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Abstract

Background: In rule-based modeling, graphs are used to represent molecules: a colored vertex represents a
component of a molecule, a vertex attribute represents the internal state of a component, and an edge represents
a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules
are used to represent molecular interactions. A rule that specifies addition (removal) of an edge represents a class
of association (dissociation) reactions, and a rule that specifies a change of a vertex attribute represents a class of
reactions that affect the internal state of a molecular component. A set of rules comprises an executable model
that can be used to determine, through various means, the system-level dynamics of molecular interactions in a
biochemical system.

Results: For purposes of model annotation, we propose the use of hierarchical graphs to represent structural
relationships among components and subcomponents of molecules. We illustrate how hierarchical graphs can be
used to naturally document the structural organization of the functional components and subcomponents of two
proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR) complex. We also show that computational
methods developed for regular graphs can be applied to hierarchical graphs. In particular, we describe a
generalization of Nauty, a graph isomorphism and canonical labeling algorithm. The generalized version of the
Nauty procedure, which we call HNauty, can be used to assign canonical labels to hierarchical graphs or more
generally to graphs with multiple edge types. The difference between the Nauty and HNauty procedures is minor,
but for completeness, we provide an explanation of the entire HNauty algorithm.

Conclusions: Hierarchical graphs provide more intuitive formal representations of proteins and other structured
molecules with multiple functional components than do the regular graphs of current languages for specifying
rule-based models, such as the BioNetGen language (BNGL). Thus, the proposed use of hierarchical graphs should
promote clarity and better understanding of rule-based models.

Background
Our predictive understanding of cell signaling is limited,
in part because it is difficult to fully capture in a con-
ventional model, such as a system of coupled ordinary
differential equations (ODEs), the system-level dynamics
of molecular interactions that mediate cell signaling
[1-3]. A major reason is combinatorial complexity [4-6],
the potential for molecular interactions to generate a
large number of chemically distinguishable molecular
states and molecular complexes. One cause of combina-
torial complexity is multisite phosphorylation [7-9].

Another is multivalent binding, which can mediate poly-
merization-like reactions that produce a distribution of
oligomers [10,11]. Combinatorial complexity is an inher-
ent feature of cell signaling, because a typical signaling
protein contains multiple functional components [12].
These components can include a protein interaction
domain, such as a Src homology 2 (SH2) or SH3 domain
[13-15]; a catalytic domain, such as a protein tyrosine
kinase (PTK) [16,17]; a linear motif [18], such as a pro-
line-rich sequence (PRS) recognized by SH3 domains or
an immunoreceptor tyrosine-based activation or inhibi-
tion motif (ITAM or ITIM) [19,20]; and one or more
sites of post-translational modification, with a multitude
of modifications being possible [21]. Prominent examples
of post-translational modifications include serine,
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threonine and tyrosine (S/T/Y) phosphorylation, which is
governed by antagonistic activities of kinases and phos-
phatases [22,23], and ubiquitination, which is mediated
by E3 ubiquitin ligases and other proteins [24,25].
Combinatorial complexity limits the application of

conventional modeling approaches such as ODEs,
because specification of a conventional model requires
that one be able to list the possible reactions in a sys-
tem, or the equivalent [3]. To overcome this problem, a
new modeling approach has been developed: rule-based
modeling [3,26]. In this approach, a model is specified
in terms of rules for molecular interactions, rather than
in terms of a list of possible reactions. Reactions are
implied by rules, and these reactions can be found in
principle and sometimes in practice [27-29], but there is
no need to enumerate the possible reactions in a system
to formulate or simulate a model [30-32]. A variety of
algorithms and software tools have been developed for
simulating rule-based models, including tools that
account for steric effects and diffusion [27-45], and
these tools have been applied to study various aspects of
a number of cell signaling systems [34,46-50]. It is now
possible to formulate and simulate models that account
comprehensively for the large numbers of molecules and
molecular interactions that typically comprise a cell sig-
naling system, which raises the issue of how to annotate
and visualize large-scale rule-based models.
Visualization of the elements of a rule-based model is

natural to some extent because rule-based modeling, at
least in some realizations, is based on or can be inter-
preted as being based on an underlying graphical form-
alism [51], which serves as the foundation for the
BioNetGen language (BNGL) [29]. This model-specifi-
cation language is supported by anumber of software-
tools [27,29,32,40,44,45]. Another model-specification
languageisKappa [26,41,52,53], which is closely related
to BNGL. In the BNGL formalism, which is briefly
summarized in this section and described in greater
detail below, graphs are used to represent molecules,
and graph-rewriting rules are used to represent mole-
cular interactions.
In a rule-based model for a cell signaling system, the

graphs of a model typically represent proteins, which
are taken to be the building blocks of most chemical
species in the system. These graphs can be visualized
according to the conventions of Faeder et al. [54].
A graph representing a protein includes a colored vertex
for each functional component of the protein. The color
represents the type of protein being represented by a
graph, i.e., the protein name is essentially the color of
the graph representing the protein. The vertices of
graphs can be associated with variable attributes to
represent so-called internal states of components. An
internal state is an abstraction that is often useful for

representing, for example, the phosphorylation status of
an amino acid residue. In graphs for molecular com-
plexes, edges are used to represent bonds between mole-
cular components. Thus, the composition and the
connectivity of a molecular complex (but not usually its
three-dimensional structure) are tracked explicitly in a
BNGL-encoded rule-based model.
In general, the graph-rewriting rules in a BNGL-

encoded model specify simple operations on graphs,
which define the outcomes of molecular interactions:
the addition of an edge to represent an association
event, the removal of an edge to represent a dissociation
event, or the change of a vertex attribute to represent
an internal state change, such as a post-translational
modification event. Rules can also be specified for
synthesis and degradation reactions [29]. Two important
features of a rule are the specification of a reaction cen-
ter (the set of components directly affected by a molecu-
lar interaction) and the specification of the molecular
context in which a molecular interaction occurs, i.e., the
necessary and sufficient conditions that must be satisfied
for a reaction to occur. Another feature of a rule is an
associated rate law, which is used to characterize all
reactions implied by the rule up to statistical factors,
which are derived from the properties of reactants
[28,51]. Thus, a rule can be interpreted as providing a
coarse-grained definition of a class of reactions that
arises from a particular interaction, with each reaction
implied by a rule involving a common transformation
and rate law. The granularity of a rule is adjustable.
Although the rule-based modeling framework

