neCluster combines together. The increased biological
homogeneity of the BHC clusters is reflected in a higher
BHI score of 0.73, compared to a BHI for SplineCluster
of 0.69. For the full GO annotations and a large version
of Figure 2, see Additional Files 3 and 4.

BHC clustering of simulated data sets
An advantage of the BHC algorithm is that it allows
simulated data with realistic noise and expression pro-
files to be generated from the Gaussian processes
inferred from the BHC clustering of real biological data.
To demonstrate that the BHC algorithm can find the

correct number of clusters for a synthetic data set, we
analysed simulated data sets with the same number of
genes, timepoints and noise levels, which were generated
from the 6 and 13 Gaussian processes inferred from the
BHC-SE clustering of the H. sapiens and S. cerevisiae 1
data sets respectively. These Gaussian processes are
therefore models of true biological data. Figures 3 and 4
show the estimated number of clusters found for 1000
simulated H. sapiens and S. cerevisiae 1 data sets

respectively, for BHC-SE, BHC-C, SplineCluster (linear
and cubic), MCLUST and SSClust methods. We did not
use CAGED in the comparison, since it is a Windows-
based program that does not permit automation.
BHC-SE finds the correct number of clusters for the

simulated data generated from the 6 Gaussian processes
in 80% of cases. For the simulated data generated from
the 13 Gaussian processes, BHC-SE finds between 11-13
clusters in 89% of cases. For the H. sapiens data,
MCLUST is the only method other than BHC-SE to
correctly favour 6 clusters. For the S. cerevisiae 1 data,
BHC-SE is the only method to favour around 13 clus-
ters. Simulated data sets generated from the Gaussian
processes with half the noise standard deviation were
always partitioned by BHC-SE into exactly the original
number of clusters of 6 and 13 (data not shown).

Modelling outlier measurements
We investigated the effect of using the mixture model
likelihood. Figure 5 shows for an example of a noisy
gene from three of the data sets, the clusters to which
the gene was assigned using standard BHC (with a sin-
gle likelihood function) and mixture BHC (with a mix-
ture model likelihood function).
In the S. cerevisiae 1 data set, four of the 169 genes

were assigned to different clusters using the mixture
BHC-SE instead of standard BHC-SE. There was no
change in the clustering partition for BHC-C. For stan-
dard BHC-SE, the FSP2 (IsoMaltase) gene is annotated
with several GO terms which are over-represented in its

Figure 3 H. sapiens simulated data. Relative frequencies of the
estimated number of clusters obtained when a variety of clustering
algorithms (BHC-C, BHC-SE, SplineCluster with linear and cubic
splines, MCLUST and SSClust) were applied to simulated data sets
(due to slow running times, we only used 100 of the 1000
simulated data sets to obtain the SSClust results). For each
clustering algorithm, we draw lines between relative frequency
values to aid interpretability. Each simulated data set was generated
from the 6 Gaussian processes obtained from the BHC-SE clustering
of the H. sapiens data set, and has the same number of genes,
timepoints and per cluster noise levels. Note that, for SSClust, we
specified the maximum permissible number of clusters to be 12.

Figure 4 S. cerevisiae 1 simulated data. As Figure 3, except that
simulated data sets were generated from the 13 Gaussian processes
obtained from the BHC-SE clustering of the S. cerevisiae 1 data
(again, due to slow running times, we only used 100 of our 1000
simulated data sets to obtain the SSClust results). Note that, for
SSClust, we specified the maximum permissible number of clusters
to be 20.
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cluster (top left in Figure 5). These GO terms include
glucosidase activity, which FSP2 shares with three out of
20 genes, and the whole cluster has a BHI of 0.46.
When using mixture BHC-SE, the FSP2 gene expression
at time point 11 has been treated as an outlier measure-
ment, which has resulted in the FSP2 gene no longer
being a member of this noisy cluster where PCC = 0.42,
but being assigned to a tighter (PCC = 0.75), more bio-
logically homogeneous cluster (bottom left in Figure 5),
with a higher BHI of 0.50, and where all of the four
members, SOR1 (Sorbitol dehydrogenase), RFC2 (Repli-
cation Factor C), RMA1 (Reduced Mating A) and FSP2
are annotated as being involved in catalytic activity. In
the S. cerevisiae 2 data set, the standard BHC cluster
containing the CSM3 (Chromosome Segregation in Meio-
sis) gene (top middle in Figure 5 ) does not contain any
over-represented GO terms at a significance level of p <
0.01, and has a BHI of 0.42. This cluster is quite noisy,
with a PCC of 0.16. Using a mixture model likelihood
allows BHC to treat the CSM3 expression level at time
point 2 as an outlier value. This allows the CSM3 gene
to join a tighter cluster (bottom middle in Figure 5)
with a PCC of 0.94, where it shares over-represented
GO terms such as mitotic sister chromatid cohesion,
DNA replication and M phase of mitotic cell cycle, with
9 of the 15 cluster members.
In the E. coli data set, the clustering partition using

BHC-C has only one gene, WcaC, (Putative colanic acid
biosynthesis glycosyl transferase) assigned to a different

cluster, when comparing standard and mixture BHC.
The cluster containing this gene for standard BHC-C
(top right in Figure 5) has no over-represented GO
terms and a BHI of 0.22. Using the mixture mode likeli-
hood allows time point 4 of the WcaC expression profile
to be treated as an outlier value and the gene is reas-
signed to a highly correlated cluster (bottom right in
Figure 5) where the PCC = 0.98 and where WcaC shares
several significant GO terms with two of the other three
genes in the cluster, such as lipopolysaccharide biosyn-
thetic process. For all data sets the gene lists and plots
of clusters for both BHC-SE and BHC-C using the mix-
ture model likelihood are available in Additional File 2.

