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Abstract

Background: High-content, high-throughput RNA interference (RNAi) offers unprecedented possibilities to
elucidate gene function and involvement in biological processes. Microscopy based screening allows phenotypic
observations at the level of individual cells. It was recently shown that a cell’s population context significantly
influences results. However, standard analysis methods for cellular screens do not currently take individual cell data
into account unless this is important for the phenotype of interest, i.e. when studying cell morphology.

Results: We present a method that normalizes and statistically scores microscopy based RNAi screens, exploiting
individual cell information of hundreds of cells per knockdown. Each cell’s individual population context is
employed in normalization. We present results on two infection screens for hepatitis C and dengue virus, both
showing considerable effects on observed phenotypes due to population context. In addition, we show on a non-
virus screen that these effects can be found also in RNAi data in the absence of any virus. Using our approach to
normalize against these effects we achieve improved performance in comparison to an analysis without this
normalization and hit scoring strategy. Furthermore, our approach results in the identification of considerably more
significantly enriched pathways in hepatitis C virus replication than using a standard analysis approach.

Conclusions: Using a cell-based analysis and normalization for population context, we achieve improved sensitivity
and specificity not only on a individual protein level, but especially also on a pathway level. This leads to the
identification of new host dependency factors of the hepatitis C and dengue viruses and higher reproducibility of
results.

Background
RNAi screening has emerged as a novel technique to
functionally characterize genes in living cells. Using
short interfering RNAs (siRNAs), the technique allows
sequence-specific gene silencing in a high-throughput
fashion. This has successfully been used in several large-
scale screens, for example, focusing on genes involved in
mitosis [1], immune response [2] or viral infection [3,4].
The platform can be combined with automated micro-
scopy, which then allows the acquisition of multi-para-
metric phenotypes of hundreds of cells per knockdown
in a high-throughput fashion, yielding large data sets
and unprecedented opportunities for functional geno-
mics [5,6]. Unlike siRNA screens using bulk

measurements, microscopy-based screening offers a
much more detailed view, since for each siRNA single-
cell observations are available. This increased informa-
tion can be exploited to identify genes that cause differ-
ent morphological phenotypes, for example genes that
are related to focal adhesion or the cell cycle [1,7-9], but
offers also new possibilities to normalize data at the
level of individual cells.
Whilst a large variety of different normalization meth-

ods exist for microarrays, only some standard techni-
ques have been adapted so far for RNAi data [10-12].
Even for microscopy-based screens, most studies calcu-
late the mean or median fluorescence intensity of all
cells in the same well, and use these summarized values
to normalize within and between different experiments
[11,13-16]. Although the loess normalization is com-
monly used [11,13,17] to normalize the average cell sig-
nal intensities against the number of cells within one
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spot, extensive normalization based on individual cell
data has not been done so far. Depending on the experi-
mental setup, this results in a loss of information of
hundreds of individual cell measurements, with asso-
ciated detrimental effect on statistical power. Further-
more, population context of individual cells is
completely disregarded, which is in strong contrast to a
recent study performed by Snijder et al. [18]. These
authors show that a cell’s population context has con-
siderable influence on endocytosis and viral infection.
Although their work studies population effects in the
absence of siRNA knockdowns, the results strongly
advocate the use of high-content microscopy and appro-
priate cell-based data analysis methods for RNAi
screens.
Only a few methods so far have used individual cell

information from high-content microscopy-based
screens, and to our knowledge none to date have used
the population context for data normalization. Fuchs
and co-authors recently proposed the use of multipara-
metric phenotypic profiles of RNAi screening data to
cluster genes and to discover novel gene functions [8].
Their prediction is mainly based on morphological
changes of individual cells within a cell population. Sur-
atanee et al. have proposed the use of a spatial cluster-
ing approach to identify siRNA knockdowns involved in
viral infection [19]. Their approach is based on the
assumption that viruses mainly spread by cell-to-cell
contacts. The authors assume that infected cells form
clusters in microscopy images, and use Ripley’s k func-
tion to identify knockdowns resulting in a disturbed
clustering of cells.
In this paper, we present a novel method to analyze

high-throughput, high-content cellular assays, based on
single cell measurements. We show results on two viral
screens of hepatitis C virus (HCV) and dengue virus
(DENV). We observed considerable effects of cell popu-
lation context on infection, and thus normalize the mea-
surements of each individual cell against its population
context. We furthermore implement within-plate and
between-plate normalization methods for microscopy
screening data. We then identify statistically significant
knockdowns by taking fluorescence signal measurements
of all individual cells in the screen. Using this approach,
we were able to reconfirm several known and identify
new host dependency factors for both HCV and DENV.
The methods are implemented in the statistical pro-
gramming language R http://www.r-project.org, and are
available from the journals website (Additional file 1).

Results and Discussion
We conducted two different high-content RNAi primary
screens targeting the same set of 719 human kinases in
a virus infection setting. The first screen aimed to

identify host cell factors involved in HCV infection, the
second screen focused on DENV. Both screens were car-
ried out on cell arrays [20]. Results of the HCV screen
have previously been published using an analysis based
on average intensities per spot [17], and the screen has
consequently been re-analyzed using a clustering
approach on the raw microscopy data [19]. Using this
screen then, a comparison can be made between these
previous approaches and the method proposed here.
The DENV screen has not been published before.