described above is expressive and sufficiently rich to
describe a wide array of molecular interactions involved
in cell signaling, the graphs of this framework are not
sufficiently expressive to provide a completely natural
representation of the substructures of signaling proteins.
As discussed in detail below, components of a protein
can themselves contain components, and so on. Yet, in
the framework described above, the components of a
protein, regardless of their structural relationships, are
represented in the same way, as the colored vertices of a
graph, with a shared color indicating joint membership
in the set of components of a particular type of mole-
cule. In other words, if a component and a subcompo-
nent of this component are both included in a model,
the structural relationship between the component and
subcomponent is lost. This representational limitation
may not prevent a modeler from specifying a model
with desired properties, but it may prevent others from
easily connecting the formal elements of the model to
the underlying biology and easily interpreting the model
as intended.
Here, mainly to enable better annotation of rule-based

models, we introduce the concept of using hierarchical
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graphs to represent molecules, such as proteins, for
which there are structural relationships among compo-
nent parts. We also present an algorithm and software,
which we have called HNauty, for assigning canonical
labels to hierarchical graphs. Canonical labeling enables
one to determine if two graphs are the same or different
simply by comparing their labels. This task, which is
essentially equivalent to the solution of a graph iso-
morphism problem, is a routine part of network genera-
tion, the process of enumerating the reactions implied
by a set of rules. Network generation, which is not
always practical, is an essential ingredient in the gener-
ate-first and on-the-fly approaches to simulation of a
rule-based model [27,28,51]. Thus, this report not only
lays groundwork for using hierarchical graphs to anno-
tate rule-based models but also lays groundwork for
making such graphs elements of executable models.
In the remainder of this section, we provide additional

background on the graphical formalism underlying
BNGL, on the hierarchical substructures of proteins,
and on graph isomorphism and Nauty [55], a software
tool for canonical labeling of colored graphs. We then
provide examples of how hierarchical graphs can be
used to represent proteins more naturally than the
graphs of the BNGL formalism, and we present a simple
extension of the method implemented in Nauty that
allows for canonical labeling of hierarchical graphs.
Finally, we present and evaluate our implementation of
the extended canonical labeling tool, HNauty. The HNa-
uty software is freely available; the source code is pro-
vided as Additional files 1 and 2. Its functionality can
also be accessed from within BioNetGen [29].

Methods
Graphical formalism underlying the BioNetGen Language
The model-specification language BNGL has evolved
over time and has been described in detail [3,27-29]. It
is based on a graphical formalism described initially by
Faeder et al. [28,54] and then more formally and in
greater detail by Blinov et al. [51]. The formalism
includes various types of graphs, two of which are rele-
vant for our purposes: the molecular entity graph and
the chemical species graph. Let us recall the basic defi-
nition of a graph. A graph is a pair ( , )  where  is a
finite set (called the vertex set) and  is a collection of
pairs of vertices. A simple graph is a graph in which
there is at most one edge between any two vertices. If
this condition does not hold and the graph has multiple
edges between at least one pair of vertices, then the
graph is a multi-graph. All graphs are assumed to be
simple unless otherwise noted. If a graph is directed,
then the edges are ordered pairs; otherwise they are
unordered. A labeled graph is a graph   = ( , ) together

with a set of labels, L and a map l L : → . It is also

possible to label the edges via a map l L : → . In an
attributed graph, some vertices, in addition to fixed
labels, are associated with variable attributes, which are
used in BNGL to represent internal states of
components.
We are now ready to introduce the two types of

graphs in the BNGL formalism that are of interest here.
A molecular entity graph is a labeled graph together
with a map that assigns to each vertex a list of possible
attributes. A chemical species graph is derived from a
molecular entity graph or a collection of connected
molecular entity graphs such that all variable attributes
take on specific values. Thus, molecular entity graphs
model the types of molecules in a reaction network and
chemical species graphs model specific chemical species,
which are composed of molecules. These two types of
graphs can be encoded in a machine-readable form
according to the conventions of BNGL [29]. As should
be apparent from the above definitions, in models speci-
fied using BNGL, all components (vertices) of proteins
(graphs) are considered structurally equivalent (i.e.,
there are no subcomponents within components). Thus,
the graphs of BNGL can potentially obscure the struc-
tural relationships among the component parts of a
protein.

Two examples of proteins with hierarchical substructures
Here, we discuss two examples of proteins with hierarch-
ical substructures (Figure 1), meaning that functional
components in these proteins have subcomponents.
Figure 1A depicts the human lymphocyte cell-specific

protein-tyrosine kinase (Lck), which is a Src-family non-
receptor tyrosine kinase that plays an important role in
T cell receptor (TCR) signaling [56,57]. As can be seen,
Lck is composed of one SH3 domain, one SH2 domain,
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Figure 1 Lck and TCR complex. a) The hierarchical substructure of
protein tyrosine kinase Lck. There are three domains in Lck: a Src
homology 3 (SH3) domain, a Src homology 2 (SH2) domain, and a
protein tyrosine kinase (PTK) domain. Three tyrosine residues are
subject to phosphorylation and dephosphorylation (Y192, Y394 and
Y505). b) The structure of the TCR complex. The TCR complex is
composed of ab, g�, and δ� heterodimers and a ζζ homodimer.
Black boxes represent ITAMs.
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and one PTK domain [58]. The tyrosine residues of Lck
represented in Figure 1A (Y192, Y394 and Y505) have
been shown to be phosphorylated during TCR signaling
[59]. Phosphorylation of Y192 in the SH2 domain of Lck
reduces the ability of the SH2 domain to bind its phospho-
tyrosine-containing binding sites in other proteins [60].
Autophosphorylation of Y394, which is located in the acti-
vation loop of the PTK domain of Lck, increases the
kinase activity of Lck [61]. Phosphorylation of Y505 allows
an intramolecular interaction between pY505 and the
SH2 domain of Lck, which downregulates Lck kinase
activity through the resulting conformational change of
the protein [62]. A depiction of Lck and its above men-
tioned components in the graphical formalism of BNGL
would only show that there are three domains and three
tyrosine residues in Lck. There would be no indication
that Y192 is part of the SH2 domain or that Y394 is part
of the PTK domain. Below, we will show that these rela-
tionships are clear from a hierarchical graph representa-
tion of Lck. The hierarchical graphs that will be formally
introduced later include directed edges to indicate struc-
tural relationships. An edge directed from a component to
a subcomponent can be interpreted to mean that the sub-
component is part of the component.
Figure 1B depicts the TCR complex, a multimeric pro-

