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Abstract

Background: Automated extraction systems have become a time saving necessity in Systems Biology.
Considerable human effort is needed to model, analyse and simulate biological networks. Thus, one of the
challenges posed to Biomedical Text Mining tools is that of learning to recognise a wide variety of biological
concepts with different functional roles to assist in these processes.

Results: Here, we present a novel corpus concerning the integrated cellular responses to nutrient starvation in the
model-organism Escherichia coli. Our corpus is a unique resource in that it annotates biomedical concepts that play
a functional role in expression, regulation and metabolism. Namely, it includes annotations for genetic information
carriers (genes and DNA, RNA molecules), proteins (transcription factors, enzymes and transporters), small
metabolites, physiological states and laboratory techniques. The corpus consists of 130 full-text papers with a total
of 59043 annotations for 3649 different biomedical concepts; the two dominant classes are genes (highest number
of unique concepts) and compounds (most frequently annotated concepts), whereas other important cellular
concepts such as proteins account for no more than 10% of the annotated concepts.

Conclusions: To the best of our knowledge, a corpus that details such a wide range of biological concepts has
never been presented to the text mining community. The inter-annotator agreement statistics provide evidence of
the importance of a consolidated background when dealing with such complex descriptions, the ambiguities
naturally arising from the terminology and their impact for modelling purposes.
Availability is granted for the full-text corpora of 130 freely accessible documents, the annotation scheme and the
annotation guidelines. Also, we include a corpus of 340 abstracts.

Background
Due to its latest achievements, text mining, i.e. the auto-
mated extraction of information from electronically pub-
lished sources, is receiving increasing interest from
the scientific community [1-4]. Text mining has been
accounted for in the literature curation pipelines of several
databases devoted to cellular modelling, namely: Regulon’s
network of transcriptional regulation in Escherichia coli
(E. coli) [5], the Open Regulatory Annotation database
(ORegAnno) on cis-regulatory data [6], the KInetic Data-
base (KID) [7] and the BRaunschweig ENzyme Database
(BRENDA) [8] both covering kinetic enzyme information,

the Mouse Genome Informatics (MGI) database [9], the
STRING protein-protein interaction database [10], and a
knowledge base on molecular mechanisms of bacterial
enteropathogens [11]. Moreover, development efforts have
been made to provide tools able to combine text mining
techniques and manual curation into customised model-
ling workflows [4,12-14].
Here, we use our expertise on modelling microbial cellu-

lar processes to present a new set of annotated resources,
addressing key modelling necessities, to be used by the
text mining community. We provide corpora concerning
the integrated cellular responses to nutrient starvation in
the model-organism E. coli, in which a variety of metabolic
and regulatory biological concepts with assorted functional
roles is identified. Our annotation guidelines and our
evaluation of Inter-Annotator Agreement (IAA) address
biological issues such as: the specification of the biological
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concepts most relevant for studying cellular systems, how
their basic functional roles can be fitted into a taxonomy
of nominal classes and the terminological ambiguities that
are likely to occur on microbial-related literature. Also, we
analyse the impact of having annotators with different
(levels of) expertise involved in such a process and
describe the refinement of our annotation guidelines
according to the outputs of annotator training.
The most relevant contents are available in supplemen-

tary material, namely: the corpus (available in multiple
formats), data about the training stage (e.g. reports and
guidelines), all IAA calculations and some other data
considered useful to the community.

Related work
Semantically annotated corpora are commonly used to
train algorithms to extract information considered of
interest. However, the construction of a corpus tends to
be a laborious and time-consuming task that requires
considerable domain expertise to guarantee the high-
quality (correctness and meaningfulness) of the annota-
tions. Evaluation efforts, such as BioCreative [15,16],
TREC [17,18] and BioNLP [19], as well as individual text
mining research projects, have tailored a number of cor-
pora, freely available for the community.
Apart from their domain-specificities, corpora can be

distinguished on the basis of the text segments included
and the diversity of concepts involved. For a while, pub-
lishing policies and the costs associated with manual anno-
tation dictated the use of abstracts or smaller segments
(such as a randomised set of sentences) to construct cor-
pora [20-25]. Although such segments hold a limited
amount of information [26], this fact did not represent an
actual research constraint as much had to be done in
terms of training algorithms and building models. After
all, state-of-the-art recognisers for key entities like genes,
proteins and compounds are no more than five years old
[27-31]. Meanwhile, the urge to develop fully equipped
information extraction systems is demanding the con-
struction and use of corpora of full-text documents
[32-34], as well as the annotation of relationships/events
[24,35-37].
Although the new corpora are of interest to Systems