Cell-to-cell variability in RNA interference screens
We observed considerable cell-to-cell variability in both
screens, even within the same spot. Figure 1a shows
microscopy images for a negative control (scrambled
siRNA) and the biological positive control CD81, in the
HCV screen. Two color channels are shown for the
same spot: Cell nuclei were stained using DAPI (left
images) and a GFP readout was used for viral infection
of the same cells (right images). Variability between
individual cells is shown in Figure 1b, which plots the
distribution of log-GFP signal intensity values of the sin-
gle cell measurements of negative (top) and positive
(bottom) controls. Of note, in both cases two popula-
tions corresponding to infected and non-infected cells
can be observed, but the positive and negative controls
differ in the distribution of cells between the two
groups. The solid brown line shows the log-GFP inten-
sity distribution of all cells in the entire screen (without
controls). Importantly, the negative controls exactly fit
the shape of the curve, whereas CD81 does not - indi-
cating that the full screen can be used as a quasi-nega-
tive control, and that most knockdowns in the screen
have no effect on viral infection. The number of cells in
wells with positive versus negative controls is roughly
the same (HCV: 326.82 ± 5.44 vs. 338.32 ± 3.43 mean ±
std. error, p = 0.11 using two-sided, two-sample Welch’s
t-test; DENV: 279.81 ± 7.64 vs. 287.0 ± 5.3; p = 0.46),
indicating no significant apoptotic effect of the corre-
sponding siRNA knockdowns.
To further characterize cell-to-cell variability, we fitted

a Gaussian mixture model to normalized log-trans-
formed intensity values. This fit shows a clear bimodal
distribution of the data with approximately normally
distributed components (μ = 0.34 ± 1.25*10-4 non-
infected and μ = -0.5 ± 3.63*10-5 infected cells for HCV;
μ = 0.21 ± 1.71*10-4 non-infected and μ = -0.72 ±
1.71*10-4 infected cells for DENV). Estimation of the
mixture coefficients for the positive and negative con-
trols confirm that there are clear differences. For the
positive controls of HCV (DENV) there is an uninfected
cell component probability of pu

+ = 0.61 ± 0.002 (pu
+ =

0.42 ± 0.002), and for the negative controls pu
- = 0.4 ±

0.001 (pu
- = 0.21 ± 0.001). This confirms that siRNA
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knockdowns of genes required for HCV and DENV
infection or replication (dependency factors) have a
higher proportion of cells with weak signal intensities.
Clearly, under optimal conditions (perfect transfection,
knockdown and infection efficiencies), only background
GFP intensity for positive and maximal intensity for
negative controls would be expected.

Population context influences infection
We next studied the effect of population parameters
on hepatitis C virus and Dengue virus infection, using
a procedure similar to the one proposed by Snijder et
al. [18]. Notably, while the analysis done by these
authors considers the effect of population context on
viral infection in the absence of any RNAi perturba-
tion, we here present for the first time results includ-
ing knockdowns. Furthermore, results shown here are
based on chambered coverglass slides (LabTeks),
whereas Snijder et al. used 96 well plates, with consid-
erable differences in cell numbers and cell densities
between these two platforms.
We computed six different population features for

each cell based on the DAPI and GFP stains: (1) Size of
the cell, (2) number of cells in the same spot, (3)

location of the cell in a local population (center or edge
of a local cell population), (4) local cell density and (5)
shape of the cell nucleus (1/circularity of the cell
nucleus). We note that since no stain for the cell cyto-
plasm is available, nuclear size is used as an approxima-
tion to cell size, as previously proposed by Snijder et al.
We furthermore calculated four technical features: (1)
location of the cell in the spot (center of spot or at the
border), (2) row effects of cell location (median signal
intensity of all cells in corresponding row on LabTek),
(3) column effect of cell location (median signal inten-
sity of all cells in corresponding column on LabTek),
and (4) plate effect (median signal intensity of all cells
on corresponding LabTek).
Due to the large number of individual cells, we

grouped cells with similar properties into 20 discrete
bins per feature. For each of the 5 population context
and 4 technical features, we then computed the average
within-bin and between-bin standard deviation of viral
infection. The ratio of these two values provides a direct
measure to assess the influences of the corresponding
population or technical parameter on viral infection. A
similar procedure has been used by Snijder et al to com-
pute the population effects.

Figure 1 Signal intensity measurements of controls. (a) Microscopy images for negative (scrambled) and positive controls (CD81) in the
hepatitis C virus infection screen. The left panel shows the nuclei (DAPI) channel, the right panel the virus signal (GFP). A clear effect of the
CD81 knockdown showing significant reduction of the GFP signal is visible, while cell counts are not affected. (b) Histogram of single cell log-
transformed GFP intensity values of the positive and negative controls in the HCV screen, measuring hepatitis C virus infection efficiency. The
brown curve indicates the signal distribution of all cells in the entire screen, perfectly matching the histogram of the negative, but not of the
positive controls. Notably, two populations of cells are discernible both in the positive and negative controls, corresponding to infected and
non-infected cells. Positive and negative controls differ in the sizes of these subpopulations, and thus the shape of the overall distribution of GFP
intensity values.
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Figure 2a shows the explained standard deviation of
viral infection for each of the five population and four
technical features we computed. The greatest influence
on signal intensity both in HCV and in DENV was due
to plate effects, with 14.35% (HCV) and 38.9% (DENV)
of the standard deviation explained by this parameter.
This was followed by cell size (12.96% vs. 16.24%
explained variation) as the second most important para-
meter in both screens. Spatial effects on the LabTeks
amounted to between 4.29% to 11.9% of the total

variation. Individual population features explained
between 1.8% to 16.24% of the total variation. We note
that the overall variance was higher in the DENV screen
(coefficient of variation of raw signal intensities CV =
0.595 DENV, in comparison to CV = 0.546 HCV).
Figure 2b shows the relative importance of the five

population context parameters on HCV and DENV
infection. In both viruses, cell size dominates with 42%
(HCV) and 33% (DENV) of the variance due to popula-
tion context. Cell number (24% HCV, 28% DENV) and

Figure 2 Results of the population context and technical feature computations. (a) Explained standard deviation of cell population context
and technical features with respect to single-cell viral infection efficiency. Shown are the ratios of the between-bin standard deviation to the
average within-bin standard deviation, as a measure of the fraction of the variation explained by the cell population or technical feature under
consideration. Blue: Hepatitis C virus (HCV) screen, red: Dengue virus (DENV) screen. While overall variability is larger for DENV, the relative effect
of individual features is comparable between both viruses under consideration. Importantly, a clear effect of cell population context on viral
infection is discernible. (b) Percentage of explained standard deviation for cell context features for HCV and DENV, relative to the total variability
due to cell population context. (c) Mean and standard deviation of the two population context features which are most important, namely Cell
Size and Cell number of the two screens in the twenty individual bins.
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cell position in local population (21% HCV, 20% DENV)
are the second and third most important parameters.
Local cell density (7% in both viruses) and cell shape
(6% HCV, 12% DENV) both still play an important role,
but relatively minor when compared to other factors.
This is in contrast to the previous findings of Snijder
and co-authors, who reported that the location of a cell
at the edge or in the middle of a cell cluster is the main
contributing factor for dengue virus infection [18]. This
difference may be due to different conditions in 96 well
plates versus on chambered coverglass slides (LabTeks),
and probably also due to different cell lines used in the
two experiments (Huh7.5 vs. HeLa).