tein expressed on the surface of T lymphocytes. The
TCR complex has a subunit responsible for recognition
of peptide antigens, which is composed of disulfide-
linked a and b chains. It also has a number of subunits
responsible for interacting with cytoplasmic signaling
proteins. Two subunits are composed of the CD3g, δ
and � chains, which each contain an ITAM and which
form two disulfide-linked heterodimers: a g� heterodi-
mer and a δ� heterodimer. Finally, there is a homodimer
of disulfide-linked ζ chains, which each contain three
ITAMs. Each ITAM in the TCR complex contains two
tyrosine residues, which are dynamically phosphorylated
and dephosphorylated during TCR signaling. A tyrosine
residue in the ITAM of CD3�, Y188, is also part of
a PRS that contains the motif PxxDY. It is important
to recognize the structural overlap between the PRS
and ITAM of CD3�, because phosphorylation of
Y188 inhibits interaction of the Y188-containing PRS
with SH3 domains and SH3 domain binding at the PRS
inhibits phosphorylation of Y188 [63]. The structural
relationships discussed above cannot be explicitly repre-
sented using the regular graphs of BNGL. Below, we
will show that these relationships are clear from a hier-
archical graph representation of the TCR complex.

Graph isomorphism
Graphs that are essentially the same are called iso-
morphic (the exact definition is given below). As
described elsewhere [29], to generate a reaction network

from a set of rules, BioNetGen [54] must determine,
upon generation of a chemical species graph, if the
graph has already been generated, i.e., if it is already
part of the reaction network. If the graph does not
already exist in the network, it is added to the reaction
network. Specifically, upon generation of a chemical
species graph, the newly generated graph must be
checked for isomorphism with every other existing che-
mical species graph in the reaction network. To reduce
the time necessary for this procedure, BioNetGen
assigns to each chemical species graph a canonical label
(which is the same for isomorphic graphs), or for com-
putational efficiency, a pseudo canonical label, which is
not guaranteed to be unique but often is in practice.
Here, we will only be concerned with true canonical
labels, but in the case of either a canonical or pseudo
canonical labeling algorithm, the algorithm must be
called only once for each chemical species graph repre-
senting a newly generated reaction product. An algo-
rithm assigning canonical labels can thus be used to
determine graph isomorphism efficiently, as string com-
parisons are much more efficient than graph compari-
sons. In practice, if there are a large number of graphs
that need to be compared to one another, it is efficient
to assign canonical labels using an algorithm such as
Nauty [55,64] to each graph and then to compare the
graphs using their labels.
Although hierarchical graphs are currently only pro-

posed here for annotation purposes, such graphs could
in principle be incorporated into models as formal ele-
ments. To enable the incorporation of hierarchical
graphs into executable models, we describe a generaliza-
tion of the Nauty algorithm [55], which takes as input
hierarchical graphs and assigns them canonical labels.

Results
Hierarchical Graphs for Annotating Rule-based Models
Definitions
We give exact definitions of hierarchical graphs before
discussing how hierarchical graphs can be used to repre-
sent particular proteins with hierarchical substructures.
A hierarchical graph is a graph   = ( , ) together

with an acyclic parent function p :  → . The parent
function defines the hierarchy; the parent of a vertex is
the next level up in the hierarchy. While the function p
must be acyclic we do allow vertices to be their own
parents; the assignment p(v) = v is permissible (and
indeed such a relationship must hold for at least one
vertex in the graph). It is common to represent the hier-
archy as a directed tree (or forest). A labeled hierarchi-
cal graph is a hierarchical graph with a labeling of the
vertices (and or edges) as above. Although many pro-
teins do indeed have a hierarchical substructure, the
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above definition may be too strict in some cases. An
example of such a case is provided by overlapping linear
motifs (e.g., the overlapping PRS and ITAM in CD3�),
because amino acid residues in the region of overlap
cannot be considered to have a unique parent in a hier-
archical graph. We will call such hierarchies pseudo-
hierarchies and define a pseudo-hierarchical graph to be
a directed acyclic graph. Although individual nodes in
pseudo-hierarchical graphs may not have a unique par-
ent, the acyclicity of the hierarchy ensures there is still a
“top-down” structure to the graph.
In models, we will want to essentially use both hier-

archical (or pseudo-hierarchical) graphs and the conven-
tional flat graphs of BNGL at the same time: the first
type of graph to show the structural relationships
between molecular components and the second type of
graph to show bonds between molecular components.
Thus, we will use graphs with two edge types, the first
type will represent the (pseudo-)hierarchy and will be
directed, the second type will represent bonds and will
be undirected.
The vertices of the graphs in BNGL are not only

labeled but are also attributed. This means, for example,
that a vertex that represents a site of phosphorylation
on a protein may either have the attribute “phosphory-
lated” or the attribute “not phosphorylated.” Technically,
the label of a vertex stays the same, whereas an attribute
of a vertex can change. This concept of variable attri-
butes or internal states reflects an understanding that a
protein is essentially the same molecule whether or not
one of its amino acid residues is phosphorylated. For-
mally, each vertex is assigned a list of possible attributes
and then each vertex is assigned an attribute from the
corresponding list. In BNGL, labels cannot change dur-
ing a simulation of a model; attributes can. Hierarchical
graphs can be attributed in the same manner.
Hierarchical graph representation of Lck
Recall our earlier discussion of the hierarchical substruc-
ture of Lck (Figure 1). A BNGL-compliant molecular
entity graph representation of Lck is shown in
Figure 2A. This graph, which is drawn according to the
conventions of Faeder et al. [54], includes the SH2 and
SH3 domains of Lck and three tyrosine residues that
can each be either phosphorylated (P) or unphosphory-
lated (U): Y192, Y394 and Y505. As discussed pre-
viously, phosphorylation of these residues regulates the
binding and catalytic properties of the protein. Note
that the PTK domain of Lck is not included in this
graph. The reason is that, although enzyme-catalyzed
reactions can be represented in BNGL-encoded rules,
explicit representation of catalytic domains is often dis-
pensable for model specification and simulation. As a
result, proteins are often represented without their cata-
lytic domains for simplicity, as shown in Figure 2A.

