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Abstract

1 Background: High throughput data are complex and methods that reveal structure underlying the data are
most useful. Principal component analysis, frequently implemented as a singular value decomposition, is a popular
technique in this respect. Nowadays often the challenge is to reveal structure in several sources of information (e.
g., transcriptomics, proteomics) that are available for the same biological entities under study. Simultaneous
component methods are most promising in this respect. However, the interpretation of the principal and
simultaneous components is often daunting because contributions of each of the biomolecules (transcripts,
proteins) have to be taken into account.

2 Results: We propose a sparse simultaneous component method that makes many of the parameters redundant
by shrinking them to zero. It includes principal component analysis, sparse principal component analysis, and
ordinary simultaneous component analysis as special cases. Several penalties can be tuned that account in different
ways for the block structure present in the integrated data. This yields known sparse approaches as the lasso, the
ridge penalty, the elastic net, the group lasso, sparse group lasso, and elitist lasso. In addition, the algorithmic
results can be easily transposed to the context of regression. Metabolomics data obtained with two measurement
platforms for the same set of Escherichia coli samples are used to illustrate the proposed methodology and the
properties of different penalties with respect to sparseness across and within data blocks.

3 Conclusion: Sparse simultaneous component analysis is a useful method for data integration: First, simultaneous
analyses of multiple blocks offer advantages over sequential and separate analyses and second, interpretation of
the results is highly facilitated by their sparseness. The approach offered is flexible and allows to take the block
structure in different ways into account. As such, structures can be found that are exclusively tied to one data
platform (group lasso approach) as well as structures that involve all data platforms (Elitist lasso approach).

4 Availability: The additional file contains a MATLAB implementation of the sparse simultaneous component
method.

Background
The integrated analysis of multiple data sets obtained
for the same biological entities under study, has become
one of the major challenges for data analysis in bioinfor-
matics and computational biology. Two main causes for
this trend are the availability of complementary mea-
surement platforms and the systemic approach to biol-
ogy; in both cases, multiple data sets are obtained on
the same set of samples (e.g., culture samples, tissues).
First, examples where several measurement platforms

are included are the study of the metabolome composi-
tion of Escherichia coli (E. coli) using several analytical
chemical methods to screen for metabolites [1] and the
combination of cDNA and Affymetrix chips applied to
sixty cancer cell lines [2]. In both examples, there is
overlap in the metabolites or genes screened but also
complementarity. Second, the modern systemic
approach to biology leads to a probing of the biological
system on different levels in the cellular organization,
such as for example the transcript, protein, and metabo-
lite level [3]. These approaches lead to situations where
several data blocks are obtained that are coupled in the
sense that they were obtained for the same set of sam-
ples. A key issue in integrative data analysis is to analyze
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such data simultaneously instead of separately or
sequentially as this yields an aggregated view. In this
respect, simultaneous component methods, that are an
extension of principal component analysis (PCA) to the
case of multiple coupled data blocks, were proposed and
successfully used [4-7].
However, a drawback of component based methods

like PCA is their lack of sparseness: Processes underlying
the data are revealed by a weighted combination of all
variables (these are the genes, transcripts, proteins, meta-
bolites in the aforementioned examples). From an inter-
pretational point of view, this is not very attractive and it
also does not reflect that biological processes are
expected to be governed by a limited number of genes
[8]. The problem holds even more for simultaneous com-
ponent methods as these involve multiple large sets of
variables. To deal with this issue, sparse approaches have
been proposed mainly within the context of regression
analysis (e.g., [9,10]) but also for principal component
analysis [8,11-14]: These select a limited number of vari-
ables by shrinking many of the weights to zero which is
accomplished by proper penalization of these (regression)
weights. A favorable characteristic of such penalty based
methods is that the selection is built-in (in contrast to,
for example, first filtering and then doing the regression/
PCA). Here, we extent sparse PCA to sparse simulta-
neous component methods, accounting for the fact that
the data are structured in several data blocks holding
both shared and complementary information. The esti-
mation procedure used is efficient and the associated
MATLAB code can be found in the additional file.
First, we present the sparse simultaneous component

model, starting from ordinary principal component ana-
lysis and sparse PCA. A generic modeling framework is
introduced that incorporates several types of penalties.
Then we present some results for metabolomics data
obtained with two measurement platforms for the same
set of E. coli samples and we validate the method by
means of simulated data.

Results
Algorithm
Notation
We will make use of the following formal notation:
matrices are denoted by bold uppercases, vectors by
bold lower case, the transpose by the superscript T, and
the cardinality by the capital of the letter used to run
the index (e.g., this paper deals with K data matrices Xk

with k running from 1 to K), see [15].
Throughout the paper, we suppose that all variables

are mean-centered and scaled to norm one.
Model
Simultaneous component analysis is an extension of
principal component analysis (PCA) to the case of

multiple coupled data matrices. Consider the PCA of a
single data block Xk containing the scores of Ik objects
(e.g., batches, arrays) on Jk variables (e.g., metabolites,
genes). In a first model formulation [16] based on com-
ponent scores, PCA decomposes the data as follows,

Xk = TkPT
k + Ek (1)

with Tk the component scores of the Ik objects on the
R components, Pk (of size Jk × R) the loadings, and Ek

(of size Ik × Jk) the matrix of residuals. To identify the
model, usually the constraints are imposed that the axes
have a principal axes orientation and that the compo-

nent scores are orthogonal: TTkTk = I. Another formula-

tion of the PCA model is based on component weights
as follows [17],

Xk = XkWkPT
k + Ek (2)

with Wk (of size Jk × R) the component weights. Note
that we can write Tk = XkWk resulting in the equiva-
lence of models (1) and (2). However, usually (2) is con-

strained to have orthogonal weights: WT
kWk = I. Note

that under a least squares approach to PCA, Pk = Wk

and thus also PT
kPk = I . The principal components are

interpreted by considering the contribution of the vari-
ables to the components. For the score-based model (1)
this is based on the fact that the loadings are equal to
the correlation of the variables with the components
(we suppose the variables to be mean-centered and
scaled to norm one). Let xjk be the jth variable in data
block k and trk the rth component for block k, then

r
(
xjk,trk

)
= pjrk, (3)

with r(.,.) used as a notation for correlation and pjrk
the loading of the jth variable on the rth component of
block k. In the weight-based model (2), interpretation of
the components is based on the weights as these express
each component as a weighted linear combination of the
variables,

trk = Xkwrk. (4)

For both model formulations this implies that for each
component a total of Jk correlations or weights have to
be taken into account in the interpretation. Especially in
the case of omics data, that usually consist of thousands
of variables, there is a need for methods that facilitate
interpretation. To that end, [14] proposed a sparse
PCA method for the weight based model (2), that
shrinks a (large) number of component weights to zero.
Their method is based on a least-squares approach to
PCA model (2) in which the objective function is aug-
mented with an l1 penalty (also named lasso) and an l22
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(ridge) penalty: Minimize with respect to Wk and Pk