Single cell based normalization and hit selection
Figure 2c gives the mean and standard deviation for
each of the twenty bins of the two most important
population context features on both screens (for the
other two, non-binary, population context features see
Additional file 2). This shows, for example, that in the
DENV and HCV screen, the log signal virus intensity is
smaller the larger the cells. In contrast, the signal inten-
sity is higher the greater the cell number. To test
whether the effects of the individual features on the
virus signal intensities are linear, we used a Harvey-Coll-
ier test for linearity computed on the log signal intensi-
ties and the raw features (without binning). The results
show that all features are significantly nonlinear (p-
values ≤ 2.2*10-16 for all features of the DENV and
HCV screen, except for the Spot border feature of HCV
with a p-value ≤ 2.987*10-7 and the Column feature of
DENV with a p-value ≤ 1.22*10-4).
Due to these nonlinear effects of the population con-

text and technical features, we used multivariate adap-
tive regression splines (MARS) on the full data (without
binning) to estimate the influence of the features on
HCV and DENV infection [21]. The fitted model was
then used to correct raw intensity values, by subtracting
estimated effects from individual cell measurements.
We next developed a statistical test to identify siRNA

knockdowns showing a significant effect on viral replica-
tion, borrowing ideas from gene set enrichment analysis
(GSEA) as proposed by Sweet-Cordero et al. [22,23].
This procedure is essentially a Kolmogorov-Smirnov test
on running sums over ranked intensity values, see meth-
ods [24]. We are looking for siRNAs that lead to a shift
in the distribution of individual cell signal intensities
away from the distribution of negative controls, towards
an increased number of non-infected cells showing only
background fluorescence. The basic principle employed
in this procedure is to sort all cells in the entire screen
according to their measured viral signal intensity. Two
running sums RSGk and RSḠk are then computed,

counting the fraction of cells treated or not treated with
a particular siRNA Gk of interest as the signal intensity
is gradually increased (see Equation 1 and Equation 2,
methods). The difference DIF between these two values
measures the enrichment of cells with respective inten-
sity values in the knockdown of interest (Equation 3).
Figure 3a shows DIF values of the positive and negative
controls over the indices of the sorted cell intensity
values of a randomly selected plate of the HCV screen,
illustrating the clear differences observable between
positive and negative controls. Whereas the DIF value
for the positive controls is increasing until a maximum
of about 0.2 is reached and then decreases again, the
DIF value of the negative controls is fluctuating around
zero. The enrichment score ES is defined as the maxi-
mum deviation of DIF from zero. Figure 3b shows the
median enrichment score ES for each siRNA in the
whole screen. The red curve illustrates the ES sorted by
increasing order.
The Figures 3c and 3d show the distribution of the

enrichment scores ES of all siRNAs in the HCV and
DENV screens. Scores of the positive controls are indi-
cated by blue diamonds, and for the negative controls
by red circles at the top of the plot. Interestingly, while
the positive and negative controls are perfectly separated
for the HCV data, some of the positive controls in the
DENV screen are not working properly. Since other
quality indicators of the affected plates in the DENV
screen were fine (correlation between replicates, other
controls on the same plates, statistics of plate and loca-
tion effects) but we generally observed higher variability
in the DENV screen, we decided not to remove the full
plate for the affected controls.
An interesting observation is the three peaks of the

distribution in Figures 3c and 3d, which seems counter-
intuitive. This tri-modality comes from summarizing the
replicates using the median of the ES of the replicate
measurements. Since there is an even number of repli-
cates (twelve for HCV and six for DENV) the mean of
the two central elements is used as median, and gives a
value around zero, if exactly one half of the replicates
has positive and the other half has negative ES values.
The siRNAs that have the majority of replicates with
positive or negative ES value occur in the right or left
peak, respectively. This tri-modality effect is thus an
artifact of summarizing an even number of replicates
using the median, and does not occur when taking the
mean - which however is less robust to outlier siRNAs.
The ES were then subjected to a nonparametric statis-

tical test to identify gene knockdowns that significantly
decrease viral replication, using a significance level of
adjusted p-values of a = 0.05 and an ES larger than 1.5
times the standard deviation of the median over the
replicates for the calculated ES of each LabTek.
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Hepatitis C virus host dependency factors
Using the normalization for cell population context and
subsequent hit scoring as described above resulted in a
list of 54 host dependency factors significantly reducing
HCV replication (see Additional file 3). We compared
identified hits to results obtained using a statistical ana-
lysis based on averaged intensity values per well (AVER-
AGE), as previously published [17]. A z-score threshold
of 1.5 and a significance level of 5% were used for hit
identification in the AVERAGE method. We further-
more compared results with the analysis method based
on Ripley’s k function recently proposed by Suratanee

and coauthors [19], with significance level 5% and nega-
tive clustering scores (RIPLEY).
Surprisingly, there are considerable differences in

identified hits, with only 6 gene knockdowns overlap-
ping between all three methods, compare Figure 4a
(upper VENN-Diagram). Genes in the overlap consis-
tently identified by all approaches are the positive con-
trols HCV321 and HCV138 directly targeting the viral
RNA genome, and CD81, the main entry receptor
required by HCV. The remaining three overlapping hits
are phosphatidylinositol 4-kinase alpha (PI4KA)
[4,25-29], casein kinase II subunit alpha (CSNK2A1)