Briefly, other features of Figure 2A are as follows. Nodes
are colored: they share the color “Lck.” To avoid actual
use of color, the nodes are surrounded by a box. Tildes
proceed the possible states of a component; here, tyro-
sine residues may be phosphorylated (P) or unpho-
sphorylated (U).
In Figure 2B, a hierarchical graph representation of

Lck that corresponds to Figure 2A is shown. The direc-
ted edges in Figure 2B represent containing or owner-
ship relations. In Figure 2B, the PTK domain of Lck is
explicitly represented, so that membership of Y394 in
the PTK domain of Lck is clear. Similarly, one can see
that Y192 is part of the SH2 domain of Lck. In this
graph, possible internal states are indicated in boxes
attached to the bottoms of component boxes, which is
consistent with the conventions of Hu et al. [40].
A chemical species graph is a complete specification

of a molecule or a molecular complex, including internal
states. Figure 2C shows a chemical species graph for free
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Y394~U~P

Y505~U~P

Y192~U~P

LCK

SH2SH3 PTK Y505
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U
Y192
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Figure 2 Graphical representations of Lck. a) Lck is represented
by a molecular entity graph [27,67]. Each component in a protein is
represented by a circle. The box that contains all these circles
represents the Lck molecule. b) Domains and sites of post-
translational modification in Lck are represented in a hierarchical
molecular entity graph. Arrows indicate the containing relationships.
Each component is represented as a node in the graph. The
tyrosine residues Y192, Y394, and Y505 have phosphorylated (P) and
unphosphorylated (U) internal states. This graph follows the
conventions used in GetBonNie [40]. c) Lck is represented by a
hierarchical chemical species graph. In a chemical species graph, the
state of each domain or site that has more than one internal state
is clearly defined. Here, “U” and “P” under Y192 and Y505 specify
that Y192 and Y505 can be in unphosphorylated and
phosphorylated states, respectively. The undirected line (with no
arrow) between SH2 and Y505 indicates that the SH2 domain of Lck
is bound intramolecularly to the phosphorylated Y505 residue.
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Lck in which Y192 and Y394 are unphosphorylated (U)
and Y505 is phosphorylated (P). The hierarchical graph
representing this chemical species suggests to a reader
that intramolecular binding between the SH2 domain
and phosphorylated Y505 may affect the kinase activity
of Lck, because the kinase domain is located between
the SH2 domain and Y505 in the layout of the graph,
which is consistent with ordering of components from
the N-to the C-terminus of the polypeptide chain.
Both of the hierarchical representations shown in

Figure 2 (panels B and C) capture the essential informa-
tion of the protein sequence illustrated in Figure 1A: the
internal relationships among the domains and residues
of Lck. It differs from a non-hierarchical BNGL-encoded
representation of the molecule, such as LCK(SH3, SH2,
PTK, Y192, Y394, Y505), which tells us nothing about
how the tyrosine residues relate to the domains. In con-
trast, in the hierarchical representation, one can see that
Y192 is inside the SH2 domain. One can also see that
Y505 is a tyrosine residue located at the C-terminus of
the kinase domain, although this feature derives from
the layout of the graph.
Hierarchical graph representation of the TCR complex
To represent a multimeric protein like the TCR com-
plex, we can represent each of its constituent polypep-
tide chains as a hierarchical graph, as demonstrated
above for Lck. The hierarchical graphs for the individual
polypeptide chains can then be assembled into a larger
hierarchical graph of the complex, as demonstrated in
Figure 3. The root node of this graph indicates that the
name of this molecular complex is TCR. Nodes in the
next layer show the names of the constituent subunits,

which are homodimers and heterodimers. In the third
layer, each node represents a single polypeptide chain
that is part of a dimer in the second layer. The fourth
layer lists the linear motifs in those polypeptides and
the fifth layer lists amino acid residues that belong to
the linear motifs in the fourth layer. Thus, complexes
can be represented by hierarchical graphs. From this
hierarchical graph it is obvious that Y188 appears in
both the PRS and ITAM of CD3�. Thus, it can be
inferred that interactions involving Y188, the ITAM,
and the PRS may regulate one another. This is in fact
the case, as discussed earlier.

Algorithm for canonically labeling hierarchical graphs
Above, we proposed that models of signal transduction
networks should make use of graphs with two types of
edges; one expressing the structural hierarchy of mole-
cular components, the other the (non-covalent) bonds
between components. Thus, the edges of these graphs
will be labeled either “hierarchy” or “bond.” It is impor-
tant to be able to use hierarchical graphs not just for
improved annotation but also to incorporate them into
executable models in the future. There are two methods
to incorporate hierarchical graphs (and in general
graphs with multiple edge types) into a computational
setting. The first is to “flatten” the graph by removing
the labels of all the edges, so that there is only one edge
type. This simplification can be accomplished without
losing the information contained in the edge labels. For
each edge, we can insert a new vertex into the graph,
labeled to indicate that edge’s type. In particular, for an
edge e of type l connecting the vertices x and y, we can