L (Wk,Pk) =∥∥Xk − XkWkPT
k

∥∥2 + λL‖Wk‖1 + λR ‖Wk‖22 ,
(5)

such that PT
kPk = I and with lL ≥ 0 and lR ≥ 0 tuning

parameters for the lasso and ridge penalties respectively,

‖Wk‖1 =
∑

jk,r

∣∣wjkr
∣∣ and ‖Wk‖2 =

∑
jk,r

w2
jkr . The lasso,

tuned by the parameter lL, has the property to simulta-
neously shrink coefficients and select variables, keeping
only those variables with the highest coefficients. The
higher lL, the stronger the shrinkage and selection.
Note that the selection is done in an unstructured way
meaning that correlations between variables are not
taken into account. The ridge penalty, tuned by lR, only
shrinks the coefficients and does not perform variable
selection (none of the coefficients becomes zero). It is
often introduced when it is of interest to group corre-
lated variables [10] or in case of ill-conditioned optimi-
zation problems (see [18]) to solve the non-uniqueness
of the parameter estimates. A particular case is regres-
sion analysis with more variables than objects, Jk >Ik,
which yields an under determined estimation problem.
In the context of PCA, this is of relevance for model (5)
because the estimation of the component weights boils
down to a regression analysis. Adding the ridge penalty
with lR > 0 solves the non-uniqueness; in addition, with
the appropriate normalization, the ridge ensures that the
solution of (5) yields the principal components in case
lL = 0 (see [14]).
The simultaneous component decomposition of K

coupled data blocks Xk having a common set of samples
(so I1 = ... = Ik = I) is given by imposing the constraint
that all Tk are equal. Applied to the score based model
this gives:

Xk = TPT
k + Ek, (6)

for all k and under the constraints of a principal axes
orientation and orthogonality of the component scores:
TTT = I. Applying the idea of a common matrix of
component scores to the weight based model as used by
[14], can be realized as follows,

[X1 . . . XK] =

[X1 . . .XK ]
[
WT

1 . . .WT
K

]T [
PT
1 . . . PT

K

]
+ [E1 . . . EK]

(7)

= T
[
PT
1 . . . PT

K

]
+ [E1 . . . EK ] , (8)

under the constraint of a principal axes orientation

and orthogonal loadings:
[
PT
1 . . . PT

K

] [
PT
1 . . . PT

K

]T
= I.

Simultaneous component model (7) shows that the
common component scores T lie in the space spanned
by all variables, this is from all data blocks. For ease of
notation, we will use the shorthand notation Xc = [X1 ...

XK] (of size I × Σk Jk) and Pc =
[
PT
1 . . . PT

K

]T and

Wc =
[
WT

1 . . .WT
K

]T (both of size Σk Jk × R). Note that

several simultaneous component models were proposed
in the literature: [6] gives an overview that emphasizes
the different ways of weighting the data blocks in con-
nection to different principles to realize a fair integra-
tion of the data.
The problem that a lot of variables have to be taken

into account when interpreting the components is exa-
cerbated in the case of simultaneous component analysis
as this involves several blocks of variables. To solve for
this problem, we propose to go for a sparse simulta-
neous component method by penalizing either the
loadings (in the context of the score based model) or
the component weights (in the context of the weights
based model) within a least-squares approach. One pos-
sibility, in line with sparse PCA, is to use the lasso pen-
alty if necessary in conjunction with a ridge penalty
(when grouping of correlated variables is of interest or
when Σk Jk >I). However, other types of penalties can be
used that, when selecting variables, explicitly take into
account that variables belong to (pre-defined) groups/
blocks by selecting variables within blocks only, between
blocks only (by setting all weights/loadings of an entire
block to zero, i.e. dropping an entire group of variables
at once), or both within and between blocks. A penalty
that introduces selection only within each group is Eli-
tist lasso (mixed l1,2 norm), defined for the rth compo-
nent as

λE

∑
k

‖wrk‖1,2 = λE

∑
k

⎛
⎝∑

jk

∣∣wjkrk
∣∣
⎞
⎠

2

. (9)

Elitist lasso was introduced by [19] in the context of
regression analysis. The behavior of this penalty can be
understood by observing that it behaves as the lasso
within blocks and as the ridge between blocks, resulting
in shrinkage and a selection of the variables with the
highest coefficients within each block (lasso) and a
shrinkage but with no selection between blocks (ridge).
To select entire (pre-defined) groups of variables, the

group lasso [20] was introduced. It uses the Euclidean
norm (also known as a mixed l2,1 norm; see [19]) of the
group coefficients as a penalty,

λG

∑
k

√
Jk‖wrk‖2 = λG

∑
k

√
Jk

∑
jk

(
w2
jkrk

)
. (10)
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This penalty behaves as the lasso at the block level
and as the ridge within blocks: within blocks shrinkage
and grouping of correlated variables occurs however
with no selection (behavior of the ridge penalty);
between blocks selection of those blocks with the high-
est sum of squared coefficients occurs while other
blocks are dropped (behavior of the lasso). The group
lasso applied to groups consisting of one variable only is
the same as the lasso. (Note that taking the square root
of a squared value is the same as taking the absolute
value.) To obtain also sparsity within the groups that
are not dropped by the group lasso, [21] proposed the
sparse group lasso that blends the lasso with the group
lasso and implies shrinkage and selection both within
and between groups. The behavior of each of the four
penalties and associated norms is summarized in Table
1.
We propose the following generic functions that

combine all penalties: First, for the approach based on
sparse component weights,

L (Wk,Pk) =∑
k

(∥∥Xk − XkWkPT
k

∥∥2 + λL‖Wk‖1
)

+
∑
k

(
λR ‖Wk‖22 + λG

√
Jk‖Wk‖2

)

+
∑
k

(
λE‖Wk‖1,2

)
=

∥∥Xc − XcWcPT
c

∥∥2 + λL‖Wc‖1
+λR ‖Wc‖22 +

∑
k

(
λG

√
Jk‖Wk‖2

)

+
∑
k

(
λE‖Wk‖1,2

)
,

(11)

which has to be minimized with respect to Wk and Pc

under the constraint that PT
c Pc = I. Second, for the

approach based on sparse component loadings,

L (T,Pk) =
∥∥Xc − TPT

c

∥∥2 + λL‖Pc‖1 + λR ‖Pc‖22
+

∑
k

(
λG

√
Jk‖Pk‖2 + λE‖Pk‖1,2

)
,

(12)

which has to be minimized with respect to T and Pk

under the constraint that TTT = I. Note that estimation
of the loadings is not a regression problem. Therefore,
unlike the model based on sparse weights, unique solu-
tions are obtained when Jk >I. This is the case even
when lR = 0.
The generic loss functions (11) and (12) allow for a

flexible use of all these approaches to sparseness. All
combinations of the four penalties are made possible.
However, often some prior idea about the structure
(selection within blocks, between blocks, both within
and between blocks) exists such that it is not necessary
to consider all possible combinations. Furthermore,
some combinations are not advisable. For example the
combination of the group lasso and elitist lasso does not
seem useful because the behavior of the one interferes
with the behavior of the other. By setting the appropri-
ate tuning parameters in the objective functions to zero,
particular known sparse approaches can be obtained.
For example, with lG = lE = 0 the extension of sparse
PCA to simultaneous component analysis is obtained
and with lR = lE = 0 a sparse simultaneous component
version of the sparse group lasso in linear regression is
obtained. With all four tuning parameters set equal to
zero, the ordinary simultaneous component analysis
model results. K = 1 leads to principal component ana-
lysis and setting lG = lE = 0 yields sparse PCA as pro-
posed by [14]. In Table 1 a summary is given of these
different existing sparse approaches in terms of which
penalties are active.
Algorithm
Given fixed values for the different tuning parameters
(ll, lR, lG, and lE) and a fixed number of components
R, we make use of an alternating scheme to minimize
(11) or (12) with respect to Wc (or T) and Pc : Wc (or
T) and Pc are alternatingly updated, conditional on fixed
values for the other parameters. For example, focusing
on (11):

