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Abstract

1 Background: RNA sequencing is a flexible and powerful new approach for measuring gene, exon, or isoform
expression. To maximize the utility of RNA sequencing data, new statistical methods are needed for clustering,
differential expression, and other analyses. A major barrier to the development of new statistical methods is the lack of
RNA sequencing datasets that can be easily obtained and analyzed in common statistical software packages such as R.
To speed up the development process, we have created a resource of analysis-ready RNA-sequencing datasets.

2 Description: ReCount is an online resource of RNA-seq gene count tables and auxilliary data. Tables were built from
raw RNA sequencing data from 18 different published studies comprising 475 samples and over 8 billion reads. Using

the Myrna package, reads were aligned, overlapped with gene models and tabulated into gene-by-sample count tables
that are ready for statistical analysis. Count tables and phenotype data were combined into Bioconductor ExpressionSet

objects for ease of analysis. ReCount also contains the Myrna manifest files and R source code used to process the
samples, allowing statistical and computational scientists to consider alternative parameter values.

3 Conclusions: By combining datasets from many studies and providing data that has already been processed
from. fastg format into ready-to-use. RData and. txt files, ReCount facilitates analysis and methods development for
RNA-seq count data. We anticipate that ReCount will also be useful for investigators who wish to consider cross-
study comparisons and alternative normalization strategies for RNA-seq.

Background
RNA-seq, or short-read sequencing of mRNA, has
emerged as a powerful and flexible tool for studying gene
expression [1]. As with other new technologies, the analy-
sis of RNA-seq data requires the development of new sta-
tistical methods. Data from many RNA-seq experiments
are publicly available, but processing raw data into a form
suitable for statistical analysis remains challenging [2].
This difficulty together with the high cost of using second-
generation sequencing technology means that most com-
putational scientists have only a limited number of sam-
ples to work with [3]. However, replication is critical to
understanding biological variation in RNA-sequencing [4].
The Gene Expression Omnibus [5] is a useful reposi-
tory that contains both processed and raw microarray
data, but there is no comparable resource for processed
RNA-seq data. We have compiled a resource, called
ReCount, consisting of aligned, preprocessed RNA-seq
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data from 475 samples in 18 different experiments. Our
database makes it easier for statistical and bioinformatics
researchers to analyze RNA-seq count data using stan-
dard tools such as R, Bioconductor [6], and MATLAB.
The aligned and preprocessed data in ReCount can be
directly analyzed, used to develop and compare new
methods for analysis, or examined to identify cross-study
effects. The ReCount database also contains the Myrna
manifest files and R source code used to process the sam-
ples, allowing statistical and computational scientists to
consider alternative parameter values.

Construction and Content

Content

We collected data from the 18 experiments described in
Table 1 [7-24]. For each experiment, ReCount contains
a. txt-format count table encoding, for each sample, the
number of reads overlapping each gene included in the
Ensembl [25] annotation of the given organism’s gen-
ome. ReCount also includes manually curated phenotype
information (e.g. sex, strain, time point) for each sample,
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Table 1 Datasets available for download (truncated to 35 bp)

Study Organism Number of bio reps Number of reads
BodyMap human 19 2,197,622,796
Cheung human 41 834,584,950

Core human 2 8,670,342

Gilad human 6 41,356,738

MAQC human 14 71,970,164

Montgomery human 60 *886,468,054

Pickrell human 69 *886,468,054

Sultan human 4 6,573,643

Wang human 22 223929919

Katz mouse 4 14,368,471
Mortazavi mouse 61,732,881
Trapnell mouse 4 111,376,152

Yang mouse 1 27,883,862

Bottomly mouse 21 343,445,340

Nagalakshmi yeast 4 7,688,602
Hammer rat 158,178,477
mModENCODE - worm worm 46 1,451,119,823
modENCODE - fly fly 147 2,278,788,557

The “Number of bio reps” column contains the number of individual samples contained in the dataset, while the “Number of reads” column displays the number
of uniquely aligned reads that were used to create the count table. A version of this table and an analogous table for the downloadables created by removing

Myrna’s truncate option are available on the website.

available as a. txt file. Count and phenotype tables were
compiled into ExpressionSet objects, which are down-
loadable from ReCount and can be easily loaded and
analyzed using standard Bioconductor tools in R.