αβ γε δε ζζ

Figure 3 A hierarchical graph representation of the TCR complex. This hierarchical graph represents the TCR complex. Each of the dimeric
subunits (TCRab, g�, δ�, ζζ) is represented as a subgraph. The name of the dimeric subunit is shown in the root node of the corresponding
subgraph. Arrows indicate containing relationships. Tyrosine 188 (Y188) belongs to two different linear motifs (the PRS and ITAM of the CD3�
chain). Note that only one polypeptide chain is drawn beyond the component molecules level to avoid redundancy.
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delete e from the graph and insert a new vertex v. We
can give v the label l and connect it to both x and y.
Performing this step for every edge in the original graph
produces a bipartite graph with one edge type. Although
no information is lost using this method, it is visually
inelegant and obscures the model (cf. Figure 2C and
Figure 4).
Another method which preserves the clarity of the ori-

ginal model is to simply keep the original edge types. To
make the model executable, we can assign distinct
values to each edge type from 0 to m, where m is the
number of distinct edge types. Then the graph can be
represented by the following sort of adjacency matrix.
Set the ijth entry of the adjacency matrix to be ∑2e

taken over edges with type e between vertices i and j.
Note that a non-directional edge e between vertices i
and j will contribute to both the ijth entry and the jith

entry, whereas a directed edge e from i to j (i.e., a hier-
archy edge) will only contribute to the ijth entry of the
adjacency matrix. A graph can be reconstructed from
such an adjacency matrix under the assumption that the
graph does not contain multiple edges (more than one
edge between a given pair of vertices) of the same edge
type. For biological models, the restriction to such
graphs is natural. Because our main motivation for
using hierarchical graphs to model biochemical net-
works is to improve the clarity of models, we recom-
mend this second method.
For instance, consider the chemical species

graph of Lck with SH2 connected to phosphorylated
Y505 (Figure 2C). Let the hierarchy edges be edge type
0 and the bond edges be edge type 1. Then in the adja-
cency matrix, a hierarchical edge from i to j will be
represented by a 1 = 20 in the ijth entry, whereas a bond
edge between vertices i and j will be represented by a
2 = 21 in both the ijth and the jith entries. The adjacency

matrix (for the species graph of Lck shown in
Figure 2C) is given in Table 1.
As can be seen from the first row of the matrix

in Table 1, Lck contains SH3, SH2, Y505 and PTK
components. Likewise, from the third and fourth
rows, one can see that the SH2 component contains a
Y192 subcomponent and the PTK component contains
a Y394 subcomponent. From the pair of “2” entries, one
can see that there is a bond between the SH2 and
Y505 components.
An important capability of BioNetGen is the ability to

distinguish between different graphs and to recognize
isomorphic graphs [51]. We describe a slight generaliza-
tion of the Nauty algorithm which can canonically label
graphs with several edge types. This algorithm, HNauty,
has been incorporated into BioNetGen [29]. Although
our algorithm is only slightly different from the one
described by McKay [55], we provide a brief description
of the whole algorithm for clarity.
Although the representation of graphs within comput-

ing systems can vary, it is useful to think of a graph as
being represented by an adjacency matrix for the graph.
However, the same graph can have several different
adjacency matrices associated with it; different permuta-
tions (i.e., orderings) of the vertices may correspond to
different adjacency matrices. If a graph is represented by
an adjacency matrix, the problem of finding a canonical
label for a graph is thus nothing more than picking a
canonical adjacency matrix for each graph, that is a
canonical permutation of the vertices. This can be done
by brute force; there are n! permutations of the vertices
of a graph with n vertices. Each permutation corre-
sponds to a possibly unique adjacency matrix. The adja-
cency matrices can be linearly ordered by considering
each matrix as a binary string of length n2. The first
(smallest) such string can then be chosen as the canoni-
cal label (matrix representation) for the given graph.
The problem with this method is that it involves produ-
cing and sorting n! strings.

hh

h hhh

LCK

Y192

SH3 SH2 Y505 PTK

Y394

b

Figure 4 Conversion of a hierarchical graph to a regular flat
graph. A method of reducing a graph with many edge types to a
graph (on more vertices) with only one edge type. Compare with
Figure 2C. In this figure, a “b” vertex corresponds to a bond, and an
“h” vertex corresponds to a structural relationship.

Table 1 Adjacency matrix for the chemical species graph
of Figure 2C

Component

Component Lck SH3 SH2 Y505 PTK Y192 Y394

Lck 0 1 1 1 1 0 0

SH3 0 0 0 0 0 0 0

SH2 0 0 0 2 0 1 0

Y505 0 0 2 0 0 0 0

PTK 0 0 0 0 0 0 1

Y192 0 0 0 0 0 0 0

Y394 0 0 0 0 0 0 0

The numerical entries in this table comprise a 7 × 7 matrix.
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Comparing Graphs: Graph Isomorphism and Graph
Automorphism
Graph isomorphism is closely related to graph auto-
morphism; both play an important role in the Nauty
algorithm. We will define and briefly explain both con-
cepts. Two graphs G and H are isomorphic if there is a
bijection j (a one-to-one and onto map) between the
vertex sets of the two graphs such that (u, v) is an edge
of G if and only if (j (u), j (v)) is an edge of H. It is
convenient to associate each isomorphism of a graph G
to a permutation of the vertices of G; a graph with n
vertices has n! isomorphic copies. A permutation π, of
the vertices, is an automorphism of the graph G if each
pair of vertices (u, v) is an edge of G if and only if the
pair (π(u), π(v)) is also an edge of G. The automorph-
isms of the graph are a formal description of the sym-
metries of the graph. For instance, two vertices are
symmetric in the graph if there exists an automorphism
which maps one vertex to the other. These concepts are
illustrated in Figure 5. The second and third graphs are
isomorphic copies of the first. However, the second is
not generated by an automorphism of the first whereas
the third is.
Let us exam the graphs in Figure 5 more carefully. The

permutation, π1, generating G2 from G1 is defined as fol-
lows: π1(v1) = v1, π1(v2) = v2, π1(v3) = v4 and π1(v4) = v3.
The permutation, π2, generating G3 from G1 is defined as
follows: π2(v1) = v1, π2(v2) = v4, π2(v3) = v3 and π2(v4) =
v2. Note that π2 satisfies the definition of an automorph-
ism of the graph G1 whereas π1 does not. The set of
those permutations of the vertices that are automorph-
isms of a graph G is called the automorphism group of
the graph G. The size of the automorphism group of a
graph is a measure of the amount of symmetry in the
graph. As will become clear later, it is often more difficult
to find canonical labels for graphs that are highly sym-
metric (i.e., graphs that have large automorphism groups)
than for graphs with small automorphism groups.
Determining graph isomorphism
A common element of methods for both assigning cano-
nical labels and determining graph isomorphism is the