• Step 1: Initialize Wc

• Step 2: Conditional on the current estimate of Wc,
obtain the optimal least-squares estimate of Pc

under the orthogonality constraint as follows (see

Table 1 Sparse approaches

Norm Properties Sparse approach

Lasso Elastic net Group lasso Sparse group lasso Elitist lasso

l1 selection and shrinkage at the level of the concatenated data YES YES NO YES NO

l22 shrinkage, groups correlated variables NO YES NO NO NO

l2,1 selection and shrinkage of entire blocks NO NO YES YES NO

L1,2 selection and shrinkage within each block NO NO NO NO YES

Different norms used in the context of sparse approaches, their properties, and specific sparse approaches based on particular combinations of the penalties. A
‘YES’ indicates that the norm is active in the approach.
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[22]): Pc = UVT with USVT the singular value

decomposition of WT
c X

T
c Xc

• Step 3: Check the stop criteria: 1) Is the difference
in loss with the previous iteration smaller than 1e -
12 or, 2) is a maximum of 5000 iterations reached?
If yes, terminate, and else continue.
• Step 4: Conditional on the current estimate of Pc,
obtain the update of Wc using a majorization mini-
mization procedure (see [23-25] for a general intro-
duction); see the Methods Section for a derivation of
the estimate. Return to Step 2.

This particular scheme guarantees that the loss is a
non-increasing function of the iterations. Due to the
convexity (not strict) and the fact that the loss function
is bounded from below by zero, the procedure will con-
verge to a fixed point for suitable starting values. The
majorization minimization (MM) procedure has a linear
rate of convergence; this slow convergence rate may,
however, be compensated for by the efficiency of the
calculations (see for example [26]). To account for the
problem that the fixed point may represent a local mini-
mum instead of the global optimum, a multistart proce-
dure can be used. See the Methods Section for details
on the algorithm used to minimize (12). MATLAB code
implementing the algorithms can be found in the sup-
plementary material.

Testing and implementation
In this section we apply the proposed approach both to
empirical and simulated data. The application to empiri-
cal data (metabolomics) is mainly for illustrative pur-
poses. The simulated data are used to check how the
different penalties (and their interactions) behave under
various conditions, and to compare the sparse compo-
nent weights and sparse component loadings modeling
approaches.
Metabolomics data
As an illustrative case, we use empirical data on the
metabolome composition of 28 samples of E. coli. The
different samples refer to different environmental condi-
tions and different elapsed fermentation times. Mass
spectrometry (MS) in combination with on the one
hand gas chromatography (GC) and on the other hand
liquid chromatography (LC) as a separation method was
used, resulting in two coupled data blocks: a GC-MS
block with the peak areas of 144 metabolites in the 28
conditions and a LC-MS block with the peak areas of 44
metabolites in these same conditions. Simultaneous
component analysis was previously successfully applied
describing the data well by five components (see [5,6]).
However, a better understanding of the processes under-
lying the data may be obtained by a sparse simultaneous

component analysis (SCA) approach as this charac-
terizes the components by a few instead of all metabo-
lites and thus facilitates interpretation.
Our proposed method allows to model the data in

several ways, depending on the one hand on the choice
of penalizing either the weights or the loadings and on
the other hand on the particular values of the different
tuning parameters. Therefore, we will analyze the data
under different options, namely either under model (11)
or under model (12) and, for both models, with several
combinations of values for the different tuning para-
meters. Here we explain how we chose a suitable range
of values for the tuning parameters using the notation
for the model with penalized weights. The different
values of lL, lG, lE, and lR were chosen in a way that
reflects the balance between lack-of-fit and strength of
the penalty by setting them as a fraction of ||Xc||

2 (max-
imal lack-of-fit) and |Wc|p,q with Wc obtained from the
ordinary SCA solution (maximal value of the penalty).
Let lp,q denote the tuning parameter of the penalty cor-
responding to the (mixed) lp,q norm, then this yields lp,q
= f||Xc||

2/|Wc|p,q with f taking values 0,10-4,10-3,10-2,10-
1,0.2, 0.5, and 1. We only consider those combinations
of non-zero values for the tuning parameters that were
considered in the regression literature, namely the lasso,
elastic net, group lasso, sparse group lasso, and elitist
lasso (see Table 1). Note that the case with all tuning
parameters equal to zero corresponds to regular simul-
taneous component analysis.
First we discuss the results for the approach based on

penalized weights, then the approach based on penalized
loadings, followed by a brief comparison of the two
approaches. We end the empirical application section
with a discussion on the choice and interpretation of a
particular sparse simultaneous component analysis.
Penalized weights
Table 2 summarizes the results for the approach with a
penalty on the component weights and with only one of
the tuning parameters different from zero (the ridge
penalty on its own is not considered as it does not
induce sparsity). Five components are assumed (R = 5).
For the three resulting types of sparse simultaneous
component analyses we report on the one hand the fit
of the model to the data and on the other hand the per-
centage of component weights that are zero. The fit is

defined as 1 − ∥∥Xc − XcWcPT
c

∥∥2/‖Xc‖2 . As could be

expected, it holds that increasing the tuning parameter
results in a decrease of fit and an increase of the pro-
portion of zero component weights. Comparing the
lasso and Elitist lasso, we see that the lasso has a better
fit for a similar proportion of zeros which may be attrib-
uted to the fact the lasso is less constrained because it
does not have to reflect the block structure in the
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variable selection. Both for the lasso and Elitist lasso the
proportion of zeros is very high, even for small values of
the tuning parameter. This could be expected as the
number of variables is larger than the number of sam-
ples and warrants the inclusion of a ridge penalty (see
also [14] for the case of the lasso), else non-unique solu-
tions are obtained. Also, at most I non-zero weights will
be obtained for each component and this may be too

sparse, e.g. in the case of micro-array gene expression
data obtained for a limited number of (tissue) samples.
Such solutions with only I non-zero values fit as well as
the regular simultaneous component model. To under-
stand this, consider a model with one component: t =
Xw which represents an underdetermined system in
case I < Σk Jk that can be solved exactly by taking only I
non-zero weights. The group lasso operates at the level
of the block and therefore does not show this effect.
The effect of adding a ridge penalty to the lasso and eli-
tist lasso is visualized in Figure 1: The higher the value
of the parameter that tunes the ridge penalty, the lower
the fit and the lower the proportion of zeros. In Figure
2 the results for the sparse group lasso (i.e., combination
of lasso and ridge penalty) are summarized. The lines
express the fit and the proportion of zero weights in
function of the lasso tuning parameter with different
lines referring to different values of the group lasso. As
illustrated by the figure, there is a qualitative interaction
between the two types of penalties in the sense that
lower values of the lasso parameter have a strong effect
on the number of zeros when the group lasso parameter
takes lower values while, conversely, higher values of the
lasso parameter have a strong effect when the group
lasso parameter takes higher values: As the group lasso
shrinks the component weights, the penalty for the lasso