Construction

To construct count tables, we used the Amazon Elastic
MapReduce version of Myrna 1.1.2 [26]. As input, Myrna
requires a manifest file listing URL locations for all
sequencing read files for each sample. Myrna manifest
files are available as part of ReCount; most URLs in these
files refer to reads stored in the NCBI Sequence Read
Archive (SRA) [27].

For studies consisting of paired-end sequencing data,
only the first mate of each pair was considered. Many
studies also included technical replicates, which were
processed using Myrna’s pool-tech-reps option.
This option pools the reads from technical replicates
prior to alignment and analysis. Other options passed to
Myrna were bowtie-args = *-v 2 -m 1”, gene-
footprint = intersect, and from-middle. The
gene-footprint = intersect parameter causes a
“union intersection” gene model to be used. The bow-
tie-args parameters specify that no more than two
mismatches are allowed for a read alignment to be valid
and that reads with multiple alignments are discarded.
The from-middle argument designates that the num-
ber of bases considered when overlapping a read’s align-
ment with a gene footprint should be measured from the
middle of the read (rather than the 3’ or 5’ end). Finally,

we provide count tables and ExpressionSets created using
Myrna’s truncate = 35 option, which truncates reads
longer than 35 bp to 35 bp. For using data from multiple
studies at once, the truncation makes studies more com-
parable to each other; it also decreases the likelihood that
a read will span a splice junction and therefore be dis-
carded. However, for researchers who wish to utilize the
full read length, we also provide count tables and Expres-
sionSets created without the truncate option.

Count tables presented in ReCount have not yet been
normalized. During analysis, gene counts in each sample
are commonly normalized by dividing by the 75th percen-
tile of the distribution of non-zero gene counts in the sam-
ple, as suggested previously [11], but the data presented in
ReCount allows researchers to develop, evaluate, and com-
pare alternative normalization schemes.

Utility and Discussion

User Interface

The ReCount website features an interactive version of
Table 1. ExpressionSets, count tables, and phenotype
tables are downloadable from the table. Manifest files
used with Myrna, specific Myrna commands used, and R
code used to create ExpressionSets are also available for
download at the ReCount website. These scripts allow
researchers to compare the effects of alternative normali-
zation or alternative Myrna parameterization to the cano-
nical versions of the datasets contained in the ReCount
database. The site also contains further details about the
contents of the downloadables as well as a set of R
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commands that may be useful when working with
ExpressionSets.

Utility: Example Applications

ReCount facilitates studies that are not possible using
only a small number of samples from a single study.
Here we present two toy examples that illustrate the
potential utility of the ReCount database. Both examples
used datasets created with reads truncated to 35 bp.
Application 1: Comparison of normalization methods
Count tables presented in ReCount have not yet been
normalized, which facilitates comparisons between nor-
malization and preprocessing approaches. As an example,
we compared 75th percentile normalization [11] with
quantile normalization [28] using data collected on two
different strains of mice (the bot tomly dataset available
in ReCount [20]). We analyzed 36,536 total genes, first
removing genes with zero counts or that showed no var-
iation across samples (23,697 genes). For both types of
normalization, each gene was tested for differential
expression between the two strains using an F-test. There
were 696 genes that were differentially expressed at a
false discovery rate of 5% (a Benjamini-Hochberg correc-
tion for multiple testing [29] was used) in both analyses,
while 177 were only differentially expressed using quan-
tile normalization and 35 were only differentially
expressed using 75th percentile normalization. The set of
differentially expressed genes for the quantile normaliza-
tion scheme is a bit larger than the set for the 75th per-
centile normalization, but the overlap is still quite large.
This simple analysis demonstrates a method for compar-
ing normalization schemes; it also illustrates that results
of a differential expression analysis differ very little based
on which of these two well-established normalization
schemes was used.