individualization and refinement procedure [55,65]. The
Nauty algorithm also uses this procedure which is out-
lined below. The procedure involves partitions; a parti-
tion P of a set S, is a collection of non-empty pairwise
disjoint subsets {Si} of S whose union is S. The sets Si
are referred to as the cells of the partition. An ordered
partition is formed by ordering the cells of a partition.
In other words, the ordered k-tuple (S1, S2,.., Sk) is an
ordered partition of S if the sets Si form a partition of
S. Unless otherwise specified, in what follows, we will
always use “partition” to refer to an ordered partition.
The length of a partition is the number of cells in the
partition. A partition is discrete if its length is equal to
the size of the set S and trivial if it has only a single
cell. A discrete partition of the vertex set of a graph is
an ordering of the vertices and thus equivalent to
a permutation of the vertex set. As the canonical
labeling problem is equivalent to finding a canonical
permutation of the vertices of a graph, it is also
equivalent to finding a canonical discrete partition of
the vertex set.
The individualization and refinement procedure relies

heavily on so-called equitable partitions. An equitable
partition is a partition P = (S1, S2,.., Sk) of the vertices of
a graph G such that:

∀ ∈{ } ∈ ⇒ ( ) = ( )i j k x y S d x S d y Si j j, , , , , ,1 (1)

where d(x, Sj) is the number of edges connecting the
vertex x to elements of the cell Sj . Similarly, d(y, Sj) is
the number of edges connecting the vertex y to ele-
ments of the cell Sj. Thus, if every vertex in a graph has
fixed degree k, then the trivial partition of the vertex set
P = ( ) is equitable. Note also that for any graph, every
discrete partition is equitable.
There is a natural partial order on the collection of par-

titions of a given set S. Given two partitions P and Q of
the same set, we say P is finer than Q, Q is coarser than
P, and P is a refinement of Q (P ≤ Q) if each Pi is a subset
of some Qj. In addition, for ordered partitions, we require
P1 ⊆ Q1, and ∀i : Pi ⊆ Qj ⇒ Pi+1 ⊆ Qk where k is either j
or j +1. For example, the partition ({1, 5}, {2, 3}, {4}) is a
refinement of the partition ({1, 5}, {2, 3, 4}).
As every discrete partition of a vertex set is equitable,

it can be shown that every partition P of a vertex set
has a unique coarsest refinement that is equitable [55].
This fact underpins the individualization and refinement
approach. We refer to the unique coarsest refinements
as equitable refinements. Consider the equitable refine-
ments of the trivial partitions of the vertex sets of two
graphs, written as P = (P1, P2,.., Pj) and Q = (Q1, Q2,..,
Qk). If the graphs are isomorphic, these partitions will
have the same shape, meaning that for each i, |Pi| =
|Qi|. (|S| refers to the size of the set S.)

V1 V4 V3 V2V1 V1

V4V3V2 V2 V4 V3
G1 G2 G3

Figure 5 Three isomorphic graphs. The permutation producing
the third graph from the first is an automorphism of the first graph.
However, this is not true of the permutation producing the second
graph from the first graph.
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For example, let G1 be a graph with five vertices: v1,..,
v5 with edges between vi and vj if i - j ≡ 1 modulo 2.
Let G2 also be a graph with vertices v1 .., v5 but with
the edges {vi, vi+1} (taken modulo 5) so that we get a
5 cycle, together with an edge connecting v1 and v3. See
Figure 6. Both graphs consist of five vertices; two of
which have degree 3 and three of which have degree 2.
(The degree of a vertex is the number of edges in the
graph incident with the vertex.) Thus, by only looking at
the degrees of the vertices of these two graphs, we can-
not distinguish them. On the other hand, the graphs can
be distinguished by finding the equitable partition of the
vertex set for each graph. The unique coarsest equitable
partition for G1 is ({v2, v4}, {v1, v3, v5}). Each vertex in
the first cell is connected to three vertices in the second
cell, and none in the first while each vertex in the sec-
ond cell is connected to two vertices in the first cell and
none in the second. On the other hand, the unique
coarsest equitable partition for G2 is ({v1, v3}, {v2}, {v4,
v5}). Here, each vertex in the first cell is connected to
exactly one vertex from each of the three cells. The ver-
tex in the second cell is connected to two from the first
cell and zero from the third. As these two equitable par-
titions have different shapes, G1 and G2 cannot be
isomorphic.
In general, equitable partitions are insufficient to dis-

tinguish between non-isomorphic graphs and therefore
insufficient to determine canonical labels for graphs.
They must be used together with individualization,
which can be described as follows. Suppose the partition
P is not discrete; then let C be the first cell of P with
more than one element. Pick an element x in C and
consider the partition P’ formed by replacing the cell C
with the two cells C\{x} and {x}. P’ is a refinement of P,

but it is not necessarily equitable. Thus, it is necessary
to find the equitable refinement of P’. Continuing in this
manner, it is possible to individualize and find further
equitable refinements until a discrete partition is
reached. As the individualized vertices were chosen at
random, the procedure must be repeated for each possi-
ble choice of vertices. In this way, several discrete parti-
tions are produced; this is the individualization and
refinement procedure used in many canonical labeling
algorithms including Nauty. To finish, the algorithm
must select a canonical discrete partition from among
those produced by the individualization and refinement
procedure.
If a graph has a small automorphism group then the

individualization and refinement procedure will produce
only a few discrete partitions; in this case it will be rela-
tively easy to select a canonical label. Conversely, if the
automorphism group is large, the procedure will pro-
duce many discrete partitions, and it will take more
effort to select a canonical label. For example, if a graph
is completely symmetric then each permutation of the
vertices gives an automorphism of the graph. In this
case, every partition of the graph is equitable and the
individualization and refinement procedure will produce
each of the n! possible discrete partitions of the vertex
set. Recall the graphs G1 and G2 considered above. The
automorphism group of G2 has size 2 whereas the auto-
morphism group of G1 has size 6. Thus, the individuali-
zation and refinement procedure produces the following
two discrete partitions for G2: ({v1}, {v3}, {v2}, {v4}, {v5})
and ({v3}, {v1}, {v2}, {v5}, {v4}). On the other hand, the six
discrete partitions produced for G1 correspond to those
permutations of the vertices where both v2 and v4 come
before the three other vertices v1, v3, and v5.
At this point it is common to use a brute-force

method for finding a canonical partition from among
those generated by the individualization and refinement
procedure. Each generated partition P of the vertices
corresponds to a permutation π of the vertices. Applying
this permutation to the vertices of the graph, we get a
new adjacency matrix A for the graph. If there are n
vertices in the graph, then A is an n × n array of 0’s and
1’s. In fact, A can be considered to be a binary string of
length n2. Comparing these strings as binary numbers,
the smallest is selected and the corresponding partition
is ordained the canonical label.
In general, the individualization and refinement proce-

dure produces significantly less than n! partitions to be
compared as binary strings. This efficiency is achieved
because most graphs have small automorphism groups
[66]. However, the method fails to significantly reduce
the number of partitions that must be compared if the
graph has a large automorphism group. For instance, a
graph with n vertices containing every possible edge