Table 2 Summary results for the different simultaneous
component analyses with sparse weights

Lasso GroupLasso ElitistLasso

f Fit % zeros Fit % zeros Fit % zeros

0 0.57 0 0.57 0 0.57 0

0.0001 0.57 86 0.57 0 0.57 88

0.001 0.57 87 0.57 9 0.56 92

0.01 0.57 88 0.57 9 0.52 96

0.1 0.56 92 0.56 9 0.26 99

0.2 0.55 94 0.55 25 0.16 97

0.5 0.52 97 0.47 45 0.08 98

1 0.43 99 0.23 50 0.04 99

Different panels correspond to different approaches: The lasso in the left
panel, the group lasso in the middle panel, and Elitist lasso in the right panel.
Within each panel, both the fit of the model to the data and the percentage
of zero weights are reported. The different rows correspond to different
values of the tuning parameter.
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Figure 1 Adding the ridge panel to the (Elitist) lasso. Left panel: Elastic net; Right panel: Elitist lasso with ridge penalty. Fit (full lines) and
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becomes lower and hence low values of the lasso tuning
parameter are ineffective. Addition of a ridge penalty to
the lasso and group lasso parameters may be considered
when grouping is important (e.g., as is usual with gene
expression data to find modules of co-expressed genes;
[27]).
Penalized loadings
A summary of the results obtained for the approach
with sparse loadings is given in Table 3. The general
result that increasing the tuning parameters yields a
decrease in fit and an increase in sparsity also holds
here. A comparison between Tables 2 and 3 shows that
for an equal proportion of zeros, the fit of models with
sparse loadings is (much) lower. This can be understood
from the fact that the loadings contribute more directly
to the reconstruction of the data than the component
weights (compare equations (1) and (2)): for example, in
a model with one component, a zero loading results in a
zero vector for the reconstructed variable. This also
explains why different from the approach based on
penalizing the weights with an L1 penalty, the number
of non-zeros is not bounded by I. Table 3 also shows
that to obtain zero loadings with the group lasso, high
values of the tuning parameter are needed.

Reflections on penalizing the weights versus the loadings
As illustrated, the results obtained under the model with
penalized loadings are different from the results
obtained under the model with penalized weights. In
our view, the most important differences are at the level
of data reconstruction and at the level of interpretation.
With respect to data reconstruction, the model based
on weights yields a better fit while the model with
sparse loadings may yield many zero vectors for the
reconstructed data. Also, in this respect, the compo-
nents based on sparse weights have a higher correlation
with the components of the ordinary SCA solution than
the components resulting from a model with sparse
loadings. With respect to interpretation of the underly-
ing components, for the model based on sparse weights
this is done in a regression-like way, while for the
model based on sparse loadings it is based on consider-
ing loadings as correlations of the variables with the
component. In ordinary SCA, the loadings are the corre-
lations and in the sparse model we observed a close
connection in that zero loadings represent close to zero
correlations and higher loadings represent higher corre-
lations. The weights do not have such a relation with
the correlation between the variable and the component.
Selection and interpretation of the sparse SCA solution
As has been illustrated in the previous Results Section,
the data can be analyzed in many ways depending on
choices made with respect to the generic model ((11) or
(12)) and with respect to the values of the different tun-
ing parameters. Selection of the appropriate model is of
key importance and substantive issues may form a good
point of departure. First, concerning the choice of the
generic model, the model with penalized weights seems
more appropriate for the data at hand because all meta-
bolites can be considered to be involved in the biological
processes underlying the data. For applications of
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Figure 2 Sparse group lasso. Fit (full lines) and proportion of
zeros (dashed lines) for the sparse group lasso. The different lines
refer to different values of the group lasso penalty.

Table 3 Summary results for the different simultaneous
component analyses with sparse loadings

Lasso GroupLasso ElitistLasso

f Fit % zeros Fit % zeros Fit % zeros

0 0.57 0 0.57 0 0.57 0

0.0001 0.57 0 0.57 0 0.57 0

0.001 0.57 0 0.57 0 0.57 4

0.01 0.57 0 0.57 0 0.54 19

0.1 0.57 7 0.57 0 0.36 37

0.2 0.56 10 0.56 0 0.28 41

0.5 0.53 20 0.54 0 0.17 47

1 0.46 28 0.46 0 0.10 47

Different panels correspond to different approaches: The lasso in the first
panel, the group lasso in the second panel, and Elitist lasso in the last panel.
Within each panel, both the fit of the model to the data and the number of
zero loadings are reported. The different rows correspond to different values
of the tuning parameter.
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component models with sparse loadings to microarray
gene expression data, see [28] and [13]. Second, to
choose appropriate values for the tuning parameters we
consider the properties of the associated penalties. Hav-
ing components for which the interpretation is tied
exclusively to one type of analytical platform (corre-
sponding to the block structure) is convenient. Also,
because for each platform many metabolites result, spar-
seness within each platform/block is needed. This means
that we are interested in selection both across and
within groups. Recently, there has been a growing inter-
est for methods that perform such a selection [29,30],
with particular interest for the group lasso that has been
extended and applied in several ways [31-33]. Therefore,
we will restrict ourselves to a group lasso type of simul-
taneous component model, however, including a ridge
penalty to account for the fact that grouping is useful
(because, within each analytical method, the metabolites
belong to several classes of strongly related compounds):
lL > 0, lR > 0, lG > 0, and lL = 0. Then, we eliminate
solutions that 1) yield components with all weights
equal to zero, 2) yield components having non-zero
weights for both data blocks, and 3) solutions that do
not fit well (fit < .40) or that are not sparse (less than
50 percent of zero weights in a block). The remaining
solutions are summarized in Table 4 in terms of the fit
and the number of zeros per component. The solutions
in bold, with high values for the lasso tuning parameter
(fL = 0.5 or 1) and low values for both the ridge and
group lasso parameters (fR = 0.0001 and fG = 0.1; or fR =
0.001 and fG = 0.001), show the best tradeoff between fit

and sparsity. We select these solutions for an
interpretation.
The metabolites with non-zero component weights are