Figure 3 Results of the ES compuations. (a) Computed DIF values for the positive (blue) and negative (red) controls of a randomly selected
plate from the hepatitis C virus screen. Note that four positive and seven negative controls were spotted on this plate. DIF measures the
difference between the running sums computed for each siRNA or well in the screen, describing the enrichment of cells from the
corresponding well towards high or low signal intensities. The enrichment score ES is the maximum DIF value observed for a particular spot/
siRNA under consideration. (b) Summarized enrichment scores ES of each siRNA in the HCV screen. Replicate enrichment scores were
summarized using the median, siRNAs were plotted in the sequence as spotted on the plates. The red line shows the siRNAs sorted by
increasing ES. (c, d) Distribution of the summarized enrichment scores ES of the full HCV and DENV screens, summarizing replicates using the
median. The location of positive and negative control scores is indicated by red circles for the negative and by blue diamonds for the positive
controls.
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[30], which are known to be related to the HCV replica-
tion cycle and fms-related tyrosine kinase 4 (FLT4)
which has been suggested to play a role in HCV in ear-
lier publications [19,31]. Out of the 44 genes identified
using the AVERAGE approach, 34 genes were also
found using the cell-based method presented here
(CELL-BASED), accounting for an overlap of 77.3% and
indicating high agreement between CELL-BASED and
AVERAGE results. On the other hand, only 10 of the 30
genes identified using the RIPLEY approach could also
be confirmed with the other methods (33.3%), and only

8 out of 44 genes identified using AVERAGE were also
found by RIPLEY (18.2%).
Most dependency factors were identified using the

CELL-BASED approach (54) (AVERAGE: 44 and RIP-
LEY: 30). While we expect higher statistical power when
using individual cell data, the question arises how reli-
able and reproducible identified hits are. We therefore
first evaluated how reliably the positive and negative
controls were identified with the three approaches, by
computing sensitivity and specificity and analyzing recei-
ver operator characteristic (ROC) curves for all three

Figure 4 Results of the different analysis methods on the HCV data. (a) Upper plot: Venn-Diagram of the hits at the gene level using the
CELL-BASED, AVERAGE and RIPLEY analysis methods. A total of 30 host dependency factors were identified using RIPLEY, 44 host dependency
factors were identified using the AVERAGE, and 88 factors were identified using the CELL-BASED approach. 39 genes were commonly identified
between CELL-BASED and AVERAGE, but only 8 genes common between AVERAGE and RIPLEY and only 10 common genes between RIPLEY
and CELL-BASED. Lower plot: Venn-Diagram of the hits at the gene level using the CELL-BASED, GSEA-ONLY and MARS-ONLY analysis methods
(b) Receiver operator characteristic (ROC) analysis of correct identification of positive and negative controls in the HCV screen. Sensitivity and
specificity of the recognition of positive and negative controls was computed for different thresholds on computed scores or significance levels,
using the AVERAGE, CELL-BASED and RIPLEY approaches. Hit thresholds were computed on z-score, clustering scores and ES, respectively. ROC
curves were generated by varying these thresholds, and plotting sensitivity over 1-specificity. Pink: CELL-BASED, Black: AVERAGE, Red: RIPLEY. The
area under each curve was computed to obtain a single value measuring the quality of the control classification. AUC values of 0.5 correspond
to random guessing, AUC values of 1 to perfect classification. Achieved AUC values varied between 0.87 for RIPLEY, 0.95 for AVERAGE, and 0.99
for CELL-BASED, showing best performance of the CELL-BASED approach. (c) Comparison of obtained area under the ROC curve (AUC) values on
an HCV validation screen, using hit genes identified in the primary screen using the CELL-BASED and RIPLEY methods. In brief, hit genes
identified using the AVERAGE method on the primary screen were subjected to a secondary validation screen. The intersection of predicted hits
on the primary screen using the RIPLEY and CELL-BASED approaches with genes screened in the validation screen was used to compute ROC
curves and AUC values for CELL-BASED and RIPLEY. Shown are AUC-values over different z-score thresholds on the validation screen.
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analysis methods based on the individual control spots
on each plate. ROC plots show tradeoffs between sensi-
tivity and specificity for different thresholds on scores or
p-values used for hit-calling. Random guessing would
correspond to a diagonal line in the ROC plot, whereas
a perfect predictor would yield sensitivity and specificity
values of one. ROC curves can be summarized further
by computing the area under the curve (AUC), which is
a value between 0.5 (random guessing) and 1 (perfect
classification). Figure 4b shows ROC curves for AVER-
AGE, RIPLEY and CELL-BASED. Although all ROC
curves are significantly better than random guessing,
AUC values show that CELL-BASED outperforms the
other two approaches in scoring controls almost per-
fectly (CELL-BASED: 0.989, AVERAGE: 0.95, RIPLEY:
0.87). Results are superior in recognizing positive and
negative controls in terms of both sensitivity and specifi-
city of. For the AVERAGE method a loess normalization
was used to normalize for general trends between the
mean viral signal intensities and the number of cells
within one spot. Furthermore, b-score normalization
was used to normalize against spatial plate effects. The
AUC values show, that the AVERAGE method cannot
minimize the introduction of false positive and false
negative controls on a single spot level as well as the
CELL-BASED method.
Since our analysis approach consists of two indepen-

dent methods (normalization against the population
context features using MARS and the statistical test
based on the idea of GSEA) we assessed which of the
two methods contributed the most to the increased per-
formance of classifying the controls. To do this, we used
each of the two methods independently on the HCV
data. For the first method (MARS-ONLY) we took raw
log virus signal intensity values and normalized them
against the features. Then, we used RNAither [11] to
summarize the cell intensities of one spot using their
mean and computed z-scores for each spot. By applying
a threshold of 1.5 times the standard deviation of the z-
scores of each replicate we defined hits on an individual
spot level. This procedure thus exploits the single cell
information for normalization, but nor for hit-calling.
We note, that the calculation of significance levels for
each spot is not possible in this method. For the second
method (GSEA-ONLY) we calculated ES on the raw log
virus signal intensities and used the nonparametric sta-
tistical test based on permutations to calculate p-values
for each spot - exploiting the full information of the
individual cells in the statistical test. We used Bonfer-
roni corrected p-values ≤ 0.05 and ES≥1.5 times the
standard deviation of median summarized replicate ES
for finding individual spots which significantly decrease
viral replication. We performed for both methods a
ROC analysis on individual control spots and computed