V1

V4

V3

V2

V5 V1

V2

V5

V4 V3
G1 G2

Figure 6 Two non-isomorphic graphs each with five vertices.
Note that both graphs have two vertices of degree 3 and three
vertices of degree 2. To see that the two graphs are not isomorphic,
consider the following: we say a graph is bipartite if the vertices of
the graph can be partitioned into two sets such that no edges of
the graph have end points within the same partition class. For
instance, G1 is bipartite; consider the partition of its vertices into the
sets {v1, v3, v5} and {v2, v4}. On the other hand, it is impossible to
partition the vertices of G2 into two such sets. As the property of
being bipartite is invariant under permutations of the vertices of a
graph, it follows that G1 and G2 are not isomorphic.

Lemons et al. BMC Bioinformatics 2011, 12:45
http://www.biomedcentral.com/1471-2105/12/45

Page 9 of 13



connecting these vertices has a full automorphism
group, meaning that every permutation of the vertices is
an automorphism. For this graph, and similarly for a
graph containing no edges, the individualization and
refinement procedure will completely fail to reduce the
number of partitions to be compared; every discrete
ordered partition will be generated by the procedure.
The Nauty algorithm
For highly symmetric graphs, the Nauty algorithm [55]
implements a fairly effective strategy to speed up the
time taken to find a canonical label. It makes use of the
automorphisms of a graph to further reduce the number
of partitions produced by the individualization and
refinement procedure. We will now give a brief overview
of the search tree used in Nauty to explain how Nauty
takes advantage of knowledge of automorphisms of a
graph.
Nauty takes as input a colored (labeled) graph; the

coloring is taken to define a starting partition of the ver-
tices. Nauty then builds a rooted search tree by comput-
ing successive equitable refinements of the initial
partition given by the coloring. Elements of the search
tree are called nodes so as not to confuse them with the
vertices of the graph. The root of the search tree is the
equitable refinement of the initial (given) coloring.
Branches are formed by individualizing vertices and
finding successive equitable refinements after each indi-
vidualization step. Each movement down the search tree
corresponds to individualizing an appropriate vertex and
finding the equitable refinement of the resulting parti-
tion. Thus, each node at distance k from the root of the
search tree can be represented by an ordered k-tuple of
vertices, with the ordering corresponding to the order of
vertex individualization. The leaves of the search tree
(also called terminal nodes) correspond to discrete parti-
tions. Thus, each terminal node has a natural associa-
tion with a permutation of the vertices of the graph.
The key idea is that automorphisms of the graph cor-

respond to similar leaves in the search tree. To be more
precise, we say that two permutations, π1 and π2, of the
vertices of the graph are equivalent if there is an auto-
morphism of the graph, g such that π1 = π2 * g (that is,
π1 is equal to the composition of the two permutations
π2 and g.) Then as g is a permutation of the vertices, it
can also be considered a permutation of the nodes of
the search tree. (This is because each terminal node cor-
responds to an ordered tuple of vertices.) It can be
shown that if ν is a node of the search tree, then νg (the
permutation of the k-tuple ν by g) will be as well. In
fact, much more is true: the two sets of leaves of the
search tree derived from the two nodes ν and νg, respec-
tively, will be equivalent to each other. In other words,
the two sets of respective permutations will be equiva-
lent [55]. Thus, if g is an automorphism of the graph, it

is enough to produce all the terminal nodes stemming
from a given node ν in the search tree, and we can
ignore the terminal nodes stemming from νg. In this
way, knowledge of automorphisms can be used
to eliminate the need to examine (large) parts of the
search tree.
Nauty discovers automorphisms in the following way.

The algorithm is based on depth first search; it immedi-
ately starts generating terminal nodes. Upon producing
a terminal node, Nauty applies the corresponding per-
mutation to the original graph and then calculates the
resulting adjacency matrix. Two adjacency matrices pro-
duced in this way are equal if and only if the corre-
sponding two permutations, π1 and π2, are equivalent.
In this case, there exists an automorphism g of the
graph such that π1 = π2 * g. The Nauty algorithm then
calculates g by evaluating  2

1
1

−
* . As such automorph-

isms are discovered, Nauty can prune the size of the
search tree as detailed above.
Nauty also uses an indicator function to further prune

the search tree. An indicator function is a map defined
on the nodes of the search tree that is invariant under
automorphisms of the graph. This function maps the
nodes into a linearly ordered set (a set in which the ele-
ments have a linear ordering, for example the real num-
bers.) Then Nauty skips over nodes of the search tree
where the indicator function is not minimal. As the
indicator function is invariant under automorphisms of
the graph, a canonical label will be found among those
terminal nodes of minimal indicator function value.
HNauty
Here we describe HNauty and explain how HNauty dif-
fers from McKay’s description of Nauty [55]. One differ-
ence is that, as HNauty allows for several different edge
types, the adjacency matrices associated with the graphs
in HNauty may contain not only 0’s and 1’s for entries
but can have entries of the form ∑2i where i is taken
over those edges of type i between the two given ver-
tices. For a graph with two edge types (e.g., hierarchy
and bond edges), the entries in the adjacency matrix can
be 0, 1, 22-1 = 21 = 2 or 1+2 = 3. A value of “3” should
be interpreted to mean that there is both a hierarchy
edge and a bond edge between two vertices.
Another difference lies in how equitable partitions are

calculated. We define a slight generalization to deal with
labeled edges. A generalized equitable partition is an
ordered partition P = (V1, V2,.., Vk) of the vertices of a
labeled multi-graph such that for any edge label e, the
graph restricted to the edges labeled e (i.e., the subgraph

consisting only of the edges labeled e), denoted  |e ,

satisfies:

∀ ∈{ } ∈ ⇒ ( ) = ( )i j k x y V d x V d y Vi j j, , , , , ,1 (2)
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where d(x, Vi) is the number of edges labeled e
between x and Si. In other words, the partition is equita-
ble with respect to the graph restricted to any single
edge type. It can be proved that, given a partition P,
there exists a unique coarsest generalized equitable
refinement of P. To see this, note that it is enough to
prove it for un-ordered partitions. (All of the partitions
in Nauty and HNauty are ordered, and the orderings are
canonical: sets with higher degrees come before sets
with lower degrees.) Now, suppose that Q1 and Q2 are
both generalized equitable refinements of P. If Q1 and
Q2 are different as un-ordered partitions, then clearly
their join, Q (in the lattice of partitions) is also general-
ized and equitable. In fact, a basic property of lattices
implies that Q is also a refinement of P. As Q is coarser
than both Q1 and Q2, it follows that P has a unique
coarsest generalized equitable refinement. This property
is the only property of generalized equitable partitions
that is necessary to use them in place of equitable
partitions.

Implementation
Except for using generalized equitable partitions in place
of equitable partitions, our implementation follows the
description given by McKay [55]. Apparently, the actual
Nauty program [64] contains some efficiencies not
described in [55]. Thus, our algorithm is unlikely to be as
finely tuned as Nauty. For an indicator function, we use
the shape of the partition together with the shapes of the
parent nodes in the search tree. By shape we mean the
sizes of the individual cells of the partition. The partition
({0, 1}, {6}, {5}, {2, 3, 4, 7}) has shape (2, 1, 0, 1) as it has
two cells of size 1, one cell of size 2, no cells of size 3 and
one cell of size 4. These tuples are lexicographically
ordered. This indicator function is invariant under auto-
morphisms of the graph as required. Indeed it is invariant
under any permutation of the vertices.
We implemented our algorithm in both Perl and

Python. The Perl version of HNauty is available as
Additional file 1. The Python version of HNauty is avail-
able as Additional file 2. HNauty is also available at the
BioNetGen website [67]. The Perl version has been
incorporated into BioNetGen [29]. HNauty is turned off
by default in BioNetGen. It can be turned on with the
command “setOption(SpeciesLabel, HNauty);” at the
beginning of a BioNetGen input file. The default for
BioNetGen is to calculate pseudo-canonical labels that
do not distinguish all isomorphic graphs but are much
faster to generate than HNauty. Then any two graphs
which share pseudo-canonical labels are checked for iso-
morphism using Ullmann’s algorithm [68]. The genera-
tion of pseudo-canonical labels followed by applying
Ullmann’s algorithm to graphs with the same label
always produces correct results, though it can be much

slower than HNauty if a chemical species graph is
composed of many isomorphic subgraphs. The HNauty
code can be run as stand-alone code separate from Bio-
NetGen. The Python version of HNauty uses the graph
structures defined in the freely available package Net-
workX [69]. The Perl version of HNauty takes as input
the graph adjacency matrix together with an initial par-
tition of the vertices of a graph. The adjacency matrix
should be in the form of a dictionary of dictionaries.
The keys of the first dictionary are the vertices of a
graph. Each vertex i points to a second dictionary whose
keys are the neighbors of vertex i in the graph. In this
second dictionary, a vertex j points to an array contain-
ing the edge types between vertices i and j. (For graphs
without multiple edges, each such array will only con-
tain one edge type.) The initial partition of the vertices
should be given in the form of an array of arrays, each
of the smaller arrays being a set in the partition. HNauty
returns as output a permutation of the vertices of the
input graph. Permuting the input graph under this per-
mutation gives the canonical label of the graph (i.e., the
resulting adjacency matrix is the canonical label).

Testing
Both the Python and Perl versions of HNauty were exten-
sively checked using a database of isomorphic graphs
[70]. The Perl version was further checked against ran-
domly generated graphs with two types of edge: directed
and undirected. These graphs were generated using the
Erdős-Rényi model for random graphs; the edges were
chosen independently with uniform probability. Edges
were selected to be undirected with probability 0.1 and
directed with probability 0.05. With probability 0.85 an
edge was not in the graph. One thousand graphs, each
on two hundred nodes, were produced in this way. Each
was given as input to HNauty and then a random permu-
tation of the vertices was applied to each graph; the result
was also given as input to HNauty. A test was successful
if the two isomorphic inputs resulted in the same canoni-
cal label. All of the tests were successful.

Discussion
In the section above, we discussed the significance of
our results as the results were presented. Thus, this sec-
tion will be brief. Hierarchical graphs can be powerful
visual aids in understanding complex molecular struc-
tures. For rule-based models of cell signaling systems,
hierarchical graphs provide more natural representations
of proteins than the regular flat graphs of BNGL or
Kappa and thus promote clarity in building and annotat-
ing models. Regular flat graphs can obscure the struc-
tural properties of molecules and molecular complexes.
As shown above, hierarchical graphs can be used in a
formal manner to model cell signaling systems. In
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addition, they can be incorporated into executable mod-
els in place of regular graphs. As an example, we have
developed a version of the popular Nauty code which
can take as input hierarchical graphs (and indeed any
graphs with multiple edge types). This is important
because, as noted above, determining graph isomorph-
ism can take a significant amount of computation time
in network generation. As detailed above, HNauty dif-
fers only slightly from the main outline of Nauty given
by McKay [55]. Indeed, the formalism distinguishing
graphs and hierarchical graphs (and graphs with two or
more edge types) is also slight. Thus, we propose that the
use of hierarchical graphs may, at little cost, allow for
greater clarity of rule-based models for biochemical
systems.

Conclusions
The graphs and algorithm introduced here lay the
groundwork for rule-based models that are easier to
understand, because molecules with complicated sub-
structures can be more naturally represented.

Additional material

Additional file 1: The HNauty source code written in Perl.

Additional file 2: The HNauty source code written in Python.
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kinase.
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