displayed for both selected solutions in Table 5; Table 6
contains the component scores corresponding to the
weights of the solution with fL = 0.5. Observe that the
solution with fL = 1 is a further selection of the metabo-
lites in the solution with fL = 0.5. The first component
shows an effect of phenyllactate, 3,5-dihydroxypentano-
ate, and two aromatic amino acids (phenylalanine and
tyrosine), together with two branched-chain amino acids
(isoleucine and valine); the corresponding component
scores (see C1 in Table 6) show a clear increasing linear
effect of fermentation time. The second component is
made up by metabolites like fumarate, malate, aspartate
and are associated to succinate catabolism (see C2 in
Table 6) making biological sense as these metabolites
are close to succinate in central metabolism. For C3, we
find non-zero weights for a large number of (unidenti-
fied) disaccharides and pyruvate and lactate and high
scores in the oxygen related conditions. The identifica-
tion of pyruvate and lactate could be indicative of a
changing, i.e. reduced, dissolved oxygen concentration
in the course of the fermentation as pyruvate can be
converted into lactate during anaerobic growth. The
fourth component is made up by nucleotides important
for the energy metabolism in a cell (i.e. ADP, GDP,
UDP) and is associated to the growth condition with an
elevated pH at the early (16hrs) phase. Finally, C5 seems
specific for the wild type strain, although the relation to
the metabolites guanine and thymine (both nucleobases)
and the other metabolites is not very clear.
Simulated data
To validate the proposed sparse simultaneous compo-
nent method, we make use of simulated data. The gen-
eral setup is that data are generated under some
specific conditions and with known structure; after addi-
tion of noise, the performance of the method in terms
of recovering the underlying structure is assessed. Here,
we are particularly interested in two aspects: A first one
is whether the penalties reflect the structure in the
selection of the variables (i.e., between data blocks;
within data blocks; or both between and within data
blocks); a second one is the behavior of the method in
function of the model (i.e., sparse weights or sparse
loadings). We also manipulated the amount of error in
the data (5 and 30 percent) and the degree of sparseness
(50 and 90 percent of zero weights/loadings). All factors
were fully crossed and for each of the resulting 2 × 3 ×
2 × 2 = 24 conditions, 5 data sets were generated,
resulting in a total of 120 data sets. To obtain a realistic
simulation, we generated the data using the metabolo-
mics data described in the previous section. 28 samples
were sampled with replacement from the original data;

Table 4 Overview of fit and sparseness for retained
sparse group lasso models

fL fR fG Fit Number of zeros in

C1 C2 C3 C4 C5

0.5 0.0001 0.01 0.52 178 176 176 178 179

0.5 0.0001 0.1 0.49 166 156 167 161 159

0.5 0.0001 0.2 0.44 150 173 145 143 169

0.5 0.001 0.1 0.49 158 167 161 166 156

0.5 0.001 0.2 0.44 169 150 146 145 173

0.5 0.01 0.1 0.48 154 154 166 165 160

1 0.0001 0.01 0.43 184 181 183 184 182

1 0.001 0.001 0.43 181 185 185 185 186

1 0.001 0.01 0.43 181 182 184 183 180

1 0.01 0.0001 0.42 180 183 180 179 174

1 0.01 0.001 0.42 182 179 174 180 179

1 0.01 0.01 0.41 177 180 173 178 181

Solutions with five components that have non-zero component weights in
only one data block, a fit > .40, and more than 50 percent of zero weights in
the remaining block. The strength of the different tuning parameters is
indicated in the first three columns, the fit is displayed in the fourth column,
and the 5 remaining columns show for each component (C1-C5) how many of
the 188 metabolites received a zero-weight.
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then a singular value decomposition was performed to
obtain three components: the three loading and weight
vectors were obtained as the three right singular vectors
corresponding to the three largest singular values and
multiplied by these, the three component score vectors
were set equal to the corresponding left singular vectors.
Sparseness was imposed by setting either weights or
loadings equal to zero as follows: In case of sparseness
between blocks, all weights/loadings of the first compo-
nent that correspond to the first data block (the first
144 weights/loadings) were set equal to zero and for the
second and third component the weights/loadings corre-
sponding to the second data block (the last 44 weights/
loadings) were set equal to zero; in case of sparseness
within blocks, 50 or 90 percent of variable indices were
randomly sampled and their corresponding weights/
loadings were set equal to zero; in case of sparseness
within and between data blocks, the two previous

Table 6 Component scores for the selected solution

Condition Ferm. time C1 C2 C3 C4 C5

Reference 16 -0.42 -0.11 -0.06 -0.30 -0.27

24 -0.26 -0.14 0.00 0.29 -0.09

32 0.30 -0.09 -0.26 0.07 0.05

40 0.40 -0.15 -0.27 -0.24 0.03

48 0.38 -0.06 -0.06 0.34 0.09

pH + 16 -0.35 -0.13 -0.28 0.99 -0.25

24 0.08 -0.22 0.14 -0.35 -0.10

40 0.46 -0.20 -0.35 -0.30 -0.13

48 0.54 -0.26 -0.38 -0.10 -0.12

oxygen + 40 -0.21 0.05 0.51 -0.02 -0.13

oxygen ? 16 -0.44 -0.24 0.00 -0.24 -0.21

24 -0.22 -0.03 0.42 0.32 -0.15

40 0.34 0.10 1.05 0.24 -0.03

64 0.59 0.05 0.50 0.24 -0.08

phosphate + 16 -0.54 -0.23 -0.08 -0.23 -0.23

24 -0.53 -0.26 0.18 -0.27 -0.17

40 -0.09 0.06 0.59 0.26 -0.10

48 0.14 -0.01 -0.02 0.13 -0.13

phosphate - 16 -0.27 -0.25 -0.03 0.04 -0.14

24 0.26 -0.21 0.19 -0.35 0.01

40 0.53 -0.21 -0.33 -0.56 -0.14

succinate 24 -0.10 1.03 -0.09 -0.13 -0.19

40 0.06 1.21 -0.13 -0.05 -0.08

48 0.12 1.07 -0.11 -0.02 0.19

Wild type 16 -0.42 -0.27 -0.34 -0.20 -0.05

24 -0.23 -0.14 -0.31 0.38 0.44

40 -0.11 -0.17 -0.22 0.22 0.94

48 -0.04 -0.19 -0.26 -0.14 1.06

Component scores for each of the five components (C1-C5). The samples
where obtained in a specific environmental condition (first column) and at a
particular fermentation time (second column).

Table 5 Metabolites with non-zero weights in the two
selected solutions

metabolite fL = 0.5 fL = 1

C1 3,5-dihydroxypentanoate: 0.68 0.88

C1 valine: 0.58 0.20

C1 3-phenyllactate or isomer: 0.55 1.21

C1 isoleucine: 0.48

C1 tyrosine: 0.41 0.03

C1 phenylalanine: 0.40

C1 unknown mass 304, 319 and 406: 0.01

C1 spectrum not complete6: -0.06

C1 mixed spectrum3: -0.43 0.36

C1 keto-gluconate (?): -0.46 0.25

C2 fumarate: 1.40 1.99

C2 malate: 0.96 1.06

C2 aspartate: 0.42

C2 monomethylphosphate: 0.39

C2 C18:1 fatty acid3: 0.37 0.19

C2 unknown1: 0.37

C2 spectrum not complete4: 0.20

C2 mixed spectrum2: 0.19

C2 glycerate: 0.14

C2 unknown20: 0.02

C3 lactate: 1.23 2.18

C3 pyruvate: 0.71 0.39

C3 disaccharide12: 0.49 0.11

C3 3-dehydroquinate: 0.38

C3 disaccharide8: 0.33

C3 citrate: 0.29

C3 disaccharide9: 0.27

C3 unknown mass 318 and 420: 0.17

C3 unknown mass 217 and 191: 0.17

C3 disaccharide13: 0.11

C3 2-hydroxybutanoate: 0.09

C4 ADP: 1.16 1.01

C4 GDP: 0.96 1.21

C4 UDP-glucose: 0.71 0.14

C4 UTP: 0.34

C4 unknown27: 0.20

C4 GMP: 0.20

C4 FBP: 0.09

C5 spectrum not found7: 1.41 2.04

C5 guanine: 0.73

C5 orotate: 0.51 0.34

C5 spectrum not complete5: 0.31

C5 mixed spectrum6: 0.24

C5 N-acetylaspartate

C5 + beta-phenylpyruvate: 0.23

C5 thymine: 0.12

Metabolites with non-zero component weighs for each of the five
components (C1 to C5). The component weights of two selected models are
shown that differ in the degree of sparsity (fL = 0.5 and fL = 1).
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strategies were combined. The resulting component
loadings and weights were used to generate the true
data part using the model part of expressions (1) and
(2) (i.e., without the addition of the residual matrices).
Noise was then added to this true part of the data with
the noise being generated from a normal distribution
with mean zero and variance such that these residual
matrices account for 5 or 30 percent of the total varia-
tion [34]. Each of the data sets was analyzed under both
models (sparse weights or sparse loadings) and with
varying values for the tuning parameters (f equal to 0,