Inclusion of replicate information
We investigated the effect of including the replicate
information. Figure 6 shows the effect on a cluster from
each dataset which has replicate information.
The standard BHC cluster from the S. cerevisiae 2

data set (top left Figure 6) has over-represented GO
terms, such as DNA replication, DNA repair and hydro-
lase activity. Including the replicate information in the
BHC clustering resulted in profiles which are subtly dif-
ferent during the first few time points being distin-
guished and reassigned (top right Figure 6), as shown by
the increase in the PCC from 0.91 to 0.92 and 0.94 for
the two resulting ‘child’ clusters. These two child clus-
ters have similar over-represented GO terms to the ori-
ginal cluster.

Cluster
containing gene
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S. cerevisiae 1 data set

CSM3 gene from
S. cerevisiae 2 data set

WcaC gene fromE.coli data set
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Figure 5 Effect of a mixture model likelihood on noisy gene classification. Using a mixture model likelihood allows BHC to model certain
time points as outlier measurements for the genes shown, and assign the noisy gene to a cluster which is more coherent in its expression
profiles and biological function. Outlier time points are time point 11 for FSP2, time point 2 for CMS3 and time point 4 for WcaC. The examples
shown use BHC-SE for S. cerevisiae 1 and BHC-C for S. cerevisiae 2 and E.coli.
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Including the replicate information for the H. sapiens
data set resulted in the distinct and highly correlated
(PCC = 0.90), profiles of the two genes CASP7 (Caspase
7) and IKZF1 (IKAROS family zinc finger 1) being distin-
guished (middle row, Figure 6). These genes are both
members of the disease-specific gene signature of the
neoplastic disease Mantle cell lymphoma [36] and their
protein products are both implicated in apoptosis [37,38].
An unusually noisy cluster (bottom left Figure 6) was

formed using standard BHC for the E. coli data set, with
a PCC = 0.0023. However, this cluster contains several
over-represented GO terms such as metal ion binding.
Including replicate information allows this cluster to be
split into three clusters with distinct profiles (bottom
right Figure 6). The child cluster with BHI = 0.12 has no
over-represented GO terms and the remaining two child
clusters have similar over-represented GO terms to the
standard BHC cluster. For all data sets the gene lists and
plots of clusters for both BHC-SE and BHC-C using
replicate information are available in Additional File 2.

Run time
Table 2 gives the run time for our BHC algorithm for
each of the four data sets used in this paper. The most
time-intensive calculation in the BHC algorithm is the

inversion of the covariance matrix, K, which has dimen-
sion GT × GT, where G is the number of genes in a clus-
ter and T is the number of time points in the data set. To
reduce the calculation time, we arranged the data by
order of time points, which gives the corresponding cov-
ariance matrix a block matrix structure. Using the matrix
inversion lemma with recursion as detailed in Rasmussen
[39], this then only requires the inversion of a single T ×
T matrix. The hyperparameter optimisations now
become the factor limiting the algorithm run time.

Conclusions
We have presented an extension to the BHC algorithm
[14] for time-series microarray data, using a likelihood
based on Gaussian process regression, which learns the
optimum number of clusters given the data, and which
incorporates non-uniformly sampled time points. We
have extensively tested the performance of BHC against
other leading clustering methods for four sets of time
series data, and found that BHC consistently produced
more coherent clusters both in terms of expression pro-
files and biological function.
BHC facilitates the inclusion of replicate information,

and our results clearly demonstrate an improvement in
the ability to distinguish between distinct expression
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Figure 6 Effect of including replicate information on noisy clusters. Using replicate information can split a noisy cluster into smaller more
biologically homogeneous clusters with distinct profiles. The examples shown use BHC-C for the S. cerevisiae 2 data set and BHC-SE for the H.
sapiens and E. coli data sets. *For this cluster of only two genes, instead of considering the BHI, we looked directly at the biological functions of
the genes.
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profiles when this replicate information is included.
Microarray data typically contain outlier observations,
which should not be treated together with the majority of
observations. One unique aspect of the BHC algorithm
presented in this paper is its ability to model these noisy
outlier measurements using a mixture model likelihood.
The result is that genes with a small number of noisy
values, which would otherwise have been assigned to a
noisy cluster, are assigned to a biologically relevant cluster,
where the noisy gene shares biological functions with the
other cluster members. This method provides a step
towards a better treatment of the noise inherent in mea-
surements from high-throughput post-genomic
technologies.

Availability
Timeseries BHC is available as part of the R package
‘BHC’ (version 1.5), which is available for download
from Bioconductor (version 2.9 and above) via http://
www.bioconductor.org/packages/release/bioc/html/BHC.
html?pagewanted=all. The timeseries functionality was
developed under R version 2.13. The ‘BHC’ package is
available for Mac OS X, Linux and Windows operating
systems. ‘BHC’ is released under the Gnu GPL (v3).

Additional material

Additional file 1: The clustering method of Zhou et al. Further details
for running the method of Zhou et al.

Additional file 2: Genes lists and cluster plots. Gene lists and cluster
eps files for the S. cerevisiae 1, S. cerevisiae 2, E. coli and H. sapiens data
sets using BHC with both squared exponential (BHC-SE) and cubic (BHC-
C) covariances. For each covariance option, results are given for the
single model likelihood, mixture model likelihood, and including replicate
information.

Additional file 3: GO annotation matrix for S. cerevisiae 1 data set
clustered using BHC with cubic spline covariance. A large version of
Figure 2, left panel.

Additional file 4: GO annotation matrix for S. cerevisiae 1 data set
clustered using SplineCluster with linear splines. A large version of
Figure 2, right panel.
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