AUC values. MARS-ONLY results in an AUC of 0.971
and GSEA-ONLY in an AUC value of 0.987.
In summary, both individual methods are able to yield

improved results in comparison to the AVERAGE (AUC
= 0.95) and RIPLEY (AUC = 0.87) methods. The combi-
nation of MARS-ONLY and GSEA-ONLY in our CELL-
BASED approach gives the best result when compared
to the stand alone methods.
In addition, we summarized replicate measurements of

MARS-ONLY by taking their median and used a two-
sample, two-sided Welch’s t-test to define significance
values for the individual siRNAs. We used an alpha
threshold of 0.05 on uncorrected p-values and 1.5 times
the standard deviation of z-scores to define significant
siRNAs. The same was done for GSEA-ONLY, although
p-values for individual siRNAs have been calculated
based on the ES using the nonparametric test. Of the
resulting hits for GSEA-ONLY, MARS-ONLY and
CELL-BASED there are overlapping genes 35 (see Figure
4a lower VENN-Diagram and S1). Among the 54 hits
found using the combined CELL-BASED method 47
(87%) were also found with the two independent
methods.
Genes previously identified by Reiss et al. using the

AVERAGE method were tested in a secondary validation
screen by the same authors. We used this screen to
further assess our method. Using the subset of genes
tested in the validation screen, we computed sensitivity
and specificity for varying z-score thresholds for the
validation screen, varying ES score thresholds and
adjusted p-values ≤ 0.05 for selecting hits of the CELL-
BASED method and varying p-values and negative clus-
tering scores for the RIPLEY method. It can be noted
that an evaluation of the AVERAGE method with this
data is not possible, since this approach was used to
select genes for the validation screen, and hence true
and false negatives cannot be computed for AVERAGE
(negatives were not included in the validation screen).
Figure 4c shows the AUC values over different increas-
ing z-score thresholds on the validation screen, for
CELL-BASED and RIPLEY. Again, CELL-BASED shows
superior sensitivity and specificity (results of GSEA-
ONLY and MARS-ONLY look similar to CELL-BASED
and are thus not shown).

Pathway analysis and functional annotation of host
dependency factors
We identified 54 host dependency factors (HDF) for
HCV and 57 HDFs for DENV, see Additional files 3 and
4. These were further mapped to KEGG and Biocarta,
and functional enrichment tests were carried out to
select significantly enriched processes using DAVID
http://david.abcc.ncifcrf.gov/, see Additional files 5 and
6. We identified 20 pathways with a p-value smaller
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than 0.05 to be significantly involved in HCV using the
hits identified with our CELL-BASED approach. This is
ten times the number of pathways which are identified
to be significantly enriched using the hits of the AVER-
AGE method. In this method, only two pathways were
found, namely Purine metabolism, which was also iden-
tified with the CELL-BASED method, and Axon gui-
dance. Using the hit list of the RIPLEY approach no
pathways could be identified as significantly enriched.
This clearly shows, that our approach results not only
an increased sensitivity and specificity on an individual
siRNA level, but also an increased sensitivity on the
pathway level.
Enriched pathways for HCV include endocytosis, focal

adhesion, signaling in the immune system, regulation of
the actin cytoskeleton, and the ErbB and MAP kinase
signaling pathways. All of these pathways have pre-
viously been reported by Reiss and colleagues [17] by
pooling their screen with other previously published
screens. Notably, with the approach presented here, we
identified the same pathways without the additional
information of other screens, again indicating higher
sensitivity of the CELL-BASED approach. Several addi-
tional pathways were also identified, including purine
metabolism, TLR signaling and several cancer-associated
pathways.
Additional file 6 shows enriched pathways of the

DENV screen. Although the overlap between HCV and
DENV HDFs at the gene level is only seven genes, sig-
nificant overlap can be observed at the level of path-
ways. Enriched pathways again include focal adhesion,
immune signaling, and the ErbB and MAP kinase path-
ways, reflecting the close evolutionary relationship of
the two viruses.

Population context of non-virus screens
Apart from virus infection, the impact of many other- if
not all- “bioactive” treatments on cells most likely
depends on the properties of the individual cells and
their context. A pristine and ubiquitous example is the
transfection of cells using liposomal reagents. Every wet
lab biologist will know intuitively, that efficiency of
transfection strongly depends on the confluency of the
culture. While this is true and relevant for bulk mea-
surements of larger formats, it becomes critical when
dealing with the low cell counts typically found in the
wells or spots of high-throughput screening formats. In
an imaging-based screen of an innate immune signaling
pathway, which shall be published elsewhere, cells were
again reverse transfected with siRNA on spots of Lab-
Tek chamber slides. To determine the impact of gene
silencing on the pathway under investigation, signaling
was triggered by transfection of the cells with a defined
stimulus and a few hours later, pathway activation in

individual cells was assessed by microscopy of a fluores-
cent reporter. Across the whole screen (ca. 2.4 Mio.
cells were analyzed), we could detect a strict correlation
between population context and the rate of pathway
activation, due to the vastly different susceptibility for
liposomal transfection among cells growing in different
micro-contexts. To quantify this we calculated the
explained standard deviation of the rate of pathway acti-
vation by the population context features for each plate.
The mean and standard deviation across replicated
plates of the individual population features are for Cell
Size: 8.1 ± 2.57, Cell Density: 9.24 ± 3.5, Cell Number:
8.8 ± 2.4, Cell Shape: 8.16 ± 2.75 and for Population
Border: 8.9 ± 8.3. The correlation of each cell’s local
density for example, was already observable by the
human eye and therefore had to be normalized in order
to perform hit-calling.
The technical features average to 6.1 ± 1.9 (Row