10-3, 0.1, 0.5, and 10). The Elitist lasso penalty was only
combined with the ridge penalty because it interferes
with the lasso and group lasso (see earlier).
In the discussion of the results of the simulation

study, we first focus on the conditions where the data
are generated and analyzed under the same model
(either sparse weights or sparse loadings), the error
amounting to 30 percent of the total variation in the
data, and the ridge penalty set equal to the smallest
non-zero value. Figures 3 and 4 display boxplots of the
proportion of variables correctly classified (selected
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Figure 3 Boxplots of the proportion of recovered variables: 50 percent of true zeros. Boxplots of the proportion of variables correctly
classified (selected versus dropped) in function of the value of the tuning parameters. Case with 50 percent of the variables dropped. The different
panels refer to the different combinations of structure in the variable selection (from top to bottom: within blocks, between blocks, within and
between blocks) and of sparseness approach (from left to right: lasso, group lasso, Elitist lasso, and sparse group lasso). The panels referring to the
sparse group lasso are with varying values for the lasso tuning parameter and with the group lasso tuning parameter fixed at f = 10.
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versus dropped) in function of the value of the tuning
parameter. Figure 3 refers to the case with 50 percent
zero weights/loadings, Figure 4 to the case with 90 per-
cent zero weights/loadings. In each Figure, the different
panels refer to the different combinations of structure in
the variable selection (from top to bottom: within

blocks, between blocks, within and between blocks) and
of sparseness approach (from left to right: lasso, group
lasso, Elitist lasso, and sparse group lasso). The panels
referring to the sparse group lasso are with varying
values for the lasso tuning parameter and with the
group lasso tuning parameter fixed at fG = 10. In
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Figure 4 Boxplots of the proportion of recovered variables: 90 percent of true zeros. Boxplots of the proportion of variables correctly
classified (selected versus dropped) in function of the value of the tuning parameters. Case with 90 percent of the variables dropped. The different
panels refer to the different combinations of structure in the variable selection (from top to bottom: within blocks, between blocks, within and
between blocks) and of sparseness approach (from left to right: lasso, group lasso, Elitist lasso, and sparse group lasso). The panels referring to the
sparse group lasso are with varying values for the lasso tuning parameter and with the group lasso tuning parameter fixed at f = 10.
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general, the results confirm the expected relation
between the structure of the variable selection and the
different approaches to sparseness: The best recovery
for selection within blocks is by Elitist lasso with a value
of 0.5 for the tuning parameter fE, for selection between
blocks is by the group lasso with fG = 10, and for selec-
tion between and within blocks the sparse group lasso
(fL = 0.1 for the lasso). Deviations from the expected
behavior occur for the sparse group lasso when selection
is both within and between blocks in case of many zeros
(see Figure 4): the lasso and Elitist lasso then outper-
form the group lasso. This can be attributed to the fact
that the group lasso is less aggressive than the lasso and
Elitist lasso [11]. On the other hand, the lasso and Elitist
lasso perform less well when selection is within blocks
and the true structure is not so sparse (50 percent of
zeros, see the top row of Figure 3) because of their
aggressive behavior. Note that a penalty that selects
between groups in a more aggressive way was proposed
by [11]. The same pattern of results is obtained when
the error amounts to 5 percent (though shifted upwards
as in these conditions the status of the variables is better
recovered) or when the tuning parameter of the ridge
penalty takes higher values. In case the ridge equals
zero, the box plots show worse results for the lasso and
Elitist tuning parameters equal to zero (because there
are more variables than objects thus at most 28 non-
zero values are obtained for the approach based on
sparse weights).
A second point of interest, is the influence of the model

used to generate and analyze the data. Figure 5 displays
four panels of boxplots for the proportion of correctly
classified variables. Within panels, the boxplots are dis-
played in function of the block structure present in the
variable selection. The upper panels refer to data gener-
ated under a model with sparse loadings, the lower
panels to data generated under a model with sparse
weights. The panels at the left were obtained when ana-
lyzing the data with a model based on sparse weights and
at the right with sparse loadings. In general, analyzing the
data with the sparse weights model yields less misclassifi-
cations than using the sparse loadings model. However,
generating the (underlying) data under a model with
sparse weights, in general, results in more misclassifica-
tions than generating under a sparse loadings model.
These results can be explained by the more direct rela-
tion between the loadings and generated or modeled
data: Generating the data with sparse loadings imposes a
clearer structure than generating them with sparse
weights; analyzing/modeling the data with sparse load-
ings imposes a stronger structure on the modeled data
than modeling them with sparse weights. This is because
1) unlike a zero loading, a zero weight for a variable does
not necessarily imply a modeled score of zero, because a

zero weight for one variable can be compensated by non-
zero weights for other variables, and 2) unlike shrinking
the weights, shrinking the loadings results more directly
in shrunken modeled scores. The latter can be explained
by the dependence of the scale of the data, as modeled by
PCA model (1), on the scale of the loadings (the model
has orthonormal component scores).

Discussion
We proposed an extension of sparse PCA to the context
of several data blocks, relying on a generic modeling fra-
mework that allows either for sparse component weights
or for sparse component loadings and that incorporates
several approaches that were taken to sparsity in the
regression literature (including the lasso, elastic net,
group lasso, Elitist lasso, and sparse group lasso). A very
flexible algorithm was developed that allows to analyze
the data under a variety of approaches that take the
structure of the data in different ways into account. It
also allows for combinations of penalties that were not
yet considered in the regression literature.
The flexibility of the approach is important as often a

particular kind of structure is needed from data integra-
tion methods. The group lasso is a popular tool to find
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Figure 5 Comparing sparse weights versus sparse loadings.
Boxplots for the proportion of correctly classified variables. Within
panels, the boxplots are displayed in function of the block structure
present in the variable selection. The upper panels refer to data
generated under a model with sparse loadings, the lower panels to
data generated under a model with sparse weights. The panels at
the left were obtained when analyzing the data with a model
based on sparse weights; the panels at the right with a model
based on sparse loadings.
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structures that only involve one data block. This is for
example relevant in comparative genomics when the
focus is on divergence [35] or on tissue-specificity [36].
Elitist lasso, on the other hand, finds sparse structures
that involve each of the data blocks. Not only is this of
relevance in the aforementioned case of comparative
genomics to find conserved processes, but also in a top-
down systems biology approach. For example, to inte-
grate microarray gene expression data and interaction
data with the aim of finding transcription factors and
their target genes [37].
Although the model and algorithm were proposed in

the context of simultaneous component analysis, it can
be easily translated to the context of principal compo-
nent analysis and also of regression analysis. In fact the
algorithm can be used as it is for PCA and the adapta-
tion to regression analysis is a minor one. In the context
of simultaneous component analysis, adaptations of the
model (and algorithm) to a context that allows for dif-
ferent values of the tuning parameter for each compo-
nent and/or each block would be valuable. However,
such an extension is not trivial. Moreover, the problem
of selecting an optimal model becomes more difficult in
that more parameters need to be tuned and this would
make the choice of selecting appropriate values for the
tuning parameter even more difficult than it already is.
A major theoretic challenge for many sparse methods is
to find a good method to select the value of the tuning
parameters.

Conclusions
We offered a flexible and sparse framework for data
integration based on simultaneous component methods.
The method is flexible both with respect to the compo-
nent model and with respect to the sparse structure
imposed: Sparsity can be imposed either on the compo-
nent weights or on the loadings, and can be imposed
either within data blocks, across data blocks, or both
within and across data blocks. As such, it allows to find
structures exclusively tied to one data platform as well
as structures that involve all data platforms. A penalty
based approach is used that includes the lasso, the ridge
penalty, the group lasso, and Elitist lasso. The method
includes principal component analysis, sparse principal
component analysis, and ordinary simultaneous compo-
nent analysis as special cases. Real and simulated data
were used to validate the method. We believe the
method offers a very flexible and versatile tool for many
data integration problems.

Methods
Here we derive the estimates used in the alternating
least squares and iterative majorization algorithm. First,
it is shown how the conditional estimates for the

objective function relying on sparse component weights
can be obtained and then for the objective function rely-
ing on sparse loadings.

Sparse component weights
The generic objective function that we rely on to find a
simultaneous component solution with sparse compo-
nent weights is to minimize

L (Wk,Pk) =∑
k

(∥∥Xk − XkWkPT
k

∥∥2 + λL‖Wk‖1 + λR ‖Wk‖22
)

+
∑
k

(
λG

√
Jk‖Wk‖2 + λE‖Wk‖1,2

)

=
∥∥Xc − XcWcPT

c

∥∥2 + λL‖Wc‖1 + λR ‖Wc‖22
+

∑
k

(
λG

√
Jk‖Wk‖2 + λE‖Wk‖1,2

)

= tr
[(
Xc − XcWcPT

C

)T (
Xc − XcWcPT

c

)]
+λL‖Wc‖1 + λR ‖Wc‖22
+

∑
k

(
λG

√
Jk‖Wk‖2 + λE‖Wk‖1,2

)

= tr
[
XT
c Xc − 2XT

c XcWcPT
c + PcWT

c X
T
c XcWcPT

c

]
+λL‖Wc‖1 + λR ‖Wc‖22
+

∑
k

(
λG

√
Jk‖Wk‖2 + λE‖Wk‖1,2

)

= trXT
c Xc − 2trXT

c XcWcPT
c + trPcWT

c X
T
c XcWcPT

c

+λL‖Wc‖1 + λR ‖Wc‖22
+

∑
k

(
λG

√
Jk‖Wk‖2 + λE‖Wk‖1,2

)
,

(13)

with respect to Wc and Pc and under the constraint
PT
c Pc = I. lL, lR, lG, and lE are considered to be known

non negative constants. We use an alternating approach
in which each set of parameters is updated in turn while
keeping the remaining sets fixed on their last update.
Let Pc be the first set to be updated, conditionally upon
fixed values for Wc. Rewriting (13) gives

L (Wc,Pc) = k1 − 2trWT
c X

T
c XcPc

+trPT
c PcWT

c X
T
c XcWc

(14)

with

k1 = XT
c Xc + λL‖Wc‖1 + λR ‖Wc‖22 +

∑
k

(
λG

√
Jk‖Wk‖2 + λE‖Wk‖1,2

)
the terms that are constant with respect to Pc. Using
PT
c Pc = I yields

L (Wc,Pc) = k2 − 2trWT
c X

T
c XcPc (15)

with k2 = k1 + trWT
c X

T
c XcWc . The minimization of (15)

under the constraint of orthogonal loadings is equivalent

Van Deun et al. BMC Bioinformatics 2011, 12:448
http://www.biomedcentral.com/1471-2105/12/448

Page 13 of 17



to the maximization of trWT
c X

T
c XcPc under the same

constraint. This is a problem with known closed form
solution [22]

Pc = VUT (16)

with U and V the left and right singular vectors of

WT
c X

T
c Xc .

The minimization of (13) with respect to Wc is not a
standard problem due to the Lasso, Group Lasso, and
Elitist Lasso penalties on Wc. We will make use of a
numerical procedure, known as Majorization Minimiza-
tion (MM) or also Iterative Majorization, which has
been proven to be a superior algorithmic strategy in reg-
ularization problems [25,38]. Briefly stated, MM replaces
functions that are complicated to minimize by surrogate
functions that are easy to minimize, that lie on/above
the original function, and that touch the original func-
tion in the so-called supporting point. These properties
lead to the sandwich inequality [23].
A useful property of majorizing functions is that a

sum of terms can be majorized by majorizing the terms
[39]. Therefore, a majorizing function can be obtained
for (13) by finding a linear or quadratic majorizing func-
tion for each of the penalty terms except the ridge. First
we consider the Lasso penalty:
λL‖Wc‖1 =

∑
hk,r,k λL

∣∣wjkrk

∣∣ . Applying the additivity
property again, we need to find a majorizing function
for

∣∣wjkrk

∣∣ . Such a function is [40]

∣∣wjkrk

∣∣ ≤ 1
2

w2
jkrk∣∣∣wo
jkrk

∣∣∣ +
1
2

∣∣∣wo
jkrk

∣∣∣ , (17)

with wo
jkrk the current estimate of wjkrk that was

obtained in the previous iteration. This yields

λ
∑
jk,r,k

∣∣wjkrk
∣∣ ≤ λ

∑
jk,r,k

⎛
⎝1
2

w2
jkrk∣∣∣wo
jkrk

∣∣∣ +
1
2

∣∣∣wo
jkrk

∣∣∣
⎞
⎠

=
λ

2
Vec(Wc)TD1 Vec(Wc) + k3,

(18)

with the Vec notation indicating that the matrix is

vectorized, with k3 =
∑

jk,r,k
λ
2

∣∣∣wo
jkrk

∣∣∣, and with D1 a

diagonal matrix containing the
∣∣∣wo

jkrk

∣∣∣−1
on its diagonal.

Second, we consider the k Group Lasso penalty terms

λG|Wk|2 = λG

(∑
jk,r

w2
jkr

)1/2

. A majorizing function for

the root is (see [39])

λG

∑
k

⎛
⎝∑

jk,r

w2
jkr

⎞
⎠

1/2

≤

λG

2

∑
k

⎛
⎝∑

jk,r

(
wo
jkr

)2

⎞
⎠

1/2

+
λG

2

∑
k

⎛
⎝∑

jk,r

(
wo
jkr

)2

⎞
⎠

−1/2 ⎛
⎝∑

jk ,r

w2
jkr

⎞
⎠

= k4 +
λG

2
Vec(Wc)

TD2Vec (Wc) ,

(19)

with k4 =
λG

2

∑
k

(∑
jk,r

(
wo
jkr

)2
)1/2

, and with D2 a

diagonal matrix containing the
(∑

jk ,r

(
wo
jkr

)2
)−1/2

on

its diagonal. Third, we majorize the Elitist Lasso penalty

term λE|Wk|1,2 = λE

(∑
jk ,r

∣∣wjkr
∣∣)2

with the following

quadratic function (see [39]),

λE

∑
k

⎛
⎝∑

jk ,r

w2
jkr

⎞
⎠

1/2

≤

λE

∑
k

⎛
⎝

⎛
⎝∑

jk ,r

∣∣∣wo
jkr

∣∣∣
⎞
⎠∑

jk ,r

w2
jkr∣∣∣wo
jkr

∣∣∣
⎞
⎠

= k5 + λEVec(Wc)
TD3Vec (Wc) ,

(20)

with D3 a diagonal matrix containing the(∑
jk,r

∣∣∣wo
jkr

∣∣∣) (∣∣∣wo
jkr

∣∣∣)−1
on its diagonal.

Combining (13) with the results (18), (19), and (20),
we obtain the following majorizing function for (13):
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L (Wc,Pc) =∥∥Xc − XcWcPT
c

∥∥2 + λL‖Wc‖1 + λR ‖Wc‖22
+

∑
k

(
λG‖Wk‖2 + λE‖Wk‖1,2

)
=

∥∥Vec (Xc) − Vec
(
XcWcPT

c

)∥∥2
+λL‖Wc‖1 + λR ‖Wc‖22
+

∑
k

(
λG‖Wk‖2 + λE‖Wk‖1,2

)
≤ ‖Vec (Xc) − (Pc ⊗ Xc)Vec (Wc)‖2

+Vec(Wc)
T (

Dsup
)
Vec (Wc) + k

= Q (Wc,Pc) ,

(21)

with Dsup =
λL

2
D1 +

λG

2
D2 + λED3 + λRI, I, an identity

matrix, and k = k3 + k4 + k5. This function can be mini-
mized with respect to Wc by finding the value for which
the partial derivative of (21) is zero. The partial deriva-
tive equals

∂Q
∂Wc

=

−2(Pc ⊗ Xc)
T [Vec (Xc) − (Pc ⊗ Xc)Vec (Wc)]

+2
(
Dsup

)
Vec (Wc) ,

(22)

and is equal to zero for

Vec (Wc) =[
Dsup + (Pc ⊗ Xc)

T (Pc ⊗ Xc)
]−1(

PT
c ⊗ Xc

)T
Vec (Xc)

=
[
Dsup + I ⊗ (

XT
c Xc

)]−1
Vec

(
XT

c
XcPc

)
,

(23)

where the inverse is taken of a block-diagonal matrix.
Wc is obtained by rearranging Vec(Wc). Note that the
second derivative is positive so (23) is a minimum of
(21). In this equation, the penalty terms occur as diago-
nal matrices that are summed together in the matrix
Dsup and with the variance-covariance matrix of the
data; the resulting matrix is inverted and will be domi-
nated by large values on the diagonal (yielding small
values after inversion). This shows the behavior of the
penalties: increasing the tuning parameters results in
such large diagonal values; furthermore, the diagonal
matrices themselves are inverse functions of the weights
in the previous iteration of the algorithm such that
small weights further enhance the shrinkage or selec-
tion. Note that the matrix to be inverted in equation
(23) is of the form D + ATA with D a diagonal matrix;
then, the following holds [41],

(
D + ATA

)−1
= D−1 − D−1AT(I + XD−1XT)−1

AD−1 (24)

which may be useful when Jk >I.

Sparse loadings
The generic objective function that we rely on to find a
simultaneous component solution with sparse compo-
nent weights is to minimize

L (T,Pk) =∑
k

(∥∥Xk − TPT
k
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√
Jk‖Pk‖2 + λE‖Pk‖1,2

)

= tr
[(
Xc − TPT

C

)T (
Xc − TPT

c

)]
+λL‖Pc‖1 + λR ‖Pc‖22
+

∑
k

(
λG

√
Jk‖Pk‖2 + λE‖Pk‖1,2

)

= tr
[
XT
c Xc − 2XT

c TP
T
c + PcTTTPT

c

]
+λL‖Pc‖1 + λR ‖Pc‖22
+

∑
k

(
λG

√
Jk‖Pk‖2 + λE‖Pk‖1,2

)

= trXT
c Xc − 2trXT

c TP
T
c + trPcTPT

c

+λL‖Pc‖1 + λR ‖Pc‖22
+

∑
k

(
λG

√
Jk‖Pk‖2 + λE‖Pk‖1,2

)
,

(25)

with respect to T and Pk under the constraint that
TTT = I. lL, lR, lG, and lE are considered to be known
non negative constants. In case all tuning parameters
are equal to zero, a regular simultaneous component
analysis results and in that case the algorithm should be
based on SVD of the concatenated data. We use an
alternating approach in which each set of parameters is
updated in turn while keeping the remaining sets fixed
on their last update. Let T be the first set to be updated,
conditionally upon fixed values for Pc. Rewriting (25)
gives

L (T,Pc) = k6 − 2trXT
c TP

T
c (26)

with
k6 = tr

[
XT
c Xc + PcPT

c

]
+ λL‖Pc‖1 + λR ‖Pc‖22 +

∑
k

(
λG

√
Jk‖Pk‖2 + λE‖Pk‖1,2

)
the terms that are constant with respect to T. Minimiz-

ing function (26) is equivalent to maximizing trPT
c X

T
c T

with known closed form solution [22]

T = VUT (27)

with U and V the left and right singular vectors of

PT
c X

T .

Combining (25) with the results (18), (19), and (20)
adapted to the case of loadings, we obtain the following
majorizing function for (25):
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L (T,Pc) =∥∥Xc − TPT
c

∥∥2 + λL‖Pc‖1
+λR ‖Pc‖22 +

∑
k

(
λG‖Pk‖2 + λE‖Pk‖1,2

)
=

∥∥Vec (Xc) − Vec
(
TPT

c

)∥∥2 + λL‖Pc‖1
+λR ‖Pc‖22 +

∑
k

(
λG‖Pk‖2 + λE‖Pk‖1,2

)
≤ ∥∥Vec (Pc) − (I ⊗ T)Vec

(
PT

c

)∥∥2

+Vec(Pc)
T (

Dsup
)
Vec (Pc) + k

= Q (T,Pc) ,

(28)

and the first derivative of Q(T, Pc) with respect to Pc

is equal to zero for

Vec
(
PT
c

)
=[

Dsup +
(
IT ⊗ T

)T (
IT ⊗ Tc

)]−1(
IT ⊗ T

)T
Vec (Xc)

=
[
Dsup + I

]−1Vec
(
TTXc

)
.

(29)

Additional material

Additional file 1: MATLAB code. The zip file SparseSCA.zip contains
four MATLAB functions and a script (test script.m) to illustrate the use of
the main function (sparsesca weights.m). The main functions sparsesca
weigths.m and sparsescaloadings.m implement the proposed sparse
simultaneous component algorithms.
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