Application 2: Analysis using data from multiple studies
Availability of comparable data from many studies facili-
tates analyses that previously may have been quite cum-
bersome. As an example, we consider the Cheung [8] and
Montgomery [12] data. These two studies assayed 29 of
the same individuals. The Cheung group sequenced
immortalized B cells, and Montgomery et. al. used lym-
phoblastoid cell lines, so the types of cells used in
sequencing were very similar. Therefore, examining these
29 samples and comparing gene expression between the
two studies could provide insight into some of the tech-
nical variability present in RNA-seq. As a very basic ana-
lysis of differential expression, we compared subjects’
measured gene expression in the Cheung study vs. the
Montgomery study using a parametric paired t-test on
each gene in the table. Genes for which the difference in
gene expression was significantly different from zero
were considered differentially expressed between studies.
(A Benjamini-Hochberg correction for multiple testing
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was performed; a false-discovery-rate cutoff of 0.05 was
used to determine significance). Of the 52,580 genes
tested, 3,633 (6.9%) were found to be differentially
expressed between the studies. We also note that 39,752
genes (75.6%) could not be tested for differential expres-
sion because all counts were zero in both samples. So, of
the 12,828 genes that had nonzero gene counts for at
least one sample in one of the studies, 3,633 (28.3%) were
differentially expressed. This pattern can be seen in the
histogram of the adjusted p-values (Figure 1). This analy-
sis shows evidence of batch-like effects in RNA-seq; dif-
ferential expression would ideally be quite rare since the
same people and similar cell types were analyzed in each
study.

As another example of an analysis using multiple data-
sets found in ReCount, we performed a simple differential
expression analysis on the Montgomery data [12] and the
Pickrell data [13], which is a proxy for an analysis of differ-
ential expression between ethnicities: the Montgomery
group sequenced Utah residents with northern- or wes-
tern-European ancestry (the HapMap CEU population),
and the Pickrell group sequenced Yoruba people in Iba-
dan, Nigeria (the HapMap YRI population). Previous
research has addressed this question (e.g. [30,31]), but
ReCount facilitates investigation of alternative approaches
to the problem. As a starting point, we performed an ana-
lysis similar to the previous one: for each of 52,580 genes,
we performed a parametric two-sample t-test on the 75th-
percentile normalized counts from the Montgomery and
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Figure 1 Histogram of adjusted p-values from differential
expression analysis on the 29 samples included in both
Cheung and Montgomery. The p-values in the histogram are from
paired t-tests on the 25% of genes with nonzero counts in at least
one of the two studies. The peak near zero is somewhat indicative
of technical variability between the two studies.
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Pickrell data, using a Benjamini-Hochberg correction for
multiple testing and considering a gene differentially
expressed between CEU and YRI populations if its Benja-
mini-Hochberg-corrected p-value was less than 0.05. Of
the 52,580 genes tested, 4,669 (8.9%) were found to be dif-
ferentially expressed. These 4,669 genes comprise 36.0% of
the genes tested for differential expression, i.e., genes
with nonzero counts in at least one of the populations
(Figure 2). We notice that these percentages are slightly
higher than the percentages reported in the previous ana-
lysis, which is unsurprising, since both technical and biolo-
gical variability are present here, whereas the variability in
the previous analysis was mostly technical. Follow-up ana-
lysis could be performed for these 4,669 genes of interest,
e.g., this set could be compared with sets of differentially
expressed genes found in previous studies, or expression
patterns in individual genes could be visualized. We pre-
sent these basic analyses as starting points for researchers
wishing to simultaneously utilize multiple datasets from
ReCount.

Discussion

ReCount’s preproccessed, freely-available data compati-
ble with common statistical software will encourage sta-
tisticians interested in methods development to tackle
problems arising in RNA-seq data analysis. By providing
a large amount of RNA-seq data in a central, accessible
location, ReCount facilitates analyses like those above
and several others. For example, another interesting
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Figure 2 Histogram of adjusted p-values from analysis of
differential expression between YRI and CEU populations. The
p-values in the histogram are from two-sample t-tests on the 25%
of genes with nonzero counts in at least one of the two studies.
The peak near zero indicates differential gene expression that may
result from either technical or biological variability.
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application may be to attempt to replicate findings from
other studies (e.g., percentage of differentially expressed
genes). Additionally, all commands and manifest files
used in preprocessing are available on the website, so
users can create their own count tables should they
desire alternative parameterizations: e.g., alternative
alignment parameters can be passed to Bowtie, the trun-
cation length can be changed, or the pool-tech-reps
option can be removed.

Conclusions

ReCount addresses two key issues for statistical
researchers interested in RNA sequencing: (1) small
sample sizes in many available studies and (2) computa-
tional difficulties in developing analysis-ready RNA-
sequencing data. By providing Myrna manifest files and
R scripts that reproduce the count tables in ReCount,
our database also allows for flexible exploration of a
large number of organized RNA-sequencing datasets.
We anticipate that ReCount will be useful to both the
statistical and bioinformatics community as a resource
for readily analyzable RNA-sequencing data.

Availability and Requirements
ReCount is publicly accessible at http://bowtie-bio.sf.net/
recount.
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