Biology applications and tools, most of them do not
yet cover the desired holistic annotation of cellular
processes. Except for a few recent works [24,35], exist-
ing corpora cover for a limited set of biological con-
cepts (often, just genes and proteins) and annotation
tends to focus on particular cellular processes (e.g.
protein-protein interactions or transcriptional regula-
tion), rather than to address integrated cellular pro-
cesses (e.g. effects of transcriptional regulation over
enzymatic reactions).

Motivation and objectives
When aiding in the construction of cellular models, text
mining systems have to deal with a wide variety of biologi-
cal concepts with different functional roles. Information
on gene expression and metabolic activities are at the core
of cellular growth, development, reproduction and adapt-
ability to environmental changes. Therefore, publications
in the field often include the description of complex inter-
actions involving genes, regulatory proteins (transcriptions
factors and sigma factors), enzymes (and/or the catalytic
reactions triggered by them), and metabolites (small mole-
cules or compounds). Until now, a corpus that details a
wide range of biological concepts has never been pre-
sented to the text mining community, thereby limiting the
application of text mining on modelling tools. Particularly,
one cannot forget that model reconstruction depends
extensively on literature curation rather than the contents
of databases [38] and thus, any means to enhance curation
and integrate text mining facilities in modelling tools are
of great interest to the community.
In this paper, we explore the issues that text mining sys-

tems will need to face in order to handle the knowledge
contained within full-text articles. Since cellular modelling
is one of our main research lines [39-43] and we have
been evaluating text mining approaches in previous work
[13,44], we are in a privileged position to provide both
biologists’ and modellers’ perspectives about the construc-
tion of text mining resources. In particular, we investigate
domain-specific semantic issues, namely ambiguities aris-
ing from terminology (e.g. polysemy and synonymy) and
biological concepts playing multiple functional roles, by
focussing on the manual identification of a set of key enti-
ties to cellular modelling within full-text articles. As final
outcome, we provide two annotated corpora: a corpus of
130 full-text documents and a corpus of 340 abstracts.
In the remainder of this paper, we firstly introduce the

key aspects of the annotation scheme, the annotation soft-
ware used and the profiles and training of the annotators.
Subsequently, we detail the construction of our corpus of
full-text documents, quantifying and explaining annotation
discrepancies and describing the post-processing that
ensures the quality of the final corpus. Then, we perform a
comparative analysis of our corpus of full-text documents
and our corpus of abstracts regarding the number and
diversity of biological concepts that have been annotated.
Some conclusions and future work directions are stated at
the end.

Methods
This section characterises our corpora and describes the
preparatory work required prior to their annotation.
Since the preparatory work, annotation and analysis of
our corpus of full-texts and our corpus of abstracts have

Carreira et al. BMC Bioinformatics 2011, 12:460
http://www.biomedcentral.com/1471-2105/12/460

Page 2 of 10



been performed in a similar way, we describe the pro-
cess applied to the corpus of full-texts, while the data
corresponding to the corpus of abstracts is provided in
supplementary material.

Corpora characterisation
The candidate documents for our work were retrieved
from PubMed, using the keywords ("Escherichia coli”
and “stringent response”), in January 2010. These candi-
date documents were screened for relevance by two of
the authors with biological expertise, resulting in a set
of 340 documents. From this set, we constructed a cor-
pus of 340 abstracts and a corpus of 130 open-access
full-texts.
The process of annotation of the two corpora was the

same. Specifically, annotators followed the same annotation
scheme and guidelines, the quality of their annotations was
quantified similarly and identical post-processing ensured
the high-quality of the final annotations. The effort
expended by the two annotators amounted to a total of
approximately 1188 person hours (equivalent to 6.75
person months).
The corpora are delivered in two XML-based formats:

inline annotation and stand-off annotation. Individual
annotations comprise the text span and its offsets (referring
to the full extent of the text), a category from our hierarchy
of biological concept types (see Annotation scheme sec-
tion), and, whenever possible, the database identifier (i.e. an
identifier from EcoCyc [45] or PSI-MI [46]) and the asso-
ciated common name. In supplementary material we pro-
vide the list of PubMed identifiers (PMIDs) of the
documents that compose our corpora (additional file “List
of Documents”) as well as the annotated corpus of full-text
documents (additional files “FulltextsCorpus_Inline” and
“FulltextsCorpus_Standoff”) and the annotated corpus of
abstracts (additional files “AbstractsCorpus_Inline” and
“AbstractsCorpus_Standoff”).

Annotation scheme
We have arranged biological concepts into the following
semantic categories (Figure 1): genetic information carrier
(which includes the categories gene, dna and rna), protein
(which includes the categories enzyme and transcription
factor), compound, biochemical reaction, physiological
state and laboratory technique. Besides common biological
concepts, we are interested in growth and environmental
conditions or changes, i.e. conditions that somehow trig-
ger regulatory actions at either the transcriptional or the
metabolic level (e.g. cell adaptation to osmotic variations
or nutrient deprivation). We are also interested in the
laboratory techniques used to identify biological entities
(e.g. mass spectrometry) and characterise the underlying
properties of the biological systems involving these entities
(e.g. in vitro enzymatic assays).

Each biological concept has a number of possible names
associated (i.e. all the text forms that annotators have
recognised in the documents), but has unambiguous
meaning and can be associated with a unique database
identifier. Namely, we have used the EcoCyc knowledge
base, a key resource for E. coli studies, to organise molecu-
lar information and the Molecular Interactions (PSI-MI)
ontology to index laboratory techniques.
To attain high quality annotations, we have produced a

detailed set of annotation guidelines that describe the bio-
logical concepts pertaining to each semantic category, and
provide clear positive and negative examples of concept
annotation. The structure and content of these guidelines
were iteratively refined in discussion with domain experts
and annotators, via group discussions after the training
cycles and after the post-processing of the corpora. The
final guidelines of annotation can be found in additional
file “Final Guidelines” in supplementary material.

Annotation software
The retrieval of documents and the subsequent manual
annotation was performed using @Note, a workbench for
Biomedical Text Mining [47]. This workbench enables
keyword-based PubMed querying and document retrie-
val. Moreover, it provides a user-friendly interface for
document visualisation and annotation: a colour-based
scheme keeps visual track of any annotation editing,
whilst another panel shows updated statistics on docu-
ment and corpus annotation; a browsing mechanism
allows the annotator to query well-known databases
about name variants; and, a basic statistics feature char-
acterises the ongoing annotation in terms of the number
of concepts and associated annotations for each category.

Figure 1 The hierarchical structure of the biological concepts.
The hierarchy covers biological concepts that characterize the
organizational structure of microbial systems, the physiological
conditions that affect them and the laboratory techniques used to
identify their underlying properties. Note: The supercategory genetic
information carrier is used only for organisational purposes, i.e. the
category is never used as an annotation category.
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See additional file “Software Snapshots” in supplementary
material for illustrative snapshots of the process.

Annotator profiling
The entanglement of biological concepts in the description
of cellular processes is not straightforward to follow by
those who do not have enough familiarity with biochem-
ical pathways and regulatory cascades. Therefore, although
the availability of annotators is often quite limited, it is
important to establish the minimum level of expertise to
be required for the production of such a corpus and the
level of detail that annotation guidelines have to encom-
pass in order to ensure the quality of annotation.
To perform this exercise, and given the availability of

human resources, we chose two annotators with different
levels of expertise. A student finishing a PhD thesis on the
stringent response of E. coli (designated as annotator A)
and a student who has recently started his PhD in E. coli
bioprocesses (designated as annotator B). Both annotators
present near-native competence in English and have solid
background in Biology, but one differs from the other in
terms of familiarity with microbial cellular processes and
the E. coli stress phenomena.

Annotator training and quality control
Our training process included a preliminary session and
three training cycles. First, we introduced the annotation
tool and the task, exemplifying the annotation guidelines
with some positive and negative examples of the biological
concepts to be annotated (see additional file “Initial Guide-
lines” in supplementary material). Next, we selected a sub-
set of 45 documents to be presented to both annotators
and initiated the training cycles. Each training cycle
included the annotation of the corpus based on the last
updates on the guidelines (see additional files “Report after
cycle 1” and “Report after cycle 2” in supplementary mate-
rial), the calculation of the rates of agreement between
annotators, the examination of the discrepancies and the
refinement of the guidelines.
To quantify the improvement in the rates of agree-

ment, we calculated the F-score, a common metric in
IAA evaluations [24,28,35].

F − score = 2× precison× recall
precision + recall

(1)

Precision =
number of identical entities in set A and set B

number of entities in set A
(2)

Recall =
number of identical entities in set A and set B

number of entities in set B
(3)

Legend: Set A refers to the set of annotations pro-
duced by annotator A and set B refers to the set of
annotations produced by annotator B. Also, note that
recall(set A, set B) = precision(set B, set A) [48].
Then, two of the authors (with extensive biological

expertise in the field) examined the annotation discre-
pancies and, prior to the next cycle of annotation, the
group discussed the observed ambiguities/glitches and
revised the annotation guidelines accordingly (e.g. by
introducing more positive and negative examples of the
different concepts).
In general, the trend was for the rates of agreement to

improve between training cycles (Table 1). At the end of
the last cycle, most agreement levels were approximate
to or above 50%, which we consider to be acceptable
regarding the different levels of expertise of our annota-
tors and the expected complexity in assigning some of
the concepts.
Indeed, we concluded that the slight decrease of the

rates of agreement for protein and transcription factor
in the last cycle is caused by different levels of experi-
ence on gene regulation and also, the distinction
between biochemical reaction and enzyme is unclear to
less experienced annotators.

Results and discussion
After the training period, the corpus of 130 full-texts
and the corpus of 340 abstracts were constructed (all
documents have been annotated by both annotators fol-
lowing the same collection of rules detailed in additional
file “Final Guidelines” in supplementary material).
In this section, we detail the process of annotation for

the corpus of 130 full-texts, examining the IAA scores

Table 1 Inter-annotator agreement during training

Training cycle
1

Training cycle
2

Training cycle
3

dna - 5.74% 21.74%

rna - 55.81% 65.63%

gene 69.39% 63.26% 83.08%

protein - 52.71% 48.45%

enzyme 41.03% 53.78% 65.28%

transcription factor 0% 38.46% 20.51%

compound 45.28% 65.36% 71.54%

biochemical
reaction

0% 0% 0%

physiological state 27.85% 40.94% 42.51%

laboratory
technique

23.01% 48.98% 48.52%

Columns report the F-scores obtained for each semantic category after a cycle
of training. Note that the annotation of concepts for categories dna and rna
(under the supercategory genetic information carrier, which also includes the
category gene) and protein (that aggregates the subcategories enzyme and
transcription factor) was considered only after the first training cycle.
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obtained and explaining the post-processing that was
executed to reach a biologically consistent consensus
and eliminate annotation inconsistencies. Further on, we
provide the general statistics of the final corpora and
perform a comparison regarding the distribution of con-
cepts per semantic category.

Quality control
Since, during the training period, we concluded that part
of the annotation inconsistencies were due to the different
levels of expertise of the annotators, we were expecting
similar problems at the annotation of the final corpus
(Table 2). Indeed, although the rates of agreement for
most categories are fairly good (approximately or above
50%), the only category that achieves high agreement is
gene, while categories such as transcription factor and dna
(about concepts related to regulatory functions) present
lower scores.
Thus, we decided to explore the nature of the discrepan-

cies by detailing the assignments of the annotators per
semantic category (Table 3). Specifically, we had a round
of group meetings where we examined discrepancies in
category assignment, assignments to fine-grained cate-
gories and differences in the number of annotations.
Polysemy
Situations of polysemy (i.e. when a name, one or more
words, may be used to denote different biological concepts
belonging to different semantic categories) caused many
category disagreements. Namely, we observe this problem
between the categories gene and compound, gene and pro-
tein, protein and compound, and enzyme and biochemical
reaction.
For example: names such as “leu”, “mal” and “fum” are

names of genes but are also acronyms of the compounds
“leucine”, “maltose” and “fumarate"; in the domain of our
corpus, the name “stringent factor” is a synonym for both
the compound “ppGpp” and the enzyme “RelA"; the name
“gpp” is a synonym for a gene coding for the enzymes

“guanosine-5’-triphosphate, 3’-diphosphate pyrophospha-
tase” and “xanthine-guanine phosphoribosyltransferase”
and the compound “geranyl diphosphate"; and the name
“glyD” is a synonym for a geneand an enzyme. Also, the
names of reactions are easily misinterpreted with the
names of enzymes, because the latest are mainly derived
from the designation of the respective catalysing biochem-
ical reaction ending in ‘ase’ and its substrate name (e.g.
sulfate adenylyltransferase catalyses the transfer of phos-
phorus-containing nucleotide groups to sulphate (sub-
strate), i.e. performs the adenylyltransferase activity).
Synonyms/name variants
The high degree of synonymy found in biological vocabul-
aries represents a challenge to the comprehensiveness of
the annotation. Indeed, the use of different names to
denote the same biological concept requires a certain
familiarity with the field, as many synonyms are not cata-
logued in databases and many name variants are only
associated with a biological concept in a very specific con-
text. Just to exemplify, during the annotation of our cor-
pus, we have found 27 name variants of the compound
“ppGpp”, 23 name variants of the enzyme “RelA”, and 5
name variants for the transcription factor “CRP-cAMP”.
Fine-grained semantics
Annotator B assigned many transcription factor and
enzyme concepts to protein. For example, non-obvious
enzyme names (e.g. “penicillin binding protein 2”, and the
synonyms “OmpT” and “outer membrane protein 3b”)
and transcription factors (e.g. “ntrc” that designates the
NtrC transcriptional dual regulator and “ole” that desig-
nates the FadR DNA-binding transcriptional dual regula-
tor) were annotated as protein.
Misclassification of biological concepts
Some category disagreements were seen to be due to mis-
classifications by one of the annotators. The reasons
behind these misclassifications are somewhat difficult to
unravel, but it could be attributed to misinterpretations in
specific biological contexts. For example, we found out
that annotator B misclassified some compounds as dna (e.
g. “mal” that is an abbreviation of “maltose”, a compound
that is used as a carbon source by many organisms) or as
enzyme (e.g. “luciferin” which is a class of small-molecules
that are oxidized in the presence of the enzyme luciferase
to produce oxyluciferin and energy in the form of light).
Annotator B also annotated most transcription units (e.g.
“thrAC”, “tauABCD”, and “sucACD”) and operons (e.g.
“gltB operon” and “ ftsQAZ operon”) as gene and misclas-
sified some laboratory techniques(e.g. “sonication” as
physiological state, “autoradiography” as compound and
“dideoxysequencing reaction” as biochemical reaction).
Exclusively annotated concepts
The extent of biological concepts that were exclusively
annotated by each of the annotators is large and fall
particularly into categories like compound, laboratory

Table 2 Inter-annotator agreement for the 130 full-texts

Final F-score

dna 13.22%

rna 59.69%

gene 91.78%

protein 42.15%

enzyme 63.33%

transcription factor 28.13%

compound 63.90%

biochemical reaction 0%

physiological state 46.50%

laboratory technique 38.34%

F-scores were estimated for each semantic category.
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Table 3 Annotator assignments per category

Annotator B

dna rna gene protein enzyme transcription factor compound biochemical reaction laboratory technique physiological state None

Annotator A dna 8
(2316)

0 0 0 0 0 0 0 0 0 58
(204)

rna 0 57
(9078)

0 0 0 0 0 0 0 1
(64)

23
(432)

gene 0 0 1066
(16250)

3
(68)

0 0 3
(534)

0 0 0 59
(276)

protein 0 0 4
(564)

55
(3396)

5
(18)

0 2
(64)

0 0 0 53
(261)

enzyme 0 0 0 3
(12)

196
(5457)

0 0 0 0 0 52
(219)

transcription factor 0 1
(20)

2
(6)

7
(1510)

0 9
(231)

0 0 0 0 27
(431)

compound 3
(170)

0 1
(8)

0 1
(68)

0 369
(36857)

0 0 0 75
(683)

biochemical reaction 0 0 0 0 48
(1425)

0 0 0 0 0 13
(48)

laboratory technique 0 0 0 1
(18)

1
(6)

0 2
(183)

0 136
(3495)

1
(40)

121
(852)

physiological state 0 0 0 0 0 0 0 0 0 97
(8361)

210
(5397)

None 44
(1555)

52
(130)

119
(529)

73
(440)

117
(941)

9
(30)

330
(2163)

1
(1)

187
(575)

100
(786)

Cells represent the assignments of both annotators in terms of the number of biological concepts and the corresponding number of annotations (depicted between parentheses). Consensual assignments, i.e.
assignments to the same category, are depicted at the diagonal of the table in bold; discrepancies in category assignment are indicated by non-diagonal cells; and the pseudo-category “None” represents all
assignments made by only one of the annotators. For instance, the top left hand cell indicates that annotators agreed on 8 biological concepts for the category dna, corresponding to a total of 2316 annotations.
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technique and physiological state. Annotator B tended to
annotate more exclusive terms than annotator A, in par-
ticular in gene category (119 and 59 exclusive terms,
respectively), enzyme category (117 and 52 exclusive
terms, respectively) and compound category (330 and 75
exclusive terms, respectively). It was observed that
Annotator B did not strictly follow some of the guide-
lines and annotated genes that do not belong to E. coli
or were introduced via genetic transformations (e.g. the
gene bmpA is from the bacteria Borrelia burgdorferi), or
terms that should be assigned to the biochemical reac-
tion in the enzyme category (e.g. hydrolase is not an
enzyme but the activity performed by several enzymes)
and also, compounds that do not participate in bio-
chemical reactions within E. coli cells, but are used in
laboratory assays (e.g. azthreonam that is a synthetic
monocyclic beta-lactam antimicrobial agent).
In categories like laboratory technique and physiologi-

cal state, the number of concepts exclusively annotated
was roughly even for both annotators. Apparently, the
annotation of these biological concepts is highly depen-
dent on the background knowledge of the annotators. As
observed, annotator A annotated many more concepts in
the physiological state category. This can be explained by
the fact that he is more familiar with the case study (i.e.
the stringent response in E. coli) compared to annotator
B. Likewise, the extent of exclusive terms assigned to the
laboratory technique category was conditioned by the
experience of each annotator. While annotator B has
considered more laboratory techniques related to bio-
chemistry and genetics (e.g. reverse transcriptase map-
ping or ribonuclease protection assays), annotator A
annotated more techniques that are related to preparative
or analytical techniques for measuring analytes (e.g. chip
immunoprecipitation or capillary electrophoresis).

Post-processing
After identifying the main issues affecting annotation
consistency, we undertook a final round of group ses-
sions to resolve them. Most inconsistencies were
resolved in favour of the more experienced annotator,
specifically inconsistencies related to the above men-
tioned fine-grained category assignments, exclusively
annotated concepts, and polysemy and synonymy
situations.
To guarantee the high-quality of the final corpus we

have revised the annotations as follows:
• biochemical reaction: since the disagreements

throughout the whole process of training and corpus
annotation were considerable, it was decided to not
include this biological concept in the final corpus. There-
fore, in addition to the previous rules regarding the tran-
sition of terms between the enzyme and biochemical

reaction concepts, it was determined to eliminate this
biological concept from the final corpus.
• compound: the level of exclusive terms included in

the 130 full-text corpus by the Annotator B is consider-
ably higher when compared to those annotated by
Annotator A. The annotation of compounds that are
uniquely used in biochemical assays (e.g. EDTA or acet-
onitrile) was previously decided (see additional file
“Report after cycle 1”) to be disregarded. However, some
of these terms were still assigned as compounds and,
consequently, were filtered out;
• gene: similarly to what was seen in compound anno-

tations, the addition of genes that are coming from
other biological sources other than E. coli must be disre-
garded. Thus, it was agreed that any term that refers to
a gene from another organism will be omitted (e.g.
bmpA, bmpB or bmpD designate genes from Borrelia
burgdorferi and should not be annotated).
• laboratory technique: the number of exclusive terms

annotated by both annotators exceeds the number of
concepts in which annotators agreed. This denotes the
importance of the annotator expertise at specific
research areas as explained before. In this case, it was
decided to join annotations from both annotators;
• physiological state: annotations on this category were

also disparate when analysing exclusive terms from both
annotators and were most likely a consequence of the
level of expertise of the two annotators. Since annotator
A was more familiar with the case study (i.e. the strin-
gent response in E. coli) many more terms were classi-
fied. Nevertheless, annotator B assigned some terms
that were missed by annotator A and it was decided to
include them in the final corpus.

Final corpus statistics
After ensuring the consistency of the annotations, our
corpus of 130 full-text documents comprises 59043
annotations, corresponding to 3649 unique biological
concepts, distributed according to the categories of our
scheme as shown in Table 4.
Gene and compound are the categories with the largest

number of biological concepts annotated. This is
explained by the fact that most activities related to
metabolism and gene expression are described to some
extent by concepts of these two categories. Regarding
the ratio of biological concepts, the category compound
is about 10% below the category gene, but its ratio of
annotations is almost 20% higher than the category
gene. This means that we have annotated more gene
concepts but comparatively, the documents contain
more mentions of compound concepts. Once again, this
is explained by the fact that E. coli stringent response is
triggered by compounds, (p)ppGpp, and then influences
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the expression of many genes. In addition, the low ratios
of the categories protein, enzyme and transcriptional fac-
tor (below 5%, 11% and 2%, respectively), and subcate-
gories rna and dna in the genetic information carrier
supercategory (around 3%) confirm that most of the dis-
cussion on cellular responses is centred on genes and
compounds.
It is also important to notice that the category physio-

logical state represents 11% of the biological concepts in
the corpus and 17% of the annotations in the corpus,
with a high frequency of annotation per concept

(around 25 annotations). Additionally, in the laboratory
technique category, encompassing biological concepts
that establish a mechanistic link between genes, com-
pounds and proteins, the ratio of biological concepts is
about 12% but the ratio of annotations is less than half
of this, with a frequency of 7 annotations per technique.

Comparative analysis of full-text and abstract
assignments
Compared to full-texts, abstracts are less rich and com-
plex text segments. Abstracts tend to mention only key

Table 4 General statistics about the corpus of full-text documents

Categories #concepts #
annotations

%
concepts

%
annotations

Annotation
Frequency

Concept
Distribution

Genetic Information
Carrier

dna 126 3771 3.45% 6.39% 29.93 8.87

rna 119 3970 3.26% 6.72% 33.36 8.38

gene 1175 8770 32.20% 14.85% 7.46 82.75

Protein protein 175 2332 4.80% 3.95% 13.33 28.69

enzyme 388 4025 10.63% 6.82% 10.37 63.61

transcription
factor

47 1434 1.29% 2.43% 30.51 7.70

compound 767 21414 21.02% 36.27% 27.92

physiological state 403 10166 11.04% 17.22% 25.23

laboratory technique 449 3161 12.30% 5.35% 7.04

Total 3649 59043 100% 100%

The first statistics depict the number and percentage of biological concepts and associated annotations, and the frequency of annotations per category. Besides
individual categories, there are hierarchically structured annotation categories: the categories dna, rna and gene belong to the supercategory genetic information
carrier; and the categories protein, enzyme and transcription factor are subcategories of protein. For these categories, the concept distribution of a category is then
calculated by dividing the number of biological concepts assigned to the category per the total number of biological concepts assigned to its supercategory.

Legend: The symbol “#” stands for “number of” and the symbol “%” stands for “percentage of”. Frequencies are calculated as follows:

concept distribution =
number of biological concepts in category

total number of biological concepts in supercategory

annotation frequency =
number of annotations in category

number of biological concepts in category

Table 5 General statistics about agreement rates and concept assignments for the two corpora

Abstracts Full-texts

F-scores Final number of biological concepts F-scores Final number of biological concepts

dna 30.77% 25 13.22% 126

rna 81.82% 32 59.69% 119

gene 87.84% 73 91.78% 1175

protein 45.16% 35 42.15% 175

enzyme 70.18% 67 63.33% 388

transcription factor 20% 17 28.13% 47

compound 83.09% 188 63.90% 767

biochemical reaction 0% -(*) 0% -(*)

physiological state 46.63% 145 46.50% 403

laboratory technique 75.27% 58 38.34% 449

The F-score columns refer to the F-score values achieved for the 130 documents after training and before post-processing; and the final number of biological
concepts is calculated after post-processing.

(*) This biological concept was not included in the final corpora. See the Post-processing sub-section for more details.
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biological concepts and the text is quite concise. So, we
would expect that abstract annotation would be signifi-
cantly less affected by differing levels of expertise.
To be able to draw a fair comparison, we have used only

the 130 documents that are common to both corpora. We
consider the improvement of the rates of agreement dur-
ing the training period (which only covered 45 of the 130
documents) and the rate of agreement for the 130 docu-
ments, and the final distribution of biological concepts per
semantic category (Table 5). During training, abstracts
have a greater improvement of the rates for most cate-
gories, except for the subcategories of gene, i.e. dna and
rna, and the categories compound and physiological state.
This could be explained by the same problems found dur-
ing training on full papers, where the assignment of tran-
scription units or operons as gene is confused with dna
(e.g. operon cyoABCDE), and the inclusion of compounds
that are not participants in the metabolism, but are chemi-
cal compounds used in assays (e.g. EDTA, a chelating
agent used for gel electrophoresis), were detected. These
misclassifications would decrease the IAA measurements.
When constructing the corpora of 130 documents, the

rates of agreement achieved for abstracts are significantly
higher than those achieved for full-texts, except for gene
(4% less) and transcription factor (8% less) assignments.
For these biological concepts, one of the annotators
assigned fewer terms, resulting in lower agreement rates.
It was found that most terms were annotated as the
supercategory (i.e., protein) by one of the annotators,
while the other discriminated the functional role of those
proteins (e.g. CRP and Lrp that DNA-binding transcrip-
tional regulators). The same happened when annotating
full-texts, but the proportion of these misclassified terms
was lower, which contributed to a slightly increased
F-score.

Conclusions
We have designed a schema and a set of guidelines in
support of the semantic annotation of microbial cellular
responses. We have produced a corpus of 130 free-
access full-texts with a total of 59043 annotations, corre-
sponding to 3649 unique biomedical concepts.
Through discrepancy analysis of the corpus, we have

pin-pointed the most problematic issues for annotators,
both in terms of terminological and background-related
issues. Our results show that high levels of agreement
(over 90%) can only be achieved for the gene category.
The average agreement rate for most of the other cate-
gories is around 50%. The exceptions are the categories
dna and biochemical reaction that have very low levels of
agreement. So, it is interesting to notice that even
amongst experienced researchers, annotation is still sub-
jective and highly dependent on whether or not the
researcher is familiar with the cellular processes under

annotation. Specifically, such high familiarity is required
in the annotation of different types of biological concepts
(often sharing common names) that play distinct cellular
roles depending on the context of the statement. This is
considered a major concern for the purpose of recon-
structing cellular models. The size of the model and its
complexity may hide some mis-annotations (or mis-
extractions) and lead to false biological interpretations.
This full-text corpus is suitable for use in the valida-

tion of the ability of information extraction tools in
ambiguous contexts. Moreover, since the corpus encom-
passes a wide variety of biological concepts at the core
of cellular responses, we believe that it may be a useful
resource in the development of text mining tools sup-
porting the reconstruction of cellular models. The cor-
pus is freely accessible at http://sysbio.uminho.pt/
corpus_ecoli.
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