Effects), 4.4 ± 2.1 (Column Effects) and 4.5 ± 2.71 (Spot
Border). Analysis has been done on the individual plate
level and thus, for the feature addressing the plate effect,
no binning has been performed. We calculated AUC
values for the positive and negative controls given in the
screen after normalizing against the population context
and against the technical features, and applied our
approach for statistical hit scoring as presented in this
study. We received increased performance (AUC = 0.66)
in comparison to an analysis without normalizing
against the features (AUC = 0.58).

Conclusions
We have introduced a novel approach for the statistical
processing of high-content cellular screens. We have
shown that the population context of individual cells
influences viral infection efficiency, and we have pre-
sented a normalization procedure to remove these
effects in microscopy-based screens. We have developed
a statistical testing procedure that takes into account
individual cell measurements in hit-scoring, and we
have demonstrated significantly improved sensitivity and
specificity using this approach on two large-scale RNAi
infection screens.
An evaluation that is based on individual cell mea-

surements can exploit the information contained in
hundreds of cells and thereby addresses the biological
variability of cells, for example, cells that are in different
states of the cell cycle. Obviously, the cells within one
spot are treated in the same way and are not technical
replicates as they are not independent of each other.
Nevertheless, we identified two clearly separated distri-
butions of cells within one spot which shows that there
are phenotypic differences between individual cells even
if they are treated in the same way. Our results show
that the integration of multidimensional phenotypes
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from high-content screens can make data analysis much
more sensitive and specific. Taking the individual cell
measurements within each spot into account and using
the computed p-values for individual spots highly
improves sensitivity and specificity values, where the
number of false positives and false negatives on a single
spot level is limited to a minimum resulting in an
almost perfect classification.
An interesting observation from previous infection

screens is that there is a very low overlap of identified
hits between different screens targeting the same virus
[32]. While the situation is somewhat improved when
considering overlaps at the pathway level, there is still a
surprisingly high variability in results. Based on the sig-
nificant influence of cell population context shown in
both our screens as well as previously reported by Snij-
der et al. [18], it is very likely that population factors
contribute at least partially to the problem. Our com-
parative analysis using average signal intensities, the
clustering approach based on Ripley’s k function and
the CELL-BASED analysis with correction for popula-
tion effects shows significant differences in resulting hit
lists on the same screen, strongly advocating for normal-
ization procedures accounting for cell population con-
text. Looking at the enriched pathways identified with
the hit lists using the AVERAGE and CELL-BASED
approach, our results clearly show an increased sensitiv-
ity. We found substantially more pathways than when
using the AVERAGE (with RIPLEY no pathways could
be identified) where several of them have already been
shown to be related in the processes of HCV and some
are newly discovered.
Interestingly, Snijder et al. [18] showed that the loca-

tion of a cell at the edge or in the middle of a local cell
cluster is the main factor influencing dengue virus infec-
tion. In contrast, our results indicate that the size of the
cell is the most significant population factor determining
infection efficiency - both for dengue and hepatitis C
virus. This difference may be due to the different plat-
forms used, and the with associated differences in cell
numbers and local cell density in each spot or well.
Also, cell-line specific effects may contribute to these
differences. Results reported by Snijder et al. were
acquired in HeLa cells using 96 well plates with asso-
ciated large wells and high cell numbers, whereas we
used Huh7.5 cells on LabTeks, each containing 384
spots and without separating walls between different
spots. It should further be noted that results presented
by Snijder et al. did not include any effects of transfec-
tion reagents and siRNA knockdown, which may further
alter the behavior of the cells.
We re-analyzed a previously published hepatitis C

virus screen, and provided a comparative analysis of
results using three different approaches. Our results

show significantly improved sensitivity over previous
data analyses on a single hit, as well as on the pathway
level, which we attribute to both the removal of con-
founding population effects, as well as the exploitation
of data from individual cells in hit scoring and statistical
testing. Using the approach presented here, we could
show high overlap of host pathways involved in hepatitis
C virus and dengue virus infection, underlining the
close evolutionary relationship between these two
viruses. Our results on a non-viral screen strongly indi-
cate that the population context not only influences
infection RNAi screens, but generally applies. However,
virus screens are more complicated as the infection itself
can induce viral phenotypic effects (cytopathic effects)
which may directly influence a population context fea-
ture. An infection, for example, may lead to larger cell
sizes of the infected cells and normalizing against the
cell size would destroy effects of perturbations. Since in
the HCV and DENV there are no control spots without
infections, we cannot test whether the cells in our
screens suffer from cytopathic effects. However, the ana-
lysis with GSEA-ONLY, where we do not normalize
against cell population effects, results in similar sensitiv-
ity and specificity values on controls, with the CELL-
BASED method being even slightly better. This in com-
bination with the increased sensitivity of the CELL-
BASED analysis on the pathway level, indicates that we
do not destroy effects when normalizing against cell
context features, but allow for a more sophisticated and
improved type of analysis. To conclude, high-content
screening offers a powerful tool to further elucidate
virus-host interactions in the future, with significant
advantages over high-throughput screens with low-
dimensional, non-microscopy based readouts. However,
great care must be exercised in analyzing and integrat-
ing data, to fully exploit the potential offered by this
platform.

Methods
RNAi screening
RNAi screens for host factors involved in HCV and
DENV were carried out as previously described [17] on
cell arrays (LabTek chambered coverglass slides). Seven
different plates, each repeated twelve times (HCV),
respectively six times (DENV), were used to knockdown
a total of 719 different human kinase genes. Each kinase
was individually targeted by three different siRNAs,
using the Ambion Silencer® Human Kinase siRNA
Library V3 (AM80010V3). Reverse transfection of siR-
NAs into Huh7.5 cells was carried out as described by
Erfle et al. [20]. After seeding of Huh7.5 cells, LabTeks
were incubated for 36 hours (HCV) or 48 hours
(DENV). For HCV, cells were infected with an HCV
GFP reporter virus and 36 hours later immunostained
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with a GFP-specific antibody. For DENV, cells were
infected with wild type Dengue virus (New Guinea C
strain) and immunostained for viral envelope protein
after 48 hours. Cell arrays were imaged with a scanning
microscope (Scan^R, Olympus Biosystems) using a 10×
objective (Olympus, cat. no. UPSLAPO 10×).

Image Analysis and Quality Assessment
To analyze the image data of the siRNA screen, we
developed an automatic image analysis system. The
input of this system consists of two-channel images of
each spot in the screen, corresponding to DAPI and
GFP signals. In the DAPI channel, single cell nuclei
were segmented using an edge-based approach. First, a
binary image f was obtained from the input image g by
combining the results of the gradient magnitude and the
Laplacian operator:

f
(
x, y

)
=

{
1 if|∇g| > T and|∇2g| < 0

0otherwise,

where ∇ denotes the Nabla operator,
∣∣∇g

∣∣ = √
g2x + g2y ,

with ∇2g = gxx + gyy , with gx, gy gxx, gyy denoting first

and second order partial derivatives of g, and T is a
threshold which is automatically determined using the
unimodal background symmetry method. The partial
derivatives of g are determined using first and second
order Gaussian derivative filters. Second, the whole con-
nected components of pixels with the negative Laplacian
which contained at least one pixel of the image f were
selected. The majority of these pixels correspond to cell
nuclei. Third, small connected components were
removed and morphological closing as well as hole fill-
ing were applied to each single component. Finally, cell
nuclei were identified from the connected components
(segmented objects) by applying size, intensity, and cir-
cularity criteria, as previously described [33].
In the GFP channel, the viral protein production level

(virus signal) of each cell was computed by the mean
pixel intensity inside the nucleus neighborhood. We
used non-overlapping rings around segmented nuclei as
neighborhoods.
Quality filtering was performed eliminating out-of-

focus images and image artifacts. On the single image
level, images were automatically classified as low quality
if they contained too large or too small a number of cell
nuclei, or if the images were out-of-focus. The out-of-
focus images were detected by measuring the gradient
magnitude near boundaries of segmented cell nuclei. On
the whole plate level, image quality and the result of
automatic quality filtering were checked by a human,
based on a whole plate view composed of image thumb-
nails overlaid with the automatic quality assessment

results. In this view, for example, improperly stained
plates were well visible and excluded from further analy-
sis. To exclude apoptotic knockdowns or images with
overlapping cells, spots with less than 125 or more than
500 cells were furthermore excluded from the analysis.
Quality assessment resulted in an overall exclusion of
15% of the images due to quality problems.

AVERAGE and RIPLEY data analysis method
AVERAGE: Data analysis on mean GFP intensities and
cell counts were done in the statistical environment R
http://www.r-project.org, using the cellHTS [10] and
RNAither [11] packages from Bioconductor http://www.
bioconductor.org. Loess normalization was used to dec-
orrelate the GFP and DAPI channels, and the B-score
method was used to remove spatial effects within plates
and normalize for between-plate variability. The twelve
(HCV), respectively six (DENV), replicate measurements
were then summarized by the mean, and hits identified
using a threshold of ± 1.5 and a p-value threshold of
0.05, using a t-test on the null-hypothesis of nonzero
normalized GFP signal intensity per well.
RIPLEY: Data analysis using the Ripley’s k-function

based a clustering approach were performed on the raw
images, as previously described [19].

Calculation of cell context features and normalization
using multiparametric regression
We computed five different cell context features and
four technical features for each cell in the entire screen.
(1) Size of each cell nucleus was directly computed from
the nuclei segmentation in the DAPI channel. (2) The
number of cells in each spot was counted based on the
DAPI segmentation. (3) The location of cells within a
local population (center or edge of a local cell popula-
tion) was estimated by splitting each spot into a 15 × 15
grid. Then we counted the number of cells in each grid
position. Grid size was manually optimized. Cells in a
position adjacent to an empty field were identified as
cells at the border of a local population. (4) Local cell
density was estimated using a Gaussian kernel density
estimator based on nuclei centers. (5) The shape of each
cell was computed as the inverse of the cell’s nucleus’
circularity. We furthermore calculated four technical
features for each cell: (1) Location of a cell in a spot
(within spot or at the border), based on nuclei coordi-
nates. (2) and (3): Row and column effects of the cell
location, using the median signal intensity of all cells in
the corresponding row or column of the LabTek as an
estimator. (4) Overall plate effects on cell intensity were
estimated using the median signal intensity of all cells
on the corresponding LabTek. We then used multivari-
ate adaptive regression splines as implemented in the
“earth” package from CRAN http://cran.r-project.org to
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estimate residuals accounting for population and techni-
cal artifacts, on which further analysis was carried out.

Estimation of within-bin and between-bin variability
To reduce dataset size for the estimation of effects on
viral infection of the computed features, we used a bin-
ning procedure. Using 5% quantile steps on each feature
20 bins were computed. Only two bins were used for
the binary features location of a cell with respect to
local cell population and with respect to the spot. We
then computed the average within-bin variability using
the mean of the standard deviation of GFP signals for
all cells assigned to a given bin, and the between-bin
variability using the standard deviation of the mean GFP
signals of all cells in each bin. To assess the effect of dif-
ferent bin sizes, we repeated the binning procedure
based on different quantiles. We observed no significant
differences in within- and between-bin variability. The
within-bin and between-bin variability ratio was then
calculated for each feature by dividing the between bin
standard deviation by the average within bin standard
deviation

Individual cell-based hit identification
Residual GFP values of individual cells, after correction
for cell population and technical features as described
above, were used to identify host dependency factors.
Data analysis was carried out by borrowing ideas from
gene set enrichment analysis (GSEA). GSEA is one of
the most popular strategies for detecting differentially
expressed gene sets, and was first introduced in the field
of gene expression analysis by Mootha et al. [23] and
Subramanian et al. [34]. The method is essentially a
weighted Kolmogorov-Smirnov test [24], which is
applied to a running sum statistic over ranked gene lists,
counting how often genes are or are not in the gene set
of interest. The variant used here has been proposed by
Sweet Cordero et al. [22], and corresponds to the stan-
dard, unweighted Kolmogorov-Smirnov test applied on
two running sums which denote the number of sorted
differentially expressed genes which are or are not in
the given gene set. Using GSEA in the context of RNAi
screens required basically one change of the original
usage. Unlike in the analysis of gene expression data,
the sets were defined not by genes but by cells coming
from one spot, one siRNA or one gene.
For GSEA we started with a list D with N samples and

computed a statistical score based on the correlation of
the measurements (gj) to the phenotype of interest for
all j = 1, ..., N. A variety of statistical scores, e.g., the t-
score or signal-to-noise-ratio can be used in this step
[31]. Based on this score, the list D was sorted and a
running sum statistic RS was calculated for each prede-
fined collection of genes G1, G2, ..., Gm. The sorted list

was processed from top to bottom and two running
sums RSGk and RSḠk were computed. RSGk was

increased by one, each time a sample belongs to Gk and
RSḠk each time a sample belongs to the complentary set

RSGk(i) =
∑
gj∈Gk

j≤i

1
NGk

:

RSGk(i) =
∑
gj∈Gk

j≤i

1
NGk

(1)

RSḠk(i) =
∑
gj /∈Gk

j≤i

1
N − NGk

(2)

where NGk is the number of gj Î Gk.
Finally, an enrichment score ESGk for each Gk was

defined as the maximal deviation from zero of the dif-
ference of the running sum Gk and its complementary
set Ḡk :

DIFi
(
Gk, Ḡk

)
= RSGk (i) − RSḠk

(i) (3)

ESGk = DIFj
(
Gk, Ḡk

)
, where j = argmax

i
|DIFi(Gk, Ḡk)| (4)

In the case of RNAi experiments, cells within each
single spot k were considered as the predefined sets Gk

and then the accumulation on top or bottom of the
sorted list of all cell intensities in the screen was evalu-
ated. Computation of the running sums was done by
ranking the normalized GFP intensities in increasing
order. The sign of the enrichment score determined the
direction of the effect observed, i.e. positive ES corre-
sponds to siRNAs having a negative effect on the phe-
notype (dependency factors).
To assess the significance of the obtained ES we used

permutation testing. We permuted the cells of each
plate and calculated an ES on the permutations
(ESperm) for each spot based on the cells which have
been assigned with the corresponding spot during the
permutation. Then, using the median of all replicate
plates ESperm was summarized using median and the
resulting distribution was used to calculate the signifi-
cance levels for the ES of the observed, unpermuted
data. The bonferroni method was then used to account
for multiple testing.

Additional material

Additional file 1: Software. (Archive containing R source code, example
dataset and documentation in PDF-Format) This archive contains the R
source code used for computation of the features, normalization and hit-
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calling, as well as an example data file (ASCII text) and a brief
documentation in PDF-Format.

Additional file 2: Population context features. Mean and standard
deviation of the two population context features Cell Density and Cell
Shape of the two screens in the twenty individual bins.

Additional file 3: Gene hit lists identified for HCV using the
different methods analyzed in this work. Gene hit lists of HCV screen
after CELL-BASED, AVERAGE and RIPLEY analysis, as well as MARS-ONLY
and GSEA-ONLY. Shown are genes that scored as hits using at least one
of these methods. Enrichment scores are shown for CELL-BASED and
GSEA-ONLY, z-scores for MARS-ONLY and AVERAGE and clustering scores
for RIPLEY. Non-significant values are represented by empty cells. The last
column indicates whether the respective gene also came out as a hit in
the DENV screen, shown are enrichment scores from the DENV screen.
Again, non-significant scores are left blank in the table.

Additional file 4: Gene hit lists identified for DENV using the CELL-
BASED method. Gene hit list of the DENV screen, using the CELL-BASED
method. Shown are enrichment scores after normalization for cell
population context and technical artifacts in the screen.

Additional file 5: Enriched pathways for HCV using DAVID. Results of
geneset enrichment analysis for KEGG and Biocarta pathways, using the
DAVID bioinformatics software. Significant signaling pathways of the HCV
screens are shown. The column “Category” shows whether the hit was
found in the KEGG or BIOCARTA database. “Term” describes the name of
the pathway. “Count” and “%” indicate how many genes and what
percentage of the hit list are in the respective pathway. The column
“PValue” shows the significance of the enrichment. Respective hit genes
are listed in column “Genes”. “List” is the total number of genes in the
respective pathway. “Fold Enrichment” expresses the enrichment score
and “Bonferroni”, “Benjamini” and “FDR” show the p-value after the
repective correction for multiple testing. Enriched pathways using the
AVERAGE screen are shown additionally in S3.

Additional file 6: Enriched pathways for DENV using DAVID. Results
of geneset enrichment analysis for KEGG and Biocarta pathways, using
the DAVID bioinformatics software. Significant signaling pathways of the
DENV screens are shown. The column “Category” shows whether the hit
was found in the KEGG or BIOCARTA database. “Term” describes the
name of the pathway. “Count” and “%” indicate how many genes and
what percentage of the hit list are in the respective pathway. The
column “PValue” shows the significance of the enrichment. Respective hit
genes are listed in column “Genes”. “List” is the total number of genes in
the respective pathway. “Fold Enrichment” expresses the enrichment
score and “Bonferroni”, “Benjamini” and “FDR” show the p-value after the
repective correction for multiple